

Database Compatibility for Oracle ®

Developerôs Guide

EDB PostgresÊ Advanced Server 9. 6

October 31 , 2018

Database Compatibility for OracleÈ Developerôs Guide

by EnterpriseDB® Corporation
Copyright © 2007 - 2017 EnterpriseDB Corporation. All rights reserved.

EnterpriseDB Corporation, 34 Crosby Drive, Suite 100, Bedford, MA 01730, USA

T +1 781 357 3390 F +1 978 589 5701 E info@enterprisedb.com www.enterprisedb.com

http://www.enterprisedb.com/

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

3

Table of Contents

1 Introduction ... 9
1.1 Whatôs New .. 10
1.2 Typographical Conventions Used in this Guide .. 11
1.3 Configuration Parameters Compatible with Oracle Databases .. 12

1.3.1 edb_redwood_date .. 13
1.3.2 edb_redwood_raw_names .. 13
1.3.3 edb_redwood_strings .. 14
1.3.4 edb_stmt_level_tx... 16
1.3.5 oracle_home .. 17

1.4 About the Examples Used in this Guide .. 18
2 SQL Tutorial.. 19

2.1 Getting Started .. 19
2.1.1 Sample Database .. 20

2.1.1.1 Sample Database Installation .. 20
2.1.1.2 Sample Database Description ... 20

2.1.2 Creating a New Table.. 31
2.1.3 Populating a Table With Rows.. 32
2.1.4 Querying a Table .. 33
2.1.5 Joins Between Tables .. 35
2.1.6 Aggregate Functions ... 39
2.1.7 Updates ... 41
2.1.8 Deletions ... 42
2.1.9 The SQL Language ... 43

2.2 Advanced Concepts ... 44
2.2.1 Views ... 44
2.2.2 Foreign Keys.. 46
2.2.3 The ROWNUM Pseudo-Column... 47
2.2.4 Synonyms.. 49
2.2.5 Hierarchical Queries.. 51

2.2.5.1 Defining the Parent/Child Relationship .. 52
2.2.5.2 Selecting the Root Nodes ... 52
2.2.5.3 Organization Tree in the Sample Appli cation.. 52
2.2.5.4 Node Level .. 54
2.2.5.5 Ordering the Siblings .. 55
2.2.5.6 Retrieving the Root Node with CONNECT_BY_ROOT... 56
2.2.5.7 Retrieving a Path with SYS_CONNECT_BY_P ATH .. 60

2.2.6 Multidimensional Analysis... 62
2.2.6.1 ROLLUP Extension .. 64
2.2.6.2 CUBE Extension .. 67
2.2.6.3 GROUP ING SETS Extension... 71
2.2.6.4 GROUP ING Function ... 77
2.2.6.5 GROUP ING_ID Function.. 80

2.3 Profile Management ... 83
2.3.1 Creating a New Profile .. 84

2.3.1.1 Creating a Password Function... 87
2.3.2 Altering a Profile .. 90
2.3.3 Dropping a Profile .. 91
2.3.4 Associating a Profile with an Existing Role .. 92
2.3.5 Unlocking a Locked Account ... 94
2.3.6 Creating a New Role Associated with a Profile ... 96
2.3.7 Backing up Profile Management Functions... 98

2.4 Optimizer Hints ... 99

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

4

2.4.1 Default Optimization Modes ...102
2.4.2 Access Method Hints ...104
2.4.3 Speci fying a Join Order ..108
2.4.4 Joining Relations Hints...109
2.4.5 Global Hints..112
2.4.6 Using the APPEND Optimizer Hint..115
2.4.7 Parallelism Hints ...116
2.4.8 Conflicting Hints ...121

3 Stored Procedure Language...122
3.1 Basic SPL Elements ..122

3.1.1 Character Set...122
3.1.2 Case Sensitivity ...123
3.1.3 Identi fiers ...123
3.1.4 Quali fiers ...123
3.1.5 Constants..124
3.1.6 User-Defined PL/SQL Subtypes ..125

3.2 SPL Programs ..128
3.2.1 SPL Block Structure...129
3.2.2 Anonymous Blocks ..132
3.2.3 Procedures Overview ...133

3.2.3.1 Creating a Procedure ..133
3.2.3.2 Calling a Procedure..137
3.2.3.3 Deleting a Procedure ..138

3.2.4 Functions Overview ...139
3.2.4.1 Creating a Function..139
3.2.4.2 Calling a Function..144
3.2.4.3 Deleting a Function..145

3.2.5 Procedure and Function Parameters ..146
3.2.5.1 Positional vs. Named Parameter Notation..147
3.2.5.2 Parameter Modes ...149
3.2.5.3 Using Default Values in Parameters ...151

3.2.6 Subprograms ï Subprocedures and Subfunctions..152
3.2.6.1 Creating a Subprocedure ...153
3.2.6.2 Creating a Subfunction ...155
3.2.6.3 Block Relationships ...157
3.2.6.4 Invoking Subprograms ...159
3.2.6.5 Using Forward Declarations ..166
3.2.6.6 Overloading Subprograms...167
3.2.6.7 Accessing Subprogram Variables ...171

3.2.7 Compilation Errors in Procedures and Functions ..178
3.2.8 Program Security ...180

3.2.8.1 EXECUTE Privilege ..180
3.2.8.2 Database Object Name Resolution ...181
3.2.8.3 Database Object Privileges..182
3.2.8.4 Definerôs vs. Invokers Rights ..182
3.2.8.5 Security Example...183

3.3 Variable Declarations ..190
3.3.1 Declaring a Variable ..190
3.3.2 Using %TYPE in Variable Declarations..192
3.3.3 Using %ROWTYPE in Record Declarations..195
3.3.4 User-Defined Record Types and Record Variables ...196

3.4 Basic Statements...199
3.4.1 NULL ..199
3.4.2 Assignment...199
3.4.3 SELECT INTO ...200
3.4.4 INSERT ...202

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

5

3.4.5 UPDATE..204
3.4.6 DELETE ..204
3.4.7 Using the RETURNING INTO Clause..205
3.4.8 Obtaining the Result Status ...208

3.5 Control Structures...209
3.5.1 IF Statement..209

3.5.1.1 IF-THEN ..209
3.5.1.2 IF-THEN-ELSE ..210
3.5.1.3 IF-THEN-ELSE IF ..211
3.5.1.4 IF-THEN-ELSIF-ELSE ..212

3.5.2 RETURN Statement...214
3.5.3 GOTO Statement ...215
3.5.4 CASE Expression ..217

3.5.4.1 Selector CASE Expression ..217
3.5.4.2 Searched CASE Expression...218

3.5.5 CASE Statement..220
3.5.5.1 Selector CASE Statement ...220
3.5.5.2 Searched CASE statement...221

3.5.6 Loops...224
3.5.6.1 LOOP ..224
3.5.6.2 EXIT ...224
3.5.6.3 CONTINUE..225
3.5.6.4 WHILE ..225
3.5.6.5 FOR (integer variant) ...226

3.5.7 Exception Handling ...228
3.5.8 User-defined Exceptions ...230
3.5.9 PRAGMA EXCEPTION_INIT..232
3.5.10 RAISE_APPLICATION_ERROR..234

3.6 Transaction Control ..236
3.6.1 COMMIT ...237
3.6.2 ROLLBACK ...238

3.7 Dynamic SQL ..242
3.8 Static Cursors...245

3.8.1 Declaring a Cursor ...245
3.8.2 Opening a Cursor...245
3.8.3 Fetching Rows From a Cursor ...246
3.8.4 Closing a Cursor..247
3.8.5 Using %ROWTYPE With Cursors ...249
3.8.6 Cursor Att ributes ...250

3.8.6.1 %ISOP EN ..250
3.8.6.2 %FOUND ..250
3.8.6.3 %NOTFOUND ...251
3.8.6.4 %ROWCOUNT ..253
3.8.6.5 Summary of Cursor States and Attributes ..254

3.8.7 Cursor FOR Loop ..254
3.8.8 Parameterized Cursors..255

3.9 REF CURSORs and Cursor Variables..257
3.9.1 REF CURSOR Overview..257
3.9.2 Declaring a Cursor Variable ..257

3.9.2.1 Declaring a SYS_REFCURSOR Cursor Variable ...257
3.9.2.2 Declaring a User Defined REF CURSOR Type Variable ...258

3.9.3 Opening a Cursor Variable ..258
3.9.4 Fetching Rows From a Cursor Variable ..259
3.9.5 Closing a Cursor Variable ...259
3.9.6 Usage Rest rictions ...260
3.9.7 Examples..261

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

6

3.9.7.1 Returning a REF CURSOR From a Function ...261
3.9.7.2 Modularizing Cursor Operations ..262

3.9.8 Dynamic Queries With REF CURSORs..264
3.10 Collections...267

3.10.1 Associative Arrays ...267
3.10.2 Nested Tables..271
3.10.3 Varrays ..275

3.11 Collection Methods ...278
3.11.1 COUNT ...278
3.11.2 DELETE ..278
3.11.3 EXISTS..280
3.11.4 EXTEND ...280
3.11.5 FIRST ..283
3.11.6 LAST...283
3.11.7 LIMIT ..284
3.11.8 NEXT ..284
3.11.9 PRIOR ...285
3.11.10 TRIM...285

3.12 Working with Collections ..287
3.12.1 TABLE() ..287
3.12.2 Using the MULTISET UNION Operator...287
3.12.3 Using the FORALL Statement...289
3.12.4 Using the BULK COLLECT Clause...291

3.12.4.1 SELECT BULK COLLECT ...292
3.12.4.2 FETCH BULK COLLECT ...293
3.12.4.3 EXECUTE IMMEDIATE BULK COLLECT..295
3.12.4.4 RETURNING BULK COLLECT ..295

3.13 Errors and Messages ...298
4 Triggers..299

4.1 Overview...299
4.2 Types of Triggers ...300
4.3 Creating Triggers..301
4.4 Trigger Variables..304
4.5 Transactions and Exceptions ..306
4.6 Trigger Examples ...306

4.6.1 Before Statement-Level Trigger...306
4.6.2 After Statement-Level Trigger ...307
4.6.3 Before Row-Level Trigger ..308
4.6.4 After Row-Level Trigger ..308

5 Packages ..311
6 Object Types and Objects ...312

6.1 Basic Object Concepts...312
6.1.1 Attributes ...313
6.1.2 Methods ...313
6.1.3 Overloading Methods ...313

6.2 Object Type Components...314
6.2.1 Object Type Speci fication Syntax ..314
6.2.2 Object Type Body Syntax ...318

6.3 Creating Object Types ...321
6.3.1 Member Methods...321
6.3.2 Static Methods ..322
6.3.3 Constructor Methods ..323

6.4 Creating Object Instances ..326
6.5 Referencing an Object ...327
6.6 Dropping an Object Type...329

7 Open Client Library ...330

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

7

8 Oracle Catalog Views...331
9 Tools and Utilities..332
10 Table Partitioning ...333

10.1 Selecting a Partition Type ..334
10.2 Using Partition Pruning ...335

10.2.1 Example - Partition Pruning ..339
10.3 Partitioning Commands Compatible with Oracle Databases ..342

10.3.1 CREATE TABLEéPARTITION BY ..342
10.3.1.1 Example - PARTITION BY LIST..346
10.3.1.2 Example - PARTITION BY RANGE ...347
10.3.1.3 Example - PARTITION BY HAS H ...348
10.3.1.4 Example - PARTITION BY RANGE, SUBPARTITION BY LIST349

10.3.2 ALTER TABLE...ADD PARTITION...351
10.3.2.1 Example - Adding a Partition to a LIST Partitioned Table353
10.3.2.2 Example - Adding a Partition to a RANGE Partitioned Table354

10.3.3 ALTER TABLEé ADD SUBPARTITION ..356
10.3.3.1 Example - Adding a Subpartition to a LIST-RANGE Partitioned Table.................357
10.3.3.2 Example - Adding a Subpartition to a RANGE-LIST Partitioned Table.................359

10.3.4 ALTER TABLE...SPLIT PARTITION ...361
10.3.4.1 Example - Splitting a LIST Partition ..363
10.3.4.2 Example - Splitting a RANGE Partition..365

10.3.5 ALTER TABLE...SPLIT SUBPARTITION ..368
10.3.5.1 Example - Splitting a LIST Subpartition ...370
10.3.5.2 Example - Splitting a RANGE Subpartition...372

10.3.6 ALTER TABLEé EXCHANGE PARTITION..376
10.3.6.1 Example - Exchanging a Table for a Partition ..378

10.3.7 ALTER TABLEé MOVE PARTITION ..381
10.3.7.1 Example - Moving a Partition to a Di fferent Tablespace......................................382

10.3.8 ALTER TABLEé RENAME PARTITION ..384
10.3.8.1 Example - Renaming a Partition ..385

10.3.9 DROP TABLE ..386
10.3.10 ALTER TABLEé DROP PARTITION ...387

10.3.10.1 Example - Deleting a Partition...387
10.3.11 ALTER TABLEé DROP SUBPARTITION...389

10.3.11.1 Example - Deleting a Subpartition ...389
10.3.12 TRUNCATE TABLE...391

10.3.12.1 Example - Emptying a Table ...391
10.3.13 ALTER TABLEé TRUNCATE PARTITION ..394

10.3.13.1 Example - Emptying a Partition ...394
10.3.14 ALTER TABLEé TRUNCATE SUBPARTITION ...397

10.3.14.1 Example - Emptying a Subpartition..397
10.4 Handling Stray Values in a LIST or RANGE Partitioned Table ...400
10.5 Speci fying Multiple Partitioning Keys in a RANGE Partitioned Table..................................404
10.6 Retrieving Information about a Partitioned Table ..406

10.6.1 Table Partitioning Views - Reference ...407
10.6.1.1 ALL_P ART_TABLES...407
10.6.1.2 ALL_TAB_P ARTITIONS..408
10.6.1.3 ALL_TAB_S UBPARTITIONS ...409
10.6.1.4 ALL_P ART_KEY_COLUMNS ..410
10.6.1.5 ALL_S UBPART_KEY_COLUMNS ...410

11 ECPGPlus ...411
12 dblink_ora ...412

12.1 dblink_ora Functions and Procedures...413
12.1.1 dblink_ora_connect() ...413
12.1.2 dblink_ora_status() ..414
12.1.3 dblink_ora_disconnect() ...414

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

8

12.1.4 dblink_ora_record() ...415
12.1.5 dblink_ora_call() ...415
12.1.6 dblink_ora_exec() ..415
12.1.7 dblink_ora_copy()..416

12.2 Calling dblink_ora Functions..417
13 System Catalog Tables ..418
14 Acknowledgements ..419

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

9

1 Introduction

Database Compatibility for Oracle means that an application runs in an Oracle
environment as well as in the EDB Postgres Advanced Server (Advanced Server)

environment with minimal or no changes to the application code. Developing an
application that is compatible with Oracle databases in the Advanced Server requires
special attention to which features are used in the construction of the application. For
example, developing a compatible application means choosing compatible:

¶ System and built-in functions for use in SQL statements and procedural logic.

¶ Stored Procedure Language (SPL) when creating database server-side application
logic for stored procedures, functions, triggers, and packages.

¶ Data types that are compatible with Oracle databases

¶ SQL statements that are compatible with Oracle SQL

¶ System catalog views that are compatible with Oracleôs data dictionary

For detailed information about the compatible SQL syntax, data types, and views, please
see the Database Compatibility for Oracle Developers Reference Guide.

The compatibility offered by the procedures and functions that are part of the Built-in

packages is documented in the Database Compatibility for Oracle Developers Built-in
Packages Guide.

For information about using the compatible tools and utilities (EDB*Plus, EDB*Loader,
DRITA, and EDB*Wrap) that are included with an Advanced Server installation, please
see the Database Compatibility for Oracle Developers Tools and Utilities Guide.

For applications written using the Oracle Call Interface (OCI), EnterpriseDBôs Open
Client Library (OCL) provides interoperability with these applications. For detailed

information about using the Open Client Library, please see the EDB Postgres Advanced
Server OCI Connector Guide.

Advanced Server contains a rich set of features that enables development of database
applications for either PostgreSQL or Oracle. For more information about all of the

features of Advanced Server, please consult the user documentation available at the
EnterpriseDB website.

Advanced Server documentation is available at:

http://www.enterprisedb.com/products-services-training/products/documentation

http://www.enterprisedb.com/products-services-training/products/documentation

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

10

1.1 Whatôs New

The following database compatibility for Oracle features have been added to Advanced
Server 9.5 to create Advanced Server 9.6:

¶ Advanced Server now supports subprograms (that is, nested subprocedures and
subfunctions), which are declared and used within SPL programs such as
procedures, functions, anonymous blocks, triggers, packages, and object type
body methods. For more information, see Section 3.2.6.

¶ Advanced Server now supports the PARALLEL clause in the CREATE FUNCTION
command for enabling parallel sequential scans. For more information, see
section 3.2.4.1.

¶ Advanced Server now supports the PARALLEL clause in the CREATE PROCEDURE
command for enabling parallel sequential scans. For more information, see
3.2.3.1.

¶ Advanced Server now supports the PARALLEL and NO_PARALLEL optimizer hints
for parallel scans. For more information, see Section 2.4.7.

¶ Advanced Server now supports the REFERENCING OLD AS old NEW AS new
clause when creating a trigger. For more information, see section 4.3.

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

11

1.2 Typographical Conventions Used in t his Guide

Certain typographical conventions are used in this manual to clarify the meaning and

usage of various commands, statements, programs, examples, etc. This section provides a
summary of these conventions.

In the following descriptions a term refers to any word or group of words which may be
language keywords, user-supplied values, literals, etc. A termôs exact meaning depends
upon the context in which it is used.

¶ Italic font introduces a new term, typically, in the sentence that defines it for the
first time.

¶ Fixed - width (mono - spaced) font is used for terms that must be given

literally such as SQL commands, specific table and column names used in the

examples, programming language keywords, etc. For example, SELECT * FROM

emp;

¶ Italic fixed - width font is used for terms for which the user must

substitute values in actual usage. For example, DELETE FROM table_name ;

¶ A vertical pipe | denotes a choice between the terms on either side of the pipe. A
vertical pipe is used to separate two or more alternative terms within square

brackets (optional choices) or braces (one mandatory choice).

¶ Square brackets [] denote that one or none of the enclosed term(s) may be

substituted. For example, [a | b] , means choose one of ñaò or ñbò or neither

of the two.

¶ Braces {} denote that exactly one of the enclosed alternatives must be specified.

For example, { a | b } , means exactly one of ñaò or ñbò must be specified.

¶ Ellipses ... denote that the proceeding term may be repeated. For example, [a |

b] ... means that you may have the sequence, ñb a a b a ò.

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

12

1.3 Configuration Parameters Compatible with Oracle
Databases

EDB Postgres Advanced Server supports the development and execution of applications
compatible with PostgreSQL and Oracle. Some system behaviors can be altered to act in

a more PostgreSQL or in a more Oracle compliant manner; these behaviors are controlled

by configuration parameters. Modifying the parameters in the postgresql.conf file

changes the behavior for all databases in the cluster, while a user or group can SET the
parameter value on the command line, effecting only their session. These parameters are:

¶ edb_redwood_date ï Controls whether or not a time component is stored in

DATE columns. For behavior compatible with Oracle databases, set

edb_redwood_ date to TRUE. See Section 1.3.1.

¶ edb_redwood_raw_names ï Controls whether database object names appear in
uppercase or lowercase letters when viewed from Oracle system catalogs. For

behavior compatible with Oracle databases, edb_redwood_raw_names is set to

its default value of FALSE. To view database object names as they are actually

stored in the PostgreSQL system catalogs, set edb_redwood_raw_names to

TRUE. See Section 1.3.2.

¶ edb_redwood_strings ï Equates NULL to an empty string for purposes of
string concatenation operations. For behavior compatible with Oracle databases,

set edb_redwood_strings to TRUE. See Section 1.3.3.

¶ edb_stmt_level_tx ï Isolates automatic rollback of an aborted SQL command
to statement level rollback only ï the entire, current transaction is not
automatically rolled back as is the case for default PostgreSQL behavior. For

behavior compatible with Oracle databases, set edb_stmt_level_tx to TRUE;
however, use only when absolutely necessary. See Section 1.3.4.

¶ oracle_home ï Point Advanced Server to the correct Oracle installation
directory. See Section 1.3.5.

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

13

1.3.1 edb_redwood_date

When DATE appears as the data type of a column in the commands, it is translated to

TIMESTAMP(0) at the time the table definition is stored in the data base if the

configuration parameter edb_redwood_date is set to TRUE. Thus, a time component
will also be stored in the column along with the date. This is consistent with Oracleôs
DATE data type.

If edb_redwood_date is set to FALSE the columnôs data type in a CREATE TABLE or

ALTER TABLE command remains as a native PostgreSQL DATE data type and is stored as

such in the database. The PostgreSQL DATE data type stores only the date without a time
component in the column.

Regardless of the setting of edb_redwood_date , when DATE appears as a data type in
any other context such as the data type of a variable in an SPL declaration section, or the
data type of a formal parameter in an SPL procedure or SPL function, or the return type

of an SPL function, it is always internally translated to a TIMESTAMP(0) and thus, can
handle a time component if present.

See the Database Compatibility for Oracle Developers Reference Guide for more
information about date/time data types.

1.3.2 edb_redwood_raw_names

When edb_redwood_raw_names is set to its default value of FALSE, database object
names such as table names, column names, trigger names, program names, user names,

etc. appear in uppercase letters when viewed from Oracle catalogs (for a complete list of
supported catalog views, see the Database Compatibility for Oracle Developers

Reference Guide). In addition, quotation marks enclose names that were created with
enclosing quotation marks.

When edb_redwood_raw_names is set to TRUE, the database object names are
displayed exactly as they are stored in the PostgreSQL system catalogs when viewed
from the Oracle catalogs. Thus, names created without enclosing quotation marks appear

in lowercase as expected in PostgreSQL. Names created with enclosing quotation marks
appear exactly as they were created, but without the quotation marks.

For example, the following user name is created, and then a session is started with that
user.

CREATE USER reduser IDENTIFIED BY password;

edb=# \ c - reduser

Password for user reduser:

You are now connected to database "edb" as user "reduser".

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

14

When connected to the database as reduser , the following tables are created.

CREATE TABLE all_lower (col INTEGER);

CREATE TABLE ALL_UPPER (COL INTEGER);

CREATE TABLE " Mixed_Case " (" Col " INTEGER);

When viewed from the Oracle catalog, USER_TABLES, with edb_redwood_raw_names

set to the default value FALSE, the names appear in uppercase except for the
Mixed_Case name, which appears as created and also with enclosing quotation marks.

edb=> SELECT * FROM USER_TABLES;

 schema_name | table_name | tablespace_name | status | temporary

------------- +-------------- +----------------- +-------- +----- ------

 REDUSER | ALL_LOWER | | VALID | N

 REDUSER | ALL_UPPER | | VALID | N

 REDUSER | "Mixed_Case" | | VALID | N

(3 rows)

When viewed with edb_redwood_raw_names set to TRUE, the names appear in

lowercase except for the Mixed_Case name, which appears as created, but now without
the enclosing quotation marks.

edb=> SET edb_redwood_raw_names TO true;

SET

edb=> SELECT * FROM USER_TABLES;

 schema_name | table_name | tablespace_name | status | temporary

------------- +------------ +----------------- +-------- +-----------

 reduser | all_lower | | VALID | N

 reduser | all_upper | | VALID | N

 reduser | Mixed_Case | | VALID | N

(3 rows)

These names now match the case when viewed from the PostgreSQL pg_tables
catalog.

edb=> SELECT schemaname, tablename, tableowner FROM pg_tables WHERE

tableowner = 'reduser';

 schemaname | tablename | tableowner

------------ +------------ +------- -----

 reduser | all_lower | reduser

 reduser | all_upper | reduser

 reduser | Mixed_Case | reduser

(3 rows)

1.3.3 edb_redwood_strings

In Oracle, when a string is concatenated with a null variable or null column, the result is
the original string; however, in PostgreSQL concatenation of a string with a null variable

or null column gives a null result. If the edb_redwood_strings parameter is set to

TRUE, the aforementioned concatenation operation results in the original string as done

by Oracle. If edb_ redwood_strings is set to FALSE, the native PostgreSQL behavior
is maintained.

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

15

The following example illustrates the difference.

The sample application introduced in the next section contains a table of employees. This

table has a column named comm that is null for most employees. The following query is

run with edb_redwood_string set to FALSE. The concatenation of a null column with

non-empty strings produces a final result of null, so only employees that have a
commission appear in the query result. The output line for all other employees is null.

SET edb_redwood_strings TO off;

SELECT RPAD(ename,10) || ' ' || TO_CHAR(sal,'99,999.99') || ' ' ||

TO_CHAR(comm,'99,999.99') "EMPLOYEE COMPENSATION" FROM emp;

 EMPLOYEE COMPENSATION

----------------------- -----------

 ALLEN 1,600.00 300.00

 WARD 1,250.00 500.00

 MARTIN 1,250.00 1,400.00

 TURNER 1,500.00 .00

(14 rows)

The following is the same query executed when edb_redwood_strings is set to TRUE.
Here, the value of a null column is treated as an empty string. The concatenation of an

empty string with a non-empty string produces the non-empty string. This result is
consistent with the results produced by Oracle for the same query.

SET edb_redwood_strings TO on;

SELECT RPAD(ename,10) || ' ' || TO_CHAR(sal,'99,999.99') || ' ' ||

TO_CHAR(comm,'99,999.99') "EMPLOYEE COMPENSATION" FROM emp;

 EMPLOYEE COMPENSATION

 SMITH 800.00

 ALLEN 1,600.00 300.00

 WARD 1,250.00 500.00

 JONES 2,975.00

 MARTIN 1,250.00 1,400.00

 BLAKE 2,850.00

 CLARK 2,450.00

 SCOTT 3,000.00

 KING 5,000.00

 TURNER 1,500.00 .00

 ADAMS 1,100.00

 JAMES 950.00

 FORD 3,000.00

 MILLER 1,300.00

(14 rows)

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

16

1.3.4 edb_stmt_level_tx

In Oracle, when a runtime error occurs in a SQL command, all the updates on the

database caused by that single command are rolled back. This is called statement level

transaction isolation. For example, if a single UPDATE command successfully updates
five rows, but an attempt to update a sixth row results in an exception, the updates to all

six rows made by this UPDATE command are rolled back. The effects of prior SQL

commands that have not yet been committed or rolled back are pending until a COMMIT

or ROLLBACK command is executed.

In PostgreSQL, if an exception occurs while executing a SQL command, all the updates

on the database since the start of the transaction are rolled back. In addition, the

transaction is left in an aborted state and either a COMMIT or ROLLBACK command must
be issued before another transaction can be started.

If edb_stmt_level_tx is set to TRUE, then an exception will not automatically roll
back prior uncommitted database updates, emulating the Oracle behavior. If

edb_stmt_level_tx is set to FALSE, then an exception will roll back uncommitted
database updates.

Note: Use edb_stmt_level_tx set to TRUE only when absolutely necessary, as this
may cause a negative performance impact.

The following example run in PSQL shows that when edb_stmt_level_tx is FALSE,

the abort of the second INSERT command also rolls back the first INSERT command.

Note that in PSQL, the command \ set AUTOCOMMIT off must be issued, otherwise
every statement commits automatically defeating the purpose of this demonstration of the
effect of edb_stmt_level_tx .

\ set AUTOCOMMIT off

SET edb_stmt_level_tx TO off;

INSERT INTO emp (empno,ename,deptno) VALUES (9001, 'JONES', 40);

INSERT INTO emp (empno,ename,deptno) VALUES (9002, 'JONES', 00);

ERROR: insert or update on table "emp" violates foreign key constraint

"emp_ref_dept_fk"

DETAIL: Key (deptno)=(0) is not present in table "dept".

COMMIT;

SELECT empno, ename, deptno FROM emp WHERE empno > 9000;

empno | ename | deptno

------- +------- +--------

(0 rows)

In the following example, with edb_stmt_level_tx set to TRUE, the first INSERT

command has not been rolled back after the error on the second INSERT command. At
this point, the first INSERT command can either be committed or rolled back.

\ set AUTOCOMMIT off

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

17

SET edb_stmt_level_tx TO on;

INSERT INTO emp (empno,ename,deptno) VALUES (9001, 'JONES', 40);

INSERT INTO emp (empno,ename,deptno) VALUES (9002, 'JONES', 00);

ERROR: insert or update on ta ble "emp" violates foreign key constraint

"emp_ref_dept_fk"

DETAIL: Key (deptno)=(0) is not present in table "dept".

SELECT empno, ename, deptno FROM emp WHERE empno > 9000;

empno | ename | deptno

------- +------- +--------

 9001 | JONES | 40

(1 row)

COMMIT;

A ROLLBACK command could have been issued instead of the COMMIT command in

which case the insert of employee number 9001 would have been rolled back as well.

1.3.5 oracle_home

Before creating a link to an Oracle server, you must direct Advanced Server to the correct

Oracle home directory. Set the LD_LIBRARY_PATH environment variable on Linux (or
PATH on Windows) to the lib directory of the Oracle client installation directory.

For Windows only, you can instead set the value of the oracle _home configuration

parameter in the postgresql .conf file. The value specified in the oracle _home
configuration parameter will override the Windows PATH environment variable.

The LD_LIBRARY_PATH environment variable on Linux (PATH environment variable or

oracle_home configuration parameter on Windows) must be set properly each time you
start Advanced Server.

For Windows only: To set the oracle _home configuration parameter in the
postgresql .conf file, edit the file, adding the following line:

oracle_home = ' lib_directory '

Substitute the name of the Windows directory that contains oci .dll for
lib_directory .

After setting the oracle _home configuration parameter, you must restart the server for
the changes to take effect. Restart the server from the Windows Services console.

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

18

1.4 About the Examples Used in this Guide

The examples shown in this guide are illustrated using the PSQL program. The prompt

that normally appears when using PSQL is omitted in these examples to provide extra
clarity for the point being demonstrated.

Examples and output from examples are shown in fixed - width, blue font on a

light blue background.

Also note the following points:

¶ During installation of the EDB Postgres Advanced Server the selection for
configuration and defaults compatible with Oracle databases must be chosen in
order to reproduce the same results as the examples shown in this guide. A default

compatible configuration can be verified by issuing the following commands in
PSQL and obtaining the same results as shown below.

SHOW edb_redwood_dat e;

 edb_redwood_date

 on

SHOW datestyle;

 DateStyle

 Redwood, DMY

SHOW edb_redwood_strings;

edb_redwood_strings

 on

¶ The examples use the sample tables, dept , emp, and jobhist, created and

loaded when Advanced Server is installed. The emp table is installed with triggers
that must be disabled in order to reproduce the same results as shown in this

guide. Log onto Advanced Server as the enterprisedb superuser and disable
the triggers by issuing the following command.

ALTER TABLE emp DISABLE TRIGGER USER;

The triggers on the emp table can later be re-activated with the following
command.

ALTER TABLE emp ENABLE TRIGGER USER;

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

19

2 SQL Tutorial

This section is an introduction to the SQL language for those new to relational database
management systems. Basic operations such as creating, populating, querying, and
updating tables are discussed along with examples.

More advanced concepts such as view, foreign keys, and transactions are discussed as
well.

2.1 Getting Started

Advanced Server is a relational database management system (RDBMS). That means it

is a system for managing data stored in relations. A relation is essentially a mathematical
term for a table. The notion of storing data in tables is so commonplace today that it
might seem inherently obvious, but there are a number of other ways of organizing

databases. Files and directories on Unix-like operating systems form an example of a
hierarchical database. A more modern development is the object-oriented database.

Each table is a named collection of rows. Each row of a given table has the same set of

named columns, and each column is of a specific data type. Whereas columns have a
fixed order in each row, it is important to remember that SQL does not guarantee the
order of the rows within the table in any way (although they can be explicitly sorted for
display).

Tables are grouped into databases, and a collection of databases managed by a single
Advanced Server instance constitutes a database cluster.

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

20

2.1.1 Sample D atabase

Throughout this documentation we will be working with a sample database to help
explain some basic to advanced level database concepts.

2.1.1.1 Sample Database Installation

When Advanced Server is installed a sample database named, edb , is automatically

created. This sample database contains the tables and programs used throughout this
document.

The tables and programs in the sample database can be re-created at any time by

executing the script, edb - sample.sql , located in the samples subdirectory of the
Advanced Server home directory.

This script does the following:

¶ Creates the sample tables and programs in the currently connected database

¶ Grants all permissions on the tables to the PUBLIC group

The tables and programs will be created in the first schema of the search path in which

the current user has permission to create tables and procedures. You can display the
search path by issuing the command:

SHOW SEARCH_PATH;

Altering the search path can be done using commands in PSQL.

2.1.1.2 Sample Database Description

The sample database represents employees in an organization.

It contains three types of records: employees, departments, and historical records of
employees.

Each employee has an identification number, name, hire date, salary, and manager. Some
employees earn a commission in addition to their salary. All employee-related

information is stored in the emp table.

The sample company is regionally diverse, so the database keeps track of the location of

the departments. Each company employee is assigned to a department. Each department
is identified by a unique department number and a short name. Each department is

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

21

associated with one location. All department-related information is stored in the dept
table.

The company also tracks information about jobs held by the employees. Some employees
have been with the company for a long time and have held different positions, received

raises, switched departments, etc. When a change in employee status occurs, the company
records the end date of the former position. A new job record is added with the start date

and the new job title, department, salary, and the reason for the status change. All
employee history is maintained in the jobhist table.

The following is an entity relationship diagram of the sample database tables.

deptno

dname

loc

empno

ename

job

mgr

hiredate

s al

c omm

deptno

empno

s tartdate

enddate

job

s al

c omm

deptno

c hgdes c

emp

dept

jobhist

Figure 1 Sample Database Tables

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

22

The following is the edb - sample.sql script.

--

-- Script that creates the 'sample' tables, views, procedures,

-- functions, triggers, etc.

--

-- Start new transaction - commit all or nothing

--

BEGIN;

/

--

-- Create and load tables used in the documentation examples.

--

-- Create the 'dept' table

--

CREATE TABLE dept (

 deptno NUMBER(2) NOT NULL CONSTRAINT dept_pk PRIMARY KEY,

 dname VARCHAR2(14) CONSTRAINT dept_dname_ uq UNIQUE,

 loc VARCHAR2(13)

);

--

-- Create the 'emp' table

--

CREATE TABLE emp (

 empno NUMBER(4) NOT NULL CONSTRAINT emp_pk PRIMARY KEY,

 ename VARCHAR2(10),

 job VARCHAR2(9),

 mgr NUMBER(4),

 hiredate DATE,

 sal NUMBER(7,2) CONSTRAINT emp_sal_ck CHECK (sal > 0),

 comm NUMBER(7,2),

 deptno NUMBER(2) CONSTRAINT emp_ref_dept_fk

 REFERENCES dept(deptno)

);

--

-- Create the 'jobhist' table

--

CREATE TABLE jobhist (

 empno NUMBER(4) NOT NULL,

 startdate DATE NOT NULL,

 enddate DATE,

 job VARCHAR2(9),

 sal NUMBER(7,2),

 comm NUMBER(7,2),

 deptno NUMBER(2),

 chgdesc VARCHAR2(80),

 CONSTRAINT jobhist_pk PRIMARY KEY (empno, startdate),

 CONSTRAINT jobhist_ref_emp_fk FOREIGN KEY (empno)

 REFERENCES emp(empno) ON DELETE CASCADE,

 CONSTRAINT jobhist_ref_dept_f k FOREIGN KEY (deptno)

 REFERENCES dept (deptno) ON DELETE SET NULL,

 CONSTRAINT jobhist_date_chk CHECK (startdate <= enddate)

);

--

-- Create the 'salesemp' view

--

CREATE OR REPLACE VIEW salesemp AS

 SELECT empno, ename, hiredate, sal, comm FROM emp WHERE job = 'SALESMAN';

--

-- Sequence to generate values for function 'new_empno'.

--

CREATE SEQUENCE next_empno START WITH 8000 INCREMENT BY 1;

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

23

--

-- Issue PUBLIC grants

--

GRANT ALL ON emp TO PUBLIC;

GRANT ALL ON dept TO PUBLIC;

GRANT ALL ON jobhist TO PUBLIC;

GRANT ALL ON salesemp TO PUBLIC;

GRANT ALL ON next_empno TO PUBLIC;

--

-- Load the 'dept' table

--

INSERT INTO dept VALUES (10,'ACCOUNTING','NEW YORK');

INSERT INTO dept VALUES (20,'RESEARCH','DALLAS');

INSERT INTO dept VALUES (30,'SAL ES','CHICAGO');

INSERT INTO dept VALUES (40,'OPERATIONS','BOSTON');

--

-- Load the 'emp' table

--

INSERT INTO emp VALUES (7369,'SMITH','CLERK',7902,'17 - DEC- 80',800,NULL,20);

INSERT INTO emp VALUES (7499,'ALLEN','SALESMAN',7698,'20 - FEB-

81',1600,300,30);

IN SERT INTO emp VALUES (7521,'WARD','SALESMAN',7698,'22 - FEB- 81',1250,500,30);

INSERT INTO emp VALUES (7566,'JONES','MANAGER',7839,'02 - APR-

81',2975,NULL,20);

INSERT INTO emp VALUES (7654,'MARTIN','SALESMAN',7698,'28 - SEP-

81',1250,1400,30);

INSERT INTO emp VALU ES (7698,'BLAKE','MANAGER',7839,'01 - MAY-

81',2850,NULL,30);

INSERT INTO emp VALUES (7782,'CLARK','MANAGER',7839,'09 - JUN-

81',2450,NULL,10);

INSERT INTO emp VALUES (7788,'SCOTT','ANALYST',7566,'19 - APR-

87',3000,NULL,20);

INSERT INTO emp VALUES (7839,'KING','PR ESIDENT',NULL,'17 - NOV-

81',5000,NULL,10);

INSERT INTO emp VALUES (7844,'TURNER','SALESMAN',7698,'08 - SEP- 81',1500,0,30);

INSERT INTO emp VALUES (7876,'ADAMS','CLERK',7788,'23 - MAY- 87',1100,NULL,20);

INSERT INTO emp VALUES (7900,'JAMES','CLERK',7698,'03 - DEC- 81 ',950,NULL,30);

INSERT INTO emp VALUES (7902,'FORD','ANALYST',7566,'03 - DEC- 81',3000,NULL,20);

INSERT INTO emp VALUES (7934,'MILLER','CLERK',7782,'23 - JAN- 82',1300,NULL,10);

--

-- Load the 'jobhist' table

--

INSERT INTO jobhist VALUES (7369,'17 - DEC- 80',NULL ,'CLERK',800,NULL,20,'New

Hire');

INSERT INTO jobhist VALUES (7499,'20 - FEB- 81',NULL,'SALESMAN',1600,300,30,'New

Hire');

INSERT INTO jobhist VALUES (7521,'22 - FEB- 81',NULL,'SALESMAN',1250,500,30,'New

Hire');

INSERT INTO jobhist VALUES (7566,'02 - APR- 81',NULL, 'MANAGER',2975,NULL,20,'New

Hire');

INSERT INTO jobhist VALUES (7654,'28 - SEP-

81',NULL,'SALESMAN',1250,1400,30,'New Hire');

INSERT INTO jobhist VALUES (7698,'01 - MAY- 81',NULL,'MANAGER',2850,NULL,30,'New

Hire');

INSERT INTO jobhist VALUES (7782,'09 - JUN- 81',NU LL,'MANAGER',2450,NULL,10,'New

Hire');

INSERT INTO jobhist VALUES (7788,'19 - APR- 87','12 - APR-

88','CLERK',1000,NULL,20,'New Hire');

INSERT INTO jobhist VALUES (7788,'13 - APR- 88','04 - MAY-

89','CLERK',1040,NULL,20,'Raise');

INSERT INTO jobhist VALUES (7788,'05 - MAY-

90',NULL,'ANALYST',3000,NULL,20,'Promoted to Analyst');

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

24

INSERT INTO jobhist VALUES (7839,'17 - NOV-

81',NULL,'PRESIDENT',5000,NULL,10,'New Hire');

INSERT INTO jobhist VALUES (7844,'08 - SEP- 81',NULL,'SALESMAN',1500,0,30,'New

Hire');

INSERT INTO jobhist VALUE S (7876,'23 - MAY- 87',NULL,'CLERK',1100,NULL,20,'New

Hire');

INSERT INTO jobhist VALUES (7900,'03 - DEC- 81','14 - JAN-

83','CLERK',950,NULL,10,'New Hire');

INSERT INTO jobhist VALUES (7900,'15 - JAN-

83',NULL,'CLERK',950,NULL,30,'Changed to Dept 30');

INSERT INTO jo bhist VALUES (7902,'03 - DEC- 81',NULL,'ANALYST',3000,NULL,20,'New

Hire');

INSERT INTO jobhist VALUES (7934,'23 - JAN- 82',NULL,'CLERK',1300,NULL,10,'New

Hire');

--

-- Populate statistics table and view (pg_statistic/pg_stats)

--

ANALYZE dept;

ANALYZE emp;

ANALYZE jobhist;

--

-- Procedure that lists all employees' numbers and names

-- from the 'emp' table using a cursor.

--

CREATE OR REPLACE PROCEDURE list_emp

IS

 v_empno NUMBER(4);

 v_ename VARCHAR2(10);

 CURSOR emp_cur IS

 SELECT empno, ename FROM emp ORDER BY empno;

BEGIN

 OPEN emp_cur;

 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');

 DBMS_OUTPUT.PUT_LINE(' ----- ------- ');

 LOOP

 FETCH emp_cur INTO v_empno, v_ename;

 EXIT WHEN emp_cur%NOTFOUND;

 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || v_ename);

 END LOOP;

 CLOSE emp_cur;

END;

/

--

-- Procedure that selects an employee row given the employee

-- number and displays certain columns.

--

CREATE OR REPLACE PROCEDURE select_emp (

 p_empno IN NUMBER

)

IS

 v_ename emp.ename%TYPE;

 v_hiredate emp.hiredate%TYPE;

 v_sal emp.sal%TYPE;

 v_comm emp.comm%TYPE;

 v_dname dept.dname%TYPE;

 v_disp_date VARCHAR2(10);

BEGIN

 SELECT ename, hiredate, sal, NVL(comm, 0), dname

 INTO v_ename, v_hiredate, v_sal, v_comm, v_dname

 FROM emp e, dept d

 WHERE empno = p_empno

 AND e.deptno = d.deptno;

 v_disp_date := TO_CHAR(v_hiredate, 'MM/DD/YYYY');

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

25

 DBMS_OUTPUT.PUT_LINE('Number : ' || p_empno);

 DBMS_OUTPUT.PUT_LINE('Name : ' || v_ename);

 DBMS_OUTPUT.PUT_LINE('Hire Date : ' || v_disp_date);

 DBMS_OUTPUT.PUT_LINE('Salary : ' || v_sal);

 DBMS_OUTPUT.PUT_LINE('Commission: ' || v_comm);

 DBMS_OUTPUT.PUT_LINE('Department: ' || v_dname);

EXCEPTION

 WHEN NO_DATA_FOUND THEN

 DBMS_OUTPUT.PUT_LINE('Employee ' || p_empno || ' not found');

 WHEN OTHERS THEN

 DBMS_OUTPUT.PUT_LINE('The following is SQLERRM:');

 DBMS_OUTPUT.PUT_LINE(SQLERRM);

 DBMS_OUTPUT.PUT_LINE('The following is SQLCODE:');

 DBMS_OUTPUT.PUT_LINE(SQLCODE);

END;

/

--

-- Procedure that queries the 'emp' table based on

-- department number and employee number or name. Returns

-- employee num ber and name as IN OUT parameters and job,

-- hire date, and salary as OUT parameters.

--

CREATE OR REPLACE PROCEDURE emp_query (

 p_deptno IN NUMBER,

 p_empno IN OUT NUMBER,

 p_ename IN OUT VARCHAR2,

 p_job OUT VARCHAR2,

 p_hiredate OUT DATE,

 p_sal OUT NUMBER

)

IS

BEGIN

 SELECT empno, ename, job, hiredate, sal

 INTO p_empno, p_ename, p_job, p_hiredate, p_sal

 FROM emp

 WHERE deptno = p_deptno

 AND (empno = p_empno

 OR ename = UPPER(p_ename));

END;

/

--

-- Procedure to call 'emp_query_caller' with IN and IN OUT

-- parameters. Displays the results received from IN OUT and

-- OUT parameters.

--

CREATE OR REPLACE PROCEDURE emp_query_caller

IS

 v_deptno NUMBER(2);

 v_empno NUMBER(4);

 v_ename VARCHAR2(10);

 v_job VARCHAR2(9);

 v_hiredate DATE;

 v_sal NUMBER;

BEGIN

 v_deptno := 30;

 v_empno := 0;

 v_ename := 'Ma rtin';

 emp_query(v_deptno, v_empno, v_ename, v_job, v_hiredate, v_sal);

 DBMS_OUTPUT.PUT_LINE('Department : ' || v_deptno);

 DBMS_OUTPUT.PUT_LINE('Employee No: ' || v_empno);

 DBMS_OUTPUT.PUT_LINE('Name : ' || v_ename);

 DBMS_OUTPUT.PUT_LINE('Job : ' || v_job);

 DBMS_OUTPUT.PUT_LINE('Hire Date : ' || v_hiredate);

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

26

 DBMS_OUTPUT.PUT_LINE('Salary : ' || v_sal);

EXCEPTION

 WHEN TOO_MANY_ROWS THEN

 DBMS_OUTPUT.PUT_LINE('More than one employee was selected');

 WHEN NO_DATA_FOUND THEN

 DBMS_OUTPUT.PUT_LINE('No employees were selected');

END;

/

--

-- Function to compute yearly compensation based on semimonthly

-- salary.

--

CREATE OR REPLACE FUNCTION emp_comp (

 p_sal NUMBER,

 p_comm NUMBER

) RETURN NUMBER

IS

BEGIN

 RETURN (p_sal + NVL(p_comm, 0)) * 24;

END;

/

--

-- Function that gets the next number from sequence, 'next_empno',

-- and ensures it is not already in use as an employee number.

--

CREATE OR REPLACE FUNCTION new_empno RETURN NUMBER

IS

 v_cnt INTEGER := 1;

 v_new_empno NUMBER;

BEGIN

 WHILE v_cnt > 0 LOOP

 SELECT next_empno.nextval INTO v_new_empno FROM dual;

 SELECT COUNT(*) INTO v_cnt FROM emp WHERE empno = v_new_empno;

 END LOOP;

 RETURN v_new_empno;

END;

/

--

-- EDB- SPL function that adds a new clerk to table 'emp'. This function

-- uses package 'emp_admin'.

--

CREATE OR REPLACE FUNCTION hire_clerk (

 p_ename VARCHAR2,

 p_deptno NUMBER

) RETURN NUMBER

IS

 v_empno NUMBER(4);

 v_ename VARCHAR2(10);

 v_job VARCHAR2(9);

 v_mgr NUMBER(4);

 v_hiredate DATE;

 v_sal NUMBER(7,2);

 v_comm NUMBER(7,2);

 v_deptno NUMBER(2);

BEGIN

 v_empno := new_empno;

 INSERT INTO emp VALUES (v_empno, p_ename, 'CLERK', 7782,

 TRUNC(SYSDATE), 950.00, NULL, p_deptno);

 SELECT empno, ename, job, mgr, hiredate, sal, comm, deptno INTO

 v_empno, v_ename, v_job, v_mgr, v_hir edate, v_sal, v_comm, v_deptno

 FROM emp WHERE empno = v_empno;

 DBMS_OUTPUT.PUT_LINE('Department : ' || v_deptno);

 DBMS_OUTPUT.PUT_LINE('Employee No: ' || v_empno);

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

27

 DBMS_OUTPUT.PUT_LINE('Name : ' || v_ename);

 DBMS_OUTPUT.PUT_LINE('Job : ' || v_job);

 DBMS_OUTPUT.PUT_LINE('Manager : ' || v_mgr);

 DBMS_OUTPUT.PUT_LINE('Hire Date : ' || v_hiredate);

 DBMS_OUTPUT.PUT_LINE('Salary : ' || v_sal);

 DBMS_OUTPUT.PUT_LINE('Commission : ' || v_comm);

 RETURN v_empno;

EXCEPTION

 WHEN OTHERS THEN

 DBMS_OUTPUT.PUT_LINE('The following is SQLERRM:');

 DBMS_OUTPUT.PUT_LINE(SQLERRM);

 DBMS_OUTPUT.PUT_LINE('The following is SQLCODE:');

 DBMS_OUTPUT.PUT_LINE(SQLCODE);

 RETURN - 1;

END;

/

--

-- PostgreSQL PL/pgSQL function that adds a new salesman

-- to table 'emp'.

--

CREATE OR REPLACE FUNCTION hire_salesman (

 p_ename VARCHAR,

 p_sal NUMERIC,

 p_comm NUMERIC

) RETURNS NUMERIC

AS $$

DECLARE

 v_empno NUMERIC(4);

 v_ename VARCHAR(10);

 v_job VARCHAR(9);

 v_mgr NUMERIC(4);

 v_hiredate DATE;

 v_sal NUMERIC(7,2);

 v_comm NUMERIC(7,2);

 v_deptno NUMERIC(2);

BEGIN

 v_empno := new_empno();

 INSERT INTO emp VALUES (v_empno, p_ename, 'SALESMAN', 7698,

 CURRENT_DATE, p_sal, p_comm, 30);

 SELECT INTO

 v_empno, v_ename, v_job, v_mgr, v_hiredate, v_sal, v_comm, v_deptno

 empno, ename, job, mgr, hiredate, sal, comm, deptno

 FROM emp WHERE empno = v_empno;

 RAISE INFO 'Department : %', v_deptno;

 RAISE INFO 'Employee No: %', v_empno;

 RAISE INFO 'Name : %', v_ename;

 RAISE INFO 'Job : %', v_job;

 RAISE INFO 'Mana ger : %', v_mgr;

 RAISE INFO 'Hire Date : %', v_hiredate;

 RAISE INFO 'Salary : %', v_sal;

 RAISE INFO 'Commission : %', v_comm;

 RETURN v_empno;

EXCEPTION

 WHEN OTHERS THEN

 RAISE INFO 'The following is SQLERRM:';

 RAISE INFO '%', SQLERRM;

 RAISE INFO 'The following is SQLSTATE:';

 RAISE INFO '%', SQLSTATE;

 RETURN - 1;

END;

$$ LANGUAGE 'plpgsql';

/

--

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

28

-- Rule to INSERT into view 'salesemp'

--

CREATE OR REPLACE RULE salesemp_i AS ON INSERT TO salese mp

DO INSTEAD

 INSERT INTO emp VALUES (NEW.empno, NEW.ename, 'SALESMAN', 7698,

 NEW.hiredate, NEW.sal, NEW.comm, 30);

--

-- Rule to UPDATE view 'salesemp'

--

CREATE OR REPLACE RULE salesemp_u AS ON UPDATE TO salesemp

DO INSTEAD

 UPDATE emp SET empno = NEW.empno,

 ename = NEW.ename,

 hiredate = NEW.hiredate,

 sal = NEW.sal,

 comm = NEW.comm

 WHERE empno = OLD.empno;

--

-- Rule to DELETE from view 'sal esemp'

--

CREATE OR REPLACE RULE salesemp_d AS ON DELETE TO salesemp

DO INSTEAD

 DELETE FROM emp WHERE empno = OLD.empno;

--

-- After statement - level trigger that displays a message after

-- an insert, update, or deletion to the 'emp' table. One mess age

-- per SQL command is displayed.

--

CREATE OR REPLACE TRIGGER user_audit_trig

 AFTER INSERT OR UPDATE OR DELETE ON emp

DECLARE

 v_action VARCHAR2(24);

BEGIN

 IF INSERTING THEN

 v_action := ' added employee(s) on ';

 ELSIF UPD ATING THEN

 v_action := ' updated employee(s) on ';

 ELSIF DELETING THEN

 v_action := ' deleted employee(s) on ';

 END IF;

 DBMS_OUTPUT.PUT_LINE('User ' || USER || v_action ||

TO_CHAR(SYSDATE,'YYYY- MM- DD'));

END;

/

--

-- Before row - level trigger that displays employee number and

-- salary of an employee that is about to be added, updated,

-- or deleted in the 'emp' table.

--

CREATE OR REPLACE TRIGGER emp_sal_trig

 BEFORE DELETE OR INSERT OR UPDATE ON emp

 FOR EACH ROW

DECLARE

 sal_diff NUMBER;

BEGIN

 IF INSERTING THEN

 DBMS_OUTPUT.PUT_LINE('Inserting employee ' || :NEW.empno);

 DBMS_OUTPUT.PUT_LINE('..New salary: ' || :NEW.sal);

 END IF;

 IF UPDATING THEN

 sal_diff := :NEW.sal - :OLD.sal;

 DBMS_OUTPUT.PUT_LINE('Updating employee ' || :OLD.empno);

 DBMS_OUTPUT.PUT_LINE('..Old salary: ' || :OLD.sal);

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

29

 DBMS_OUTPUT.PUT_LINE('..New salary: ' || :NEW.sal);

 DBMS_OUTPUT.PUT_LINE('..Raise : ' || sal_diff);

 END I F;

 IF DELETING THEN

 DBMS_OUTPUT.PUT_LINE('Deleting employee ' || :OLD.empno);

 DBMS_OUTPUT.PUT_LINE('..Old salary: ' || :OLD.sal);

 END IF;

END;

/

--

-- Package specification for the 'emp_admin' package.

--

CREATE OR REPLACE PACKAGE emp_admin

IS

 FUNCTION get_dept_name (

 p_deptno NUMBER

) RETURN VARCHAR2;

 FUNCTION update_emp_sal (

 p_empno NUMBER,

 p_raise NUMBER

) RETURN NUMBER;

 PROCEDURE hire_emp (

 p_empno NUMBER,

 p_ename VARCHAR2,

 p_job VARCHAR2,

 p_sal NUMBER,

 p_hiredate DATE,

 p_comm NUMBER,

 p_mgr NUMBER,

 p_deptno NUMBER

);

 PROCEDURE fire_emp (

 p_empno NUMBER

);

END emp_admin;

/

--

-- Package body for the 'emp_admin' package.

--

CREATE OR REPLACE PACKAGE BODY emp_admin

IS

 --

 -- Function that queries the 'dept' table based on the department

 -- number and returns the corresponding department name.

 --

 FUNCTION get_dept_name (

 p_deptno IN NUMBER

) RETURN VARCHAR2

 IS

 v_dname VARCHAR2(14);

 BEGIN

 SELECT dname INTO v_dname FROM dept WHERE deptno = p_d eptno;

 RETURN v_dname;

 EXCEPTION

 WHEN NO_DATA_FOUND THEN

 DBMS_OUTPUT.PUT_LINE('Invalid department number ' || p_deptno);

 RETURN '';

 END;

 --

 -- Function that updates an employee's salary based on the

 -- employee number and salary increment/decrement passed

 -- as IN parameters. Upon successful completion the function

 -- returns the new updated salary.

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

30

 --

 FUNCTION update_emp_sal (

 p_empno IN NUMBER,

 p_raise IN NUMBER

) RETURN NUMBER

 IS

 v_sal NUMBER := 0;

 BEGIN

 SELECT sal INTO v_sal FROM emp WHERE empno = p_empno;

 v_sal := v_sal + p_raise;

 UPDATE emp SET sal = v_sal WHERE empno = p_empno;

 RETURN v_sal;

 EXCEPTION

 WHEN NO_DATA_FOUND THEN

 DBMS_OUTPUT.PUT_LINE('Employee ' || p_empno || ' not found');

 RETURN - 1;

 WHEN OTHERS THEN

 DBMS_OUTPUT.PUT_LINE('The following is SQLERRM:');

 DBMS_OUTPUT.PUT_LINE(SQLERRM);

 DBMS_OUTPUT.PUT_LINE('The following is SQLCODE:');

 DBMS_OUTPUT.PUT_LINE(SQLCODE);

 RETURN - 1;

 END;

 --

 -- Procedure that inserts a new employee record into the 'emp' table.

 - -

 PROCEDURE hire_emp (

 p_empno NUMBER,

 p_ename VARCHAR2,

 p_job VARCHAR2,

 p_sal NUMBER,

 p_hiredate DATE,

 p_comm NUMBER,

 p_mgr NUMBER,

 p_deptno NUMBER

)

 AS

 BEGIN

 INSERT INTO emp(empno, ename, job, sal, hiredate, comm, mgr, deptno)

 VALUES(p_empno, p_ename, p_job, p_sal,

 p_hiredate, p_comm, p_mgr, p_deptno);

 END;

 --

 -- Procedure that deletes an employee record from the 'emp' table based

 -- on the employee number.

 --

 PROCEDURE fire_emp (

 p_empno NUMBER

)

 AS

 BEGIN

 DELETE FROM emp WHERE empno = p_empno;

 END;

END;

/

COMMIT;

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

31

2.1.2 Creating a New Table

A new table is created by specifying the table name, along with all column names and

their types. The following is a simplified version of the emp sample table with just the
minimal information needed to define a table.

CREATE TABLE emp (

 empno NUMBER(4),

 ename VARCHAR2(10),

 job VARCHAR2(9),

 mgr NUMBER(4),

 hiredate DATE,

 sal NUMBER(7,2),

 comm NUMBER(7,2),

 deptno NU MBER(2)

);

You can enter this into PSQL with line breaks. PSQL will recognize that the command is
not terminated until the semicolon.

White space (i.e., spaces, tabs, and newlines) may be used freely in SQL commands. That
means you can type the command aligned differently than the above, or even all on one

line. Two dashes (" -- ") introduce comments. Whatever follows them is ignored up to the
end of the line. SQL is case insensitive about key words and identifiers, except when
identifiers are double-quoted to preserve the case (not done above).

VARCHAR2(10) specifies a data type that can store arbitrary character strings up to 10

characters in length. NUMBER(7,2) is a fixed point number with precision 7 and scale 2.
NUMBER(4) is an integer number with precision 4 and scale 0.

Advanced Server supports the usual SQL data types INTEGER, SMALLINT, NUMBER,

REAL, DOUBLE PRECISION, CHAR, VARCHAR2, DATE, and TIMESTAMP as well as
various synonyms for these types.

If you donôt need a table any longer or want to recreate it differently you can remove it
using the following command:

DROP TABLE tablename ;

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

32

2.1.3 Populating a Table With Rows

The INSERT statement is used to populate a table with rows:

INSERT INTO emp VALUES (7369,'SMITH','CLERK',7902,'17 - DEC- 80',800,NULL,20);

Note that all data types use rather obvious input formats. Constants that are not simple

numeric values usually must be surrounded by single quotes ('), as in the example. The

DATE type is actually quite flexible in what it accepts, but for this tutorial we will stick to
the unambiguous format shown here.

The syntax used so far requires you to remember the order of the columns. An alternative
syntax allows you to list the columns explicitly:

INSERT INTO emp(empno,ename,job,mgr,hiredate,sal,comm,deptno)

 VALUES (7499,'ALLEN','SALESMAN',7698,'20 - FEB- 81',1600,300,30);

You can list the columns in a different order if you wish or even omit some columns, e.g.,
if the commission is unknown:

INSERT INTO emp(empno,ename,job,mgr,hiredate,sal,deptno)

 VALUES (7369,'S MITH','CLERK',7902,'17 - DEC- 80',800,20);

Many developers consider explicitly listing the columns better style than relying on the
order implicitly.

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

33

2.1.4 Querying a Table

To retrieve data from a table, the table is queried. An SQL SELECT statement is used to
do this. The statement is divided into a select list (the part that lists the columns to be

returned), a table list (the part that lists the tables from which to retrieve the data), and an
optional qualification (the part that specifies any restrictions). The following query lists
all columns of all employees in the table in no particular order.

SELECT * FROM emp;

Here, ñ*ò in the select list means all columns. The following is the output from this
query.

 empno | ename | job | mgr | hiredate | sal | comm | deptno

------- +-------- +----------- +------ +-------------------- +--------- +--------- +--------

 7369 | SMITH | CLERK | 7902 | 17 - DEC- 80 00:00:00 | 800.00 | | 20

 7499 | ALLEN | SALESMAN | 7698 | 20 - FEB- 81 00:00:00 | 1600.00 | 300.00 | 30

 7521 | WARD | SALESMAN | 7698 | 22 - FEB- 81 00:00:00 | 1250.00 | 500.00 | 30

 7566 | JONES | MANAGER | 7839 | 02 - APR- 81 00:00:00 | 2975.00 | | 20

 7654 | MARTIN | SALESMAN | 7698 | 28 - SEP- 81 00:00:00 | 1250.00 | 1400.00 | 30

 7698 | BLAKE | MANAGER | 7839 | 01 - MAY- 81 00:00:00 | 2850.00 | | 30

 7782 | CLARK | MANAGER | 7839 | 09 - JUN- 81 00:00:00 | 2450.00 | | 10

 7788 | SCOTT | ANALYST | 7566 | 19 - APR- 87 00:00:00 | 3000.00 | | 20

 7839 | KING | PRESIDENT | | 17 - NOV- 81 00:00:00 | 5000.00 | | 10

 7844 | TURNER | SALESMAN | 7698 | 08 - SEP- 81 00:00:00 | 1500.00 | 0.00 | 30

 7876 | ADAMS | CLERK | 7788 | 23 - MAY- 87 00:00:00 | 1100.00 | | 20

 7900 | JAMES | CLERK | 7698 | 03 - DEC- 81 00:00:00 | 950.00 | | 30

 7902 | FORD | ANALYST | 7566 | 03 - DEC- 81 00:00:00 | 3000.00 | | 20

 7934 | MILLER | CLERK | 7782 | 23 - JAN- 82 00:00:00 | 1 300.00 | | 10

(14 rows)

You may specify any arbitrary expression in the select list. For example, you can do:

SELECT ename, sal, sal * 24 AS yearly_salary, deptno FROM emp;

 ename | sal | yearly_salary | deptno

-------- +--------- +-------- ------- +--------

 SMITH | 800.00 | 19200.00 | 20

 ALLEN | 1600.00 | 38400.00 | 30

 WARD | 1250.00 | 30000.00 | 30

 JONES | 2975.00 | 71400.00 | 20

 MARTIN | 1250.00 | 30000.00 | 30

 BLAKE | 2850.00 | 68400.00 | 30

 CLARK | 2450.00 | 58800.00 | 10

 SCOTT | 3000.00 | 72000.00 | 20

 KING | 5000.00 | 120000.00 | 10

 TURNER | 1500.00 | 36000.00 | 30

 ADAMS | 1100.00 | 26400.00 | 20

 JAMES | 950.00 | 22800.00 | 30

 FORD | 3000.00 | 72000.00 | 20

 MILLER | 1300.00 | 31200.00 | 10

(14 rows)

Notice how the AS clause is used to re-label the output column. (The AS clause is
optional.)

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

34

A query can be qualified by adding a WHERE clause that specifies which rows are wanted.

The WHERE clause contains a Boolean (truth value) expression, and only rows for which

the Boolean expression is true are returned. The usual Boolean operators (AND, OR, and

NOT) are allowed in the qualification. For example, the following retrieves the employees
in department 20 with salaries over $1000.00:

SELECT ename, sal, deptno FROM emp WHERE deptno = 20 AND sal > 1000;

 ename | sal | deptno

------- +--------- +--------

 JONES | 2975.00 | 20

 SCOTT | 300 0.00 | 20

 ADAMS | 1100.00 | 20

 FORD | 3000.00 | 20

(4 rows)

You can request that the results of a query be returned in sorted order:

SELECT ename, sal, deptno FROM emp ORDER BY ename;

 ename | sal | deptno

-------- +--------- +--------

 ADAMS | 1100.00 | 20

 ALLEN | 1600.00 | 30

 BLAKE | 2850.00 | 30

 CLARK | 2450.00 | 10

 FORD | 3000.00 | 20

 JAMES | 950.00 | 30

 JONES | 2975.00 | 20

 KING | 5000.00 | 10

 MARTIN | 1250.00 | 30

 MILLER | 1300 .00 | 10

 SCOTT | 3000.00 | 20

 SMITH | 800.00 | 20

 TURNER | 1500.00 | 30

 WARD | 1250.00 | 30

(14 rows)

You can request that duplicate rows be removed from the result of a query:

SELECT DISTINCT job FROM emp;

 job

 ANALYST

 CLERK

 MANAGER

 PRESIDENT

 SALESMAN

(5 rows)

The following section shows how to obtain rows from more than one table in a single
query.

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

35

2.1.5 Joins Between Tables

Thus far, our queries have only accessed one table at a time. Queries can access multiple
tables at once, or access the same table in such a way that multiple rows of the table are

being processed at the same time. A query that accesses multiple rows of the same or
different tables at one time is called a join query. For example, say you wish to list all the

employee records together with the name and location of the associated department. To

do that, we need to compare the deptno column of each row of the emp table with the

deptno column of all rows in the dept table, and select the pairs of rows where these
values match. This would be accomplished by the following query:

SELECT emp.ename, emp.sal, dept.deptno, dept.dname, dept.loc FROM emp, dept

WHERE emp.deptno = dept.deptno;

 ename | sal | deptno | dname | loc

-------- +------- -- +-------- +------------ +----------

 MILLER | 1300.00 | 10 | ACCOUNTING | NEW YORK

 CLARK | 2450.00 | 10 | ACCOUNTING | NEW YORK

 KING | 5000.00 | 10 | ACCOUNTING | NEW YORK

 SCOTT | 3000.00 | 20 | RESEARCH | DALLAS

 JONES | 2975.00 | 20 | RESEARCH | DALLAS

 SMITH | 800.00 | 20 | RESEARCH | DALLAS

 ADAMS | 1100.00 | 20 | RESEARCH | DALLAS

 FORD | 3000.00 | 20 | RESEARCH | DALLAS

 WARD | 1250.00 | 30 | SALES | CHICAGO

 TURNER | 1500.00 | 30 | SALES | CHICAGO

 ALLEN | 1600.00 | 30 | SALES | CHICAGO

 BLAKE | 2850.00 | 30 | SALES | CHICAGO

 MARTIN | 1250.00 | 30 | SALES | CHICAGO

 JAMES | 950.00 | 30 | SALES | CHICAGO

(14 rows)

Observe two things about the result set:

Á There is no result row for department 40. This is because there is no matching

entry in the emp table for department 40, so the join ignores the unmatched rows

in the dept table. Shortly we will see how this can be fixed.
Á It is more desirable to list the output columns qualified by table name rather than

using * or leaving out the qualification as follows:

SELECT ename, sal, dept.deptno, dname, loc FROM emp, dept WHERE emp.deptno =

dept.deptno;

Since all the columns had different names (except for deptno which therefore must be

qualified), the parser automatically found out which table they belong to, but it is good
style to fully qualify column names in join queries:

Join queries of the kind seen thus far can also be written in this alternative form:

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

36

SELECT emp.ename, emp.sal, dept.deptno, dept.dname, dept.loc FROM emp INNER

JOIN dept ON emp.deptno = dept.deptno;

This syntax is not as commonly used as the one above, but we show it here to help you
understand the following topics.

You will notice that in all the above results for joins no employees were returned that

belonged to department 40 and as a consequence, the record for department 40 never
appears. Now we will figure out how we can get the department 40 record in the results
despite the fact that there are no matching employees. What we want the query to do is to

scan the dept table and for each row to find the matching emp row. If no matching row

is found we want some ñemptyò values to be substituted for the emp tableôs columns.
This kind of query is called an outer join. (The joins we have seen so far are inner joins.)
The command looks like this:

SELECT emp.ename, emp.sal, dept.deptno, dept.dname, dept.loc FROM dept LEFT

OUTER JOIN emp ON emp.deptno = dept.deptno;

 ename | sal | deptno | dname | loc

-------- +--------- +-------- +------------ +----------

 MILLER | 1300.00 | 10 | ACCOUNTING | NEW YORK

 CLARK | 2450.00 | 10 | ACCOUNTING | NEW YORK

 KING | 5000.00 | 10 | ACCOUNTING | NEW YORK

 SCOTT | 3000.00 | 20 | RESEARCH | DALLAS

 JONES | 2975.00 | 20 | RESEARCH | DALLAS

 SMITH | 800.00 | 20 | RESEARCH | DALLAS

 ADAMS | 1100.00 | 20 | RESEARCH | DALLAS

 FORD | 3000.00 | 20 | RESEARCH | DALLAS

 WARD | 1250.00 | 30 | SAL ES | CHICAGO

 TURNER | 1500.00 | 30 | SALES | CHICAGO

 ALLEN | 1600.00 | 30 | SALES | CHICAGO

 BLAKE | 2850.00 | 30 | SALES | CHICAGO

 MARTIN | 1250.00 | 30 | SALES | CHICAGO

 JAMES | 950.00 | 30 | SALES | CHICAGO

 | | 40 | OPERATIONS | BOSTON

(15 rows)

This query is called a left outer join because the table mentioned on the left of the join

operator will have each of its rows in the output at least once, whereas the table on the

right will only have those rows output that match some row of the left table. When a left-

table row is selected for which there is no right-table match, empty (NULL) values are
substituted for the right-table columns.

An alternative syntax for an outer join is to use the outer join operator, ñ(+)ò, in the join

condition within the WHERE clause. The outer join operator is placed after the column
name of the table for which null values should be substituted for unmatched rows. So for

all the rows in the dept table that have no matching rows in the emp table, Advanced

Server returns null for any select list expressions containing columns of emp. Hence the
above example could be rewritten as:

SELECT emp.ename, emp.sal, dept.deptno, dept.dname, dept.loc FROM dept, em p

WHERE emp.deptno(+) = dept.deptno;

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

37

 ename | sal | deptno | dname | loc

-------- +--------- +-------- +------------ +----------

 MILLER | 1300.00 | 10 | ACCOUNTING | NEW YORK

 CLARK | 2450.00 | 10 | ACCOUNTING | NEW YORK

 KING | 5000.0 0 | 10 | ACCOUNTING | NEW YORK

 SCOTT | 3000.00 | 20 | RESEARCH | DALLAS

 JONES | 2975.00 | 20 | RESEARCH | DALLAS

 SMITH | 800.00 | 20 | RESEARCH | DALLAS

 ADAMS | 1100.00 | 20 | RESEARCH | DALLAS

 FORD | 3000.00 | 2 0 | RESEARCH | DALLAS

 WARD | 1250.00 | 30 | SALES | CHICAGO

 TURNER | 1500.00 | 30 | SALES | CHICAGO

 ALLEN | 1600.00 | 30 | SALES | CHICAGO

 BLAKE | 2850.00 | 30 | SALES | CHICAGO

 MARTIN | 1250.00 | 30 | SAL ES | CHICAGO

 JAMES | 950.00 | 30 | SALES | CHICAGO

 | | 40 | OPERATIONS | BOSTON

(15 rows)

We can also join a table against itself. This is called a self join. As an example, suppose

we wish to find the name of each employee along with the name of that employeeôs

manager. So we need to compare the mgr column of each emp row to the empno column

of all other emp rows.

SELECT e1.ename || ' works for ' || e2.ename AS "Employees and their

Managers" FROM emp e1, emp e2 WHERE e1 .mgr = e2.empno;

 Employees and their Managers

 FORD works for JONES

 SCOTT works for JONES

 WARD works for BLAKE

 TURNER works for BLAKE

 MARTIN works for BLAKE

 JAMES works for BLAKE

 ALLEN works for BLAKE

 MILLER works fo r CLARK

 ADAMS works for SCOTT

 CLARK works for KING

 BLAKE works for KING

 JONES works for KING

 SMITH works for FORD

(13 rows)

Here, the emp table has been re-labeled as e1 to represent the employee row in the select

list and in the join condition, and also as e2 to represent the matching employee row
acting as manager in the select list and in the join condition. These kinds of aliases can be
used in other queries to save some typing, for example:

SELECT e.ename, e.mgr, d.deptno, d.dname, d.loc FROM emp e, dept d WHERE

e.deptno = d.deptno;

 ename | mgr | deptno | dname | loc

-------- +------ +-------- +------------ +----------

 MILLER | 7782 | 10 | ACCOUNTING | NEW YORK

 CLARK | 7839 | 10 | ACCOUNTING | NEW YORK

 KING | | 10 | AC COUNTING | NEW YORK

 SCOTT | 7566 | 20 | RESEARCH | DALLAS

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

38

 JONES | 7839 | 20 | RESEARCH | DALLAS

 SMITH | 7902 | 20 | RESEARCH | DALLAS

 ADAMS | 7788 | 20 | RESEARCH | DALLAS

 FORD | 7566 | 20 | RESEARCH | DALLAS

 WARD | 7698 | 30 | SALES | CHICAGO

 TURNER | 7698 | 30 | SALES | CHICAGO

 ALLEN | 7698 | 30 | SALES | CHICAGO

 BLAKE | 7839 | 30 | SALES | CHICAGO

 MARTIN | 7698 | 30 | SALES | CHICAGO

 JAMES | 7698 | 30 | S ALES | CHICAGO

(14 rows)

This style of abbreviating will be encountered quite frequently.

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

39

2.1.6 Aggregate Functions

Like most other relational database products, Advanced Server supports aggregate
functions. An aggregate function computes a single result from multiple input rows. For

example, there are aggregates to compute the COUNT, SUM, AVG (average), MAX
(maximum), and MIN (minimum) over a set of rows.

As an example, the highest and lowest salaries can be found with the following query:

SELECT MAX(sal) highest_salary, MIN(sal) lowest_salary FROM emp;

 highest_salary | lowest_salary

---------------- +---------------

 5000.00 | 800.00

(1 row)

If we wanted to find the employee with the largest salary, we may be tempted to try:

SELECT ename FROM emp WHERE sal = MAX(sal);

ERROR: aggregates not allowed in WHERE clause

This does not work because the aggregate function, MAX, cannot be used in the WHERE

clause. This restriction exists because the WHERE clause determines the rows that will go
into the aggregation stage so it has to be evaluated before aggregate functions are

computed. However, the query can be restated to accomplish the intended result by using
a subquery:

SELECT ename FROM emp WHERE sal = (SELECT MAX(sal) FROM emp);

 ename

 KING

(1 row)

The subquery is an independent computation that obtains its own result separately from
the outer query.

Aggregates are also very useful in combination with the GROUP BY clause. For example,
the following query gets the highest salary in each department.

SELECT deptno, MAX(sal) FROM emp GROUP BY deptno;

 deptno | max

-------- +---------

 10 | 5000.00

 20 | 3000.00

 30 | 2850.00

(3 rows)

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

40

This query produces one output row per department. Each aggregate result is computed

over the rows matching that department. These grouped rows can be filtered using the

HAVING clause.

SELECT deptno, MAX(sal) FROM emp GROUP BY deptno HAVING AVG(sal) > 2000;

 deptno | max

-------- +---------

 10 | 5000.00

 20 | 3000.00

(2 rows)

This query gives the same results for only those departments that have an average salary
greater than 2000.

Finally, the following query takes into account only the highest paid employees who are
analysts in each department.

SELECT deptno, MAX(sal) FROM emp WHERE job = 'ANALYST' GROUP BY deptno HAVING

AVG(sal) > 2000;

 deptno | max

-------- +---------

 20 | 3000.00

(1 row)

There is a subtle distinction between the WHERE and HAVING clauses. The WHERE clause

filters out rows before grouping occurs and aggregate functions are applied. The HAVING
clause applies filters on the results after rows have been grouped and aggregate functions
have been computed for each group.

So in the previous example, only employees who are analysts are considered. From this
subset, the employees are grouped by department and only those groups where the
average salary of analysts in the group is greater than 2000 are in the final result. This is

true of only the group for department 20 and the maximum analyst salary in department
20 is 3000.00.

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

41

2.1.7 Updates

The column values of existing rows can be changed using the UPDATE command. For
example, the following sequence of commands shows the before and after results of
giving everyone who is a manager a 10% raise:

SELECT ename, sal FROM emp WHERE job = 'MANAGER';

 ename | sal

------- +---------

 JONES | 2975.00

 BLAKE | 2850.00

 CLARK | 2450.00

(3 rows)

UPDATE emp SET sal = sal * 1.1 WHERE job = 'MANAGER';

SELECT ename, sal FROM emp WHERE job = 'MANAGER';

 ename | sal

------- +---------

 JONES | 3272.50

 BLAKE | 3135.00

 CLARK | 2695.00

(3 rows)

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

42

2.1.8 Deletions

Rows can be removed from a table using the DELETE command. For example, the
following sequence of commands shows the before and after results of deleting all

employees in department 20 .

SELECT ename, deptno FROM emp;

 ename | deptno

-------- +--------

 SMITH | 20

 ALLEN | 30

 WARD | 30

 JONES | 20

 MARTIN | 30

 BLAKE | 30

 CLARK | 10

 SCOTT | 20

 KING | 10

 TURNER | 30

 ADAMS | 20

 JAMES | 30

 FORD | 20

 MILLER | 10

(14 rows)

DELETE FROM emp WHERE deptno = 20;

SELECT ename, deptno FROM emp;

 ename | deptno

-------- +--------

 ALLEN | 30

 WARD | 30

 MARTIN | 30

 BLAKE | 30

 CLARK | 10

 KING | 10

 TURNER | 30

 JAMES | 30

 MILLER | 10

(9 rows)

Be extremely careful of giving a DELETE command without a WHERE clause such as the
following:

DELETE FROM tablename ;

This statement will remove all rows from the given table, leaving it completely empty.
The system will not request confirmation before doing this.

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

43

2.1.9 The SQL Language

Advanced Server supports SQL language that is compatible with Oracle syntax as well as

syntax and commands for extended functionality (functionality that does not provide
database compatibility for Oracle or support Oracle-styled applications).

The Reference Guide that supports the Database Compatibility for Oracle Developer's
Guide provides detailed information about:

¶ Compatible SQL syntax and language elements

¶ Data types

¶ Supported SQL command syntax

To review a copy of the Reference Guide, visit the Advanced Server website at:

http://www.enterprisedb.com/products-services-training/products/documentation

http://www.enterprisedb.com/products-services-training/products/documentation

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

44

2.2 Advanced Concepts

The previous section discussed the basics of using SQL to store and access your data in

Advanced Server. This section discusses more advanced SQL features that may simplify
management and prevent loss or corruption of your data.

2.2.1 Views

Consider the following SELECT command.

SELECT ename, sal, sal * 24 AS yearly_salary, deptno FROM emp;

 ename | sal | yearly_salary | deptno

-------- +--------- +--------------- +--------

 SMITH | 800.00 | 1 9200.00 | 20

 ALLEN | 1600.00 | 38400.00 | 30

 WARD | 1250.00 | 30000.00 | 30

 JONES | 2975.00 | 71400.00 | 20

 MARTIN | 1250.00 | 30000.00 | 30

 BLAKE | 2850.00 | 68400.00 | 30

 CLARK | 2450.00 | 58800.00 | 10

 SCOTT | 3000.00 | 72000.00 | 20

 KING | 5000.00 | 120000.00 | 10

 TURNER | 1500.00 | 36000.00 | 30

 ADAMS | 1100.00 | 26400.00 | 20

 JAMES | 950.00 | 22800.00 | 30

 FORD | 3000.00 | 72000.00 | 20

 MILLER | 1300.00 | 31200.00 | 10

(14 rows)

If this is a query that is used repeatedly, a shorthand method of reusing this query without

re-typing the entire SELECT command each time is to create a view as shown below.

CREATE VIEW employee_pay AS SELECT ename, sal, sal * 24 AS yearly_salary,

deptno FROM emp;

The view name, employee_pay , can now be used like an ordinary table name to
perform the query.

SELECT * FROM employee_pay;

 ename | sal | yearly_salary | deptno

----- --- +--------- +--------------- +--------

 SMITH | 800.00 | 19200.00 | 20

 ALLEN | 1600.00 | 38400.00 | 30

 WARD | 1250.00 | 30000.00 | 30

 JONES | 2975.00 | 71400.00 | 20

 MARTIN | 1250.00 | 30000.00 | 30

 BLAKE | 2850.00 | 68400.00 | 30

 CLARK | 2450.00 | 58800.00 | 10

 SCOTT | 3000.00 | 72000.00 | 20

 KING | 5000.00 | 120000.00 | 10

 TURNER | 1500.00 | 36000.00 | 30

 ADAMS | 1100.00 | 26400.00 | 20

 JAMES | 950.00 | 22800.00 | 30

 FORD | 3000.00 | 72000.00 | 20

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

45

 MILLER | 1300.00 | 31200.00 | 10

(14 rows)

Making liberal use of views is a key aspect of good SQL database design. Views provide

a consistent interface that encapsulate details of the structure of your tables which may
change as your application evolves.

Views can be used in almost any place a real table can be used. Building views upon
other views is not uncommon.

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

46

2.2.2 Foreign Keys

Suppose you want to make sure all employees belong to a valid department. This is called
maintaining the referential integrity of your data. In simplistic database systems this

would be implemented (if at all) by first looking at the dept table to check if a matching
record exists, and then inserting or rejecting the new employee record. This approach has
a number of problems and is very inconvenient. Advanced Server can make it easier for
you.

A modified version of the emp table presented in Section 2.1.2 is shown in this section

with the addition of a foreign key constraint. The modified emp table looks like the
following:

CREATE TABLE emp (

 empno NUMBER(4) NOT NULL CONSTRAINT emp_pk PRIMARY KEY,

 ename VARCHAR2(10),

 job VARCHAR2(9),

 mgr NUMBER(4),

 hiredate DATE,

 sal NUMBER(7,2),

 comm NUMBER(7,2),

 deptno NUMBER(2) CONSTRAINT emp_ref_dept_fk

 REFERENCES dept(deptno)

);

If an attempt is made to issue the following INSERT command in the sample emp table,

the foreign key constraint, emp_ref_dept_fk , ensures that department 50 exists in the
dept table. Since it does not, the command is rejected.

INSERT INTO emp VALUES (8000,'JONES','CLERK',7902,'17 - AUG- 07',1200 ,NULL,50);

ERROR: insert or update on table "emp" violates foreign key constraint

"emp_ref_dept_fk"

DETAIL: Key (deptno)=(50) is not present in table "dept".

The behavior of foreign keys can be finely tuned to your application. Making correct use

of foreign keys will definitely improve the quality of your database applications, so you
are strongly encouraged to learn more about them.

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

47

2.2.3 The ROWNUM Pseudo -Column

ROWNUM is a pseudo-column that is assigned an incremental, unique integer value for
each row based on the order the rows were retrieved from a query. Therefore, the first

row retrieved will have ROWNUM of 1; the second row will have ROWNUM of 2 and so on.

This feature can be used to limit the number of rows retrieved by a query. This is
demonstrated in the following example:

SELECT empno, ename, job FROM emp WHERE ROWNUM < 5;

 empno | ename | job

------- +------- +----------

 7369 | SMITH | CLERK

 7499 | ALLEN | SALESMAN

 7521 | WARD | SALESMAN

 7566 | JONES | MANAGER

(4 rows)

The ROWNUM value is assigned to each row before any sorting of the result set takes place.

Thus, the result set is returned in the order given by the ORDER BY clause, but the

ROWNUM values may not necessarily be in ascending order as shown in the following
example:

SELECT ROWNUM, empno, ename, job FROM emp WHERE ROWNUM < 5 ORDER BY ename;

 rownum | empno | ename | job

-------- +------- +------- +----------

 2 | 7499 | ALLEN | SALESMAN

 4 | 7566 | JONES | MANAGER

 1 | 7369 | SMITH | CLERK

 3 | 7521 | W ARD | SALESMAN

(4 rows)

The following example shows how a sequence number can be added to every row in the

jobhist table. First a new column named, seqno , is added to the table and then seqno
is set to ROWNUM in the UPDATE command.

ALTER TABLE jobhist ADD seqno NUMBER(3);

UPDATE jobhist SET seqno = ROWNUM;

The following SELECT command shows the new seqno values.

SELECT seqno, empno, TO_CHAR(startdate,'DD - MON- YY') AS start, job FROM

jobhist;

 seqno | empno | start | job

------- +------- +----------- +- ----------

 1 | 7369 | 17 - DEC- 80 | CLERK

 2 | 7499 | 20 - FEB- 81 | SALESMAN

 3 | 7521 | 22 - FEB- 81 | SALESMAN

 4 | 7566 | 02 - APR- 81 | MANAGER

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

48

 5 | 7654 | 28 - SEP- 81 | SALESMAN

 6 | 7698 | 01 - MAY- 81 | MANAGER

 7 | 7782 | 09 - JUN- 81 | MANAGER

 8 | 7788 | 19 - APR- 87 | CLERK

 9 | 7788 | 13 - APR- 88 | CLERK

 10 | 7788 | 05 - MAY- 90 | ANALYST

 11 | 7839 | 17 - NOV- 81 | PRESIDENT

 12 | 7844 | 08 - SEP- 81 | SALESMAN

 13 | 7876 | 23 - MAY- 87 | CLERK

 14 | 7900 | 03 - DEC- 81 | CLERK

 15 | 7900 | 15 - JAN- 83 | CLERK

 16 | 7902 | 03 - DEC- 81 | ANALYST

 17 | 7934 | 23 - JAN- 82 | CLERK

(17 rows)

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

49

2.2.4 Synonyms

A synonym is an identifier that can be used to reference another database object in a SQL
statement. A synonym is useful in cases where a database object would normally require

full qualification by schema name to be properly referenced in a SQL statement. A
synonym defined for that object simplifies the reference to a single, unqualified name.

Advanced Server supports synonyms for:

¶ tables

¶ views

¶ materialized views

¶ sequences

¶ procedures

¶ functions

¶ types

¶ objects that are accessible through a database link

¶ other synonyms

Neither the referenced schema or referenced object must exist at the time that you create
the synonym; a synonym may refer to a non-existent object or schema. A synonym will

become invalid if you drop the referenced object or schema. You must explicitly drop a
synonym to remove it.

As with any other schema object, Advanced Server uses the search path to resolve

unqualified synonym names. If you have two synonyms with the same name, an
unqualified reference to a synonym will resolve to the first synonym with the given name

in the search path. If public is in your search path, you can refer to a synonym in that
schema without qualifying that name.

When Advanced Server executes an SQL command, the privileges of the current user are

checked against the synonymôs underlying database object; if the user does not have the
proper permissions for that object, the SQL command will fail.

Deleting a Synonym

To delete a synonym, use the command, DROP SYNONYM. The syntax is:

DROP [PUBLIC] SYNONYM [schema .] syn_name

Parameters:

syn_name

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

50

syn_name is the name of the synonym. A synonym name must be unique within
a schema.

schema

schema specifies the name of the schema in which the synonym resides.

Like any other object that can be schema-qualified, you may have two synonyms with the
same name in your search path. To disambiguate the name of the synonym that you are

dropping, include a schema name. Unless a synonym is schema qualified in the DROP

SYNONYM command, Advanced Server deletes the first instance of the synonym it finds in
your search path.

You can optionally include the PUBLIC clause to drop a synonym that resides in the

public schema. Compatible with Oracle databases, the DROP PUBLIC SYNONYM
command drops a synonym that resides in the public schema:

DROP PUBLIC SYNONYM syn _name;

The following example drops the synonym, personnel :

DROP SYNONYM personnel;

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

51

2.2.5 Hierarchical Queries

A hierarchical query is a type of query that returns the rows of the result set in a
hierarchical order based upon data forming a parent-child relationship. A hierarchy is

typically represented by an inverted tree structure. The tree is comprised of
interconnected nodes. Each node may be connected to none, one, or multiple child nodes.

Each node is connected to one parent node except for the top node which has no parent.
This node is the root node. Each tree has exactly one root node. Nodes that donôt have
any children are called leaf nodes. A tree always has at least one leaf node - e.g., the

trivial case where the tree is comprised of a single node. In this case it is both the root and
the leaf.

In a hierarchical query the rows of the result set represent the nodes of one or more trees.

Note: It is possible that a single, given row may appear in more than one tree and thus
appear more than once in the result set.

The hierarchical relationship in a query is described by the CONNECT BY clause which
forms the basis of the order in which rows are returned in the result set. The context of

where the CONNECT BY clause and its associated optional clauses appear in the SELECT
command is shown below.

SELECT select_list FROM table_expression [W HERE ...]

 [START WITH start_expression]

 CONNECT BY { PRIOR parent_expr = child_expr |

 child_expr = PRIOR parent_expr }

 [ORDER SIBLINGS BY column1 [ASC | DESC]

 [, column2 [ASC | DESC]] ...

 [GROUP BY ...]

 [HAVING ...]

 [ot her ...]

select_list is one or more expressions that comprise the fields of the result set.

table_expression is one or more tables or views from which the rows of the result set

originate. other is any additional legal SELECT command clauses. The clauses pertinent

to hierarchical queries, START WITH, CONNECT BY, and ORDER SIBLINGS BY are
described in the following sections.

Note: At this time, Advanced Server does not support the use of AND (or other operators)
in the CONNECT BY clause.

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

52

2.2.5.1 Defining the Parent/Child Relationship

For any given row, its parent and its children are determined by the CONNECT BY clause.

The CONNECT BY clause must consist of two expressions compared with the equals (=)

operator. In addition, one of these two expressions must be preceded by the keyword,
PRIOR.

For any given row, to determine its children:

1. Evaluate parent_expr on the given row

2. Evaluate child_expr on any other row resulting from the evaluation of
table_expression

3. If parent_expr = child_expr , then this row is a child node of the given

parent row
4. Repeat the process for all remaining rows in table_expression . All rows that

satisfy the equation in step 3 are the children nodes of the given parent row.

Note: The evaluation process to determine if a row is a child node occurs on every row

returned by table_expression before the WHERE clause is applied to
table_expression .

By iteratively repeating this process treating each child node found in the prior steps as a
parent, an inverted tree of nodes is constructed. The process is complete when the final
set of child nodes has no children of their own - these are the leaf nodes.

A SELECT command that includes a CONNECT BY clause typically includes the START

WITH clause. The START WITH clause determines the rows that are to be the root nodes -
i.e., the rows that are the initial parent nodes upon which the algorithm described
previously is to be applied. This is further explained in the following section.

2.2.5.2 Selecting the Root Nodes

The START WITH clause is used to determine the row(s) selected by
table_expression that are to be used as the root nodes. All rows selected by

table_expression where start_expression evaluates to true become a root node

of a tree. Thus, the number of potential trees in the result set is equal to the number of

root nodes. As a consequence, if the START WITH clause is omitted, then every row
returned by table_expression is a root of its own tree.

2.2.5.3 Organization Tree in the Sample Application

Consider the emp table of the sample application. The rows of the emp table form a

hierarchy based upon the mgr column which contains the employee number of the

employeeôs manager. Each employee has at most, one manager. KING is the president of

the company so he has no manager, therefore KINGôs mgr column is null. Also, it is

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

53

possible for an employee to act as a manager for more than one employee. This
relationship forms a typical, tree-structured, hierarchical organization chart as illustrated
below.

Figure 2 Employee Organization Hierarchy

To form a hierarchical query based upon this relationship, the SELECT command includes

the clause, CONNECT BY PRIOR empno = mgr . For example, given the company

president, KING, with employee number 7839 , any employee whose mgr column is 7839

reports directly to KIN G which is true for JONES, BLAKE, and CLARK (these are the child

nodes of KING). Similarly, for employee, JONES, any other employee with mgr column
equal to 7566 is a child node of JONES - these are SCOTT and FORD in this example.

The top of the organization chart is KING so there is one root node in this tree. The

START WITH mgr IS NULL clause selects only KING as the initial root node.

The complete SELECT command is shown below.

SELECT ename, empno, mgr

FROM emp

START WITH mgr IS NULL

CONNECT BY PRIOR empno = mgr;

The rows in the query output traverse each branch from the root to leaf moving in a top-
to-bottom, left-to-right order. Below is the output from this query.

 ename | empno | mgr

-------- +------- +------

 KING | 7839 |

 JONES | 7566 | 7839

 SCOTT | 7788 | 7566

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

54

 ADAMS | 7876 | 7788

 FORD | 7902 | 7566

 SMITH | 7369 | 7902

 BLAKE | 7698 | 7839

 ALLEN | 7499 | 7698

 WARD | 7521 | 7698

 MARTIN | 7654 | 7698

 TURNER | 7844 | 7698

 JAMES | 7900 | 7698

 CLARK | 7782 | 7839

 MIL LER | 7934 | 7782

(14 rows)

2.2.5.4 Node Level

LEVEL is a pseudo-column that can be used wherever a column can appear in the SELECT

command. For each row in the result set, LEVEL returns a non-zero integer value

designating the depth in the hierarchy of the node represented by this row. The LEVEL for
root nodes is 1. The LEVEL for direct children of root nodes is 2, and so on.

The following query is a modification of the previous query with the addition of the

LEVEL pseudo-column. In addition, using the LEVEL value, the employee names are
indented to further emphasize the depth in the hierarchy of each row.

SELECT LEVEL, LPAD (' ', 2 * (LEVEL - 1)) || ename "employee", empno, mgr

FROM emp START WITH mgr IS NULL

CONNECT BY PRIOR empno = mgr;

The output from this query follows.

 level | employee | empno | mgr

------- +------------- +------- +------

 1 | KING | 7839 |

 2 | JONES | 7566 | 7839

 3 | SCOTT | 7788 | 7566

 4 | ADAMS | 7876 | 7788

 3 | FORD | 7902 | 75 66

 4 | SMITH | 7369 | 7902

 2 | BLAKE | 7698 | 7839

 3 | ALLEN | 7499 | 7698

 3 | WARD | 7521 | 7698

 3 | MARTIN | 7654 | 7698

 3 | TURNER | 7844 | 7698

 3 | JAMES | 7900 | 7698

 2 | CLARK | 7782 | 7839

 3 | MILLER | 7934 | 7782

(14 rows)

Nodes that share a common parent and are at the same level are called siblings. For

example in the above output, employees ALLEN, WARD, MARTIN, TURNER, and JAMES are

siblings since they are all at level three with parent, BLAKE. JONES, BLAKE, and CLARK
are siblings since they are at level two and KING is their common parent.

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

55

2.2.5.5 Ordering the Siblings

The result set can be ordered so the siblings appear in ascending or descending order by

selected column value(s) using the ORDER SIBLINGS BY clause. This is a special case
of the ORDER BY clause that can be used only with hierarchical queries.

The previous query is further modified with the addition of ORDER SIBLINGS BY
ename ASC.

SELECT LEVEL, LPAD (' ', 2 * (LEVEL - 1)) || ename "employee", empno, mgr

FROM emp START WITH mgr IS NULL

CONNECT BY PRIOR empno = mgr

ORDER SIBLINGS BY ename ASC;

The output from the prior query is now modified so the siblings appear in ascending

order by name. Siblings BLAKE, CLARK, and JONES are now alphabetically arranged

under KING. Siblings ALLEN, JAMES, MARTIN, TURNER, and WARD are alphabetically
arranged under BLAKE, and so on.

 level | employee | empno | mgr

------- +------------- +------- +------

 1 | KING | 7839 |

 2 | BLAKE | 7698 | 7839

 3 | ALLEN | 7499 | 7698

 3 | JAMES | 7900 | 7698

 3 | MARTIN | 7654 | 7698

 3 | TURNER | 7844 | 7698

 3 | WARD | 7521 | 7698

 2 | CL ARK | 7782 | 7839

 3 | MILLER | 7934 | 7782

 2 | JONES | 7566 | 7839

 3 | FORD | 7902 | 7566

 4 | SMITH | 7369 | 7902

 3 | SCOTT | 7788 | 7566

 4 | ADAMS | 7876 | 7788

(14 rows)

This final example adds the WHERE clause and starts with three root nodes. After the node

tree is constructed, the WHERE clause filters out rows in the tree to form the result set.

SELECT LEVEL, LPAD (' ', 2 * (LEVEL - 1)) || ename "employee", empno, mgr

FROM emp WHERE mgr IN (7839, 7782, 7902, 7788)

START WITH ename IN ('BLAKE','CLARK','JONES')

CONNECT BY PRIOR empno = mgr

ORDER SIBLINGS BY ename ASC;

The output from the query shows three root nodes (level one) - BLAKE, CLARK, and

JONES. In addition, rows that do not satisfy the WHERE clause have been eliminated from
the output.

 level | employee | empno | mgr

------- +----------- +------- +------

 1 | BLAKE | 7698 | 7839

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

56

 1 | CLARK | 7782 | 7839

 2 | MILLER | 7934 | 7782

 1 | JONES | 7566 | 7839

 3 | SMITH | 7369 | 7902

 3 | ADAMS | 7876 | 7788

(6 rows)

2.2.5.6 Retrieving the Root Node with CONNECT_BY_ROOT

CONNECT_BY_ROOT is a unary operator that can be used to qualify a column in order to

return the columnôs value of the row considered to be the root node in relation to the
current row.

Note: A unary operator operates on a single operand, which in the case of
CONNECT_BY_ROOT, is the column name following the CONNECT_BY_ROOT keyword.

In the context of the SELECT list, the CONNECT_BY_ROOT operator is shown by the
following.

SELECT [... ,] CONNECT_BY_ROOT column [, ...]

 FROM table_expression ...

The following are some points to note about the CONNECT_BY_ROOT operator.

¶ The CONNECT_BY_ROOT operator can be used in the SELECT list, the WHERE

clause, the GROUP BY clause, the HAVING clause, the ORDER BY clause, and the

ORDER SIBLINGS BY clause as long as the SELECT command is for a
hierarchical query.

¶ The CONNECT_BY_ROOT operator cannot be used in the CONNECT BY clause or

the START WITH clause of the hierarchical query.

¶ It is possible to apply CONNECT_BY_ROOT to an expression involving a column,
but to do so, the expression must be enclosed within parentheses.

The following query shows the use of the CONNECT_BY_ROOT operator to return the
employee number and employee name of the root node for each employee listed in the

result set based on trees starting with employees BLAKE, CLARK, and JONES.

SELECT LEVEL, LPAD (' ', 2 * (LEVEL - 1)) || ename "employee", empno, mgr,

CONNECT_BY_ROOT empno "mgr empno",

CONNECT_BY_ROOT ename "mgr ename"

FROM emp

START WITH ename IN ('BLAKE','CLARK','JONES')

CONNECT BY PRIOR empno = mgr

ORDER SIBLINGS BY ename ASC;

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

57

Note that the output from the query shows that all of the root nodes in columns mgr

empno and mgr ename are one of the employees, BLAKE, CLARK, or JONES, listed in the
START WITH clause.

 level | employee | empno | mgr | mgr empno | mgr ename

------- +----------- +------- +------ +----------- +-----------

 1 | BLAKE | 7698 | 7839 | 7698 | BLAKE

 2 | ALLEN | 7499 | 7698 | 7698 | BLAKE

 2 | JAMES | 7900 | 7698 | 7698 | BLAKE

 2 | MARTIN | 7654 | 7698 | 7698 | BLAKE

 2 | TURNER | 7844 | 7698 | 7698 | BLAKE

 2 | WARD | 752 1 | 7698 | 7698 | BLAKE

 1 | CLARK | 7782 | 7839 | 7782 | CLARK

 2 | MILLER | 7934 | 7782 | 7782 | CLARK

 1 | JONES | 7566 | 7839 | 7566 | JONES

 2 | FORD | 7902 | 7566 | 7566 | JONES

 3 | SMITH | 7369 | 7902 | 7566 | JONES

 2 | SCOTT | 7788 | 7566 | 7566 | JONES

 3 | ADAMS | 7876 | 7788 | 7566 | JONES

(13 rows)

The following is a similar query, but producing only one tree starting with the single, top-

level, employee where the mgr column is null.

SELECT LEVEL, LPAD (' ', 2 * (LEVEL - 1)) || ename "employee", empno, mgr,

CONNECT_BY_ROOT empno "mgr empno",

CONNECT_BY_ROOT ename "mgr ename"

FROM emp START WITH mgr IS NULL

CONNECT BY PRIOR empno = mgr

ORDER SIBLINGS BY ename ASC;

In the following output, all of the root nodes in columns mgr empno and mgr ename

indicate KING as the root for this particular query.

 level | employee | empno | mgr | mgr empno | mgr ename

------- +------------- +------- +------ +-- --------- +-----------

 1 | KING | 7839 | | 7839 | KING

 2 | BLAKE | 7698 | 7839 | 7839 | KING

 3 | ALLEN | 7499 | 7698 | 7839 | KING

 3 | JAMES | 7900 | 7698 | 7839 | KING

 3 | M ARTIN | 7654 | 7698 | 7839 | KING

 3 | TURNER | 7844 | 7698 | 7839 | KING

 3 | WARD | 7521 | 7698 | 7839 | KING

 2 | CLARK | 7782 | 7839 | 7839 | KING

 3 | MILLER | 7934 | 7782 | 7839 | KING

 2 | JONES | 7566 | 7839 | 7839 | KING

 3 | FORD | 7902 | 7566 | 7839 | KING

 4 | SMITH | 7369 | 7902 | 7839 | KING

 3 | SCOTT | 7788 | 7566 | 7839 | KING

 4 | ADAMS | 7876 | 7788 | 7839 | KING

(14 rows)

By contrast, the following example omits the START WITH clause thereby resulting in
fourteen trees.

SELECT LEVEL, LPAD (' ', 2 * (LEVEL - 1)) || ename "employee", empno, mgr,

CONNECT_BY_ROOT empno "mgr empno",

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

58

CONNECT_BY_ROOT ename "mgr ename"

FROM emp

CONNECT BY PRIOR empno = mgr

ORDER SIBLINGS BY ename ASC;

The following is the output from the query. Each node appears at least once as a root

node under the mgr empno and mgr ename columns since even the leaf nodes form the
top of their own trees.

 level | employee | empno | mgr | mgr empno | mgr ename

------- +------------- +------- +------ +----------- +-----------

 1 | ADAMS | 7876 | 7788 | 7876 | ADAMS

 1 | ALLEN | 7499 | 7698 | 7499 | ALL EN

 1 | BLAKE | 7698 | 7839 | 7698 | BLAKE

 2 | ALLEN | 7499 | 7698 | 7698 | BLAKE

 2 | JAMES | 7900 | 7698 | 7698 | BLAKE

 2 | MARTIN | 7654 | 7698 | 7698 | BLAKE

 2 | TURNER | 7844 | 7698 | 7698 | BLAKE

 2 | WARD | 7521 | 7698 | 7698 | BLAKE

 1 | CLARK | 7782 | 7839 | 7782 | CLARK

 2 | MILLER | 7934 | 7782 | 7782 | CLARK

 1 | FORD | 7902 | 7566 | 7902 | FORD

 2 | SMITH | 7369 | 7902 | 7902 | FORD

 1 | JAMES | 7900 | 7698 | 7900 | JAMES

 1 | JONES | 7566 | 7839 | 7566 | JONES

 2 | FORD | 7902 | 7566 | 7566 | JONES

 3 | SMITH | 7369 | 7902 | 7566 | JONES

 2 | SCOTT | 7788 | 7566 | 7566 | JONES

 3 | ADAMS | 7876 | 7788 | 7566 | JONES

 1 | KING | 7839 | | 7839 | KING

 2 | BLAKE | 7698 | 7839 | 7839 | KING

 3 | ALLE N | 7499 | 7698 | 7839 | KING

 3 | JAMES | 7900 | 7698 | 7839 | KING

 3 | MARTIN | 7654 | 7698 | 7839 | KING

 3 | TURNER | 7844 | 7698 | 7839 | KING

 3 | WARD | 7521 | 7698 | 7839 | KIN G

 2 | CLARK | 7782 | 7839 | 7839 | KING

 3 | MILLER | 7934 | 7782 | 7839 | KING

 2 | JONES | 7566 | 7839 | 7839 | KING

 3 | FORD | 7902 | 7566 | 7839 | KING

 4 | SMITH | 7369 | 790 2 | 7839 | KING

 3 | SCOTT | 7788 | 7566 | 7839 | KING

 4 | ADAMS | 7876 | 7788 | 7839 | KING

 1 | MARTIN | 7654 | 7698 | 7654 | MARTIN

 1 | MILLER | 7934 | 7782 | 7934 | MILLER

 1 | SC OTT | 7788 | 7566 | 7788 | SCOTT

 2 | ADAMS | 7876 | 7788 | 7788 | SCOTT

 1 | SMITH | 7369 | 7902 | 7369 | SMITH

 1 | TURNER | 7844 | 7698 | 7844 | TURNER

 1 | WARD | 7521 | 7698 | 7521 | WARD

(39 rows)

The following illustrates the unary operator effect of CONNECT_BY_ROOT. As shown in
this example, when applied to an expression that is not enclosed in parentheses, the

CONNECT_BY_ROOT operator affects only the term, ename, immediately following it.

The subsequent concatenation of || ' manages ' || ename is not part of the

CONNECT_BY_ROOT operation, hence the second occurrence of ename results in the

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

59

value of the currently processed row while the first occurrence of ename results in the
value from the root node.

SELECT LEVEL, LPAD (' ', 2 * (LEVEL - 1)) || ename "employee", empno, mgr,

CONNECT_BY_ROOT ename || ' manages ' || ename "top mgr/employee"

FROM emp

START WITH ename IN ('BLAKE','CLARK','JONES')

CONNECT BY PRIOR empno = mgr

ORDER SIBLINGS BY ename ASC;

The following is the output from the query. Note the values produced under the top

mgr/employee column.

 level | employee | empno | mgr | top mgr/employee

------- +----------- +------- +------ +----------------------

 1 | B LAKE | 7698 | 7839 | BLAKE manages BLAKE

 2 | ALLEN | 7499 | 7698 | BLAKE manages ALLEN

 2 | JAMES | 7900 | 7698 | BLAKE manages JAMES

 2 | MARTIN | 7654 | 7698 | BLAKE manages MARTIN

 2 | TURNER | 7844 | 7698 | BLAKE manages TURNER

 2 | WARD | 7521 | 7698 | BLAKE manages WARD

 1 | CLARK | 7782 | 7839 | CLARK manages CLARK

 2 | MILLER | 7934 | 7782 | CLARK manages MILLER

 1 | JONES | 7566 | 7839 | JONES manages JONES

 2 | FORD | 7902 | 7566 | JONES manages FORD

 3 | SMITH | 7369 | 7902 | JONES manages SMITH

 2 | SCOTT | 7788 | 7566 | JONES manages SCOTT

 3 | ADAMS | 7876 | 7788 | JONES manages ADAMS

(13 rows)

The following example uses the CONNECT_BY_ROOT operator on an expression enclosed
in parentheses.

SELECT LEVEL, LPAD (' ', 2 * (LEVEL - 1)) || ename "employee", empno, mgr,

CONNECT_BY_ROOT ('Manager ' || ename || ' is emp # ' || empno)

"top mgr/empno"

FROM emp

START WITH ename IN ('BLAKE','CLAR K','JONES')

CONNECT BY PRIOR empno = mgr

ORDER SIBLINGS BY ename ASC;

The following is the output of the query. Note that the values of both ename and empno

are affected by the CONNECT_BY_ROOT operator and as a result, return the values from
the root node as shown under the top mgr/empno column.

 level | employee | empno | mgr | top mgr/empno

------- +----------- +------- +------ +-----------------------------

 1 | BLAKE | 7698 | 7839 | Manager BLAKE is emp # 7698

 2 | ALLEN | 7499 | 7698 | Manager BLAKE is emp # 7698

 2 | JAMES | 7900 | 7698 | Manager BLAKE is emp # 7698

 2 | MARTIN | 7654 | 7698 | Manager BLAKE is emp # 7698

 2 | TURNER | 7844 | 7698 | Manager BLAKE is emp # 7698

 2 | WARD | 7521 | 7698 | Manager BLAKE is emp # 7698

 1 | CLARK | 7782 | 7839 | Manager CLARK is emp # 7782

 2 | MILLER | 7934 | 7782 | Manager CLARK is emp # 7782

 1 | JONES | 7566 | 7839 | Manager JONES is emp # 7566

 2 | FORD | 7902 | 7566 | Manager JONES is emp # 7566

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

60

 3 | SMITH | 7369 | 7902 | Manager JONES is emp # 7566

 2 | SCOTT | 7788 | 7566 | Manager JONES is emp # 7566

 3 | ADAMS | 7876 | 7788 | Manager JONES is emp # 7566

(13 rows)

2.2.5.7 Retrieving a Path with SYS_CONNECT_BY_PATH

SYS_CONNECT_BY_PATH is a function that works within a hierarchical query to retrieve
the column values of a specified column that occur between the current node and the root
node. The signature of the function is:

SYS_CONNECT_BY_PATH (column , delimiter)

The function takes two arguments:

column is the name of a column that resides within a table specified in the
hierarchical query that is calling the function.

delimiter is the varchar value that separates each entry in the specified

column.

The following example returns a list of employee names, and their managers; if the
manager has a manager, that name is appended to the result:

edb=# SELECT level, ename , SYS_CONNECT_BY_PATH(ename, '/') managers

 FROM emp

 CONNECT BY PRIOR empno = mgr

 START WITH mgr IS NULL

 ORDER BY level, ename, managers;

 level | ename | managers

------- +-------- +-------------------------

 1 | KING | /KING

 2 | BLAKE | /KING/BLAKE

 2 | CLARK | /K ING/CLARK

 2 | JONES | /KING/JONES

 3 | ALLEN | /KING/BLAKE/ALLEN

 3 | FORD | /KING/JONES/FORD

 3 | JAMES | /KING/BLAKE/JAMES

 3 | MARTIN | /KING/BLAKE/MARTIN

 3 | MILLER | /KING/CLARK/MILLER

 3 | SCOTT | /KING/JONES/SCOTT

 3 | TURNER | /KING/BLAKE/TURNER

 3 | WARD | /KING/BLAKE/WARD

 4 | ADAMS | /KING/JONES/SCOTT/ADAMS

 4 | SMITH | /KING/JONES/FORD/SMITH

(14 rows)

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

61

Within the result set:

¶ The level column displays the number of levels that the query returned.

¶ The ename column displays the employee name.

¶ The managers column contains the hierarchical list of managers.

The Advanced Server implementation of SYS_CONNECT_BY_PATH does not support use
of:

¶ SYS_CONNECT_BY_PATH inside CONNECT_BY_PATH

¶ SYS_CONNECT_BY_PATH inside SYS_CONNECT_BY_PATH

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

62

2.2.6 Multidimensional Analysis

Multidimensional analysis refers to the process commonly used in data warehousing

applications of examining data using various combinations of dimensions. Dimensions
are categories used to classify data such as time, geography, a companyôs departments,
product lines, and so forth. The results associated with a particular set of dimensions are

called facts. Facts are typically figures associated with product sales, profits, volumes,
counts, etc.

In order to obtain these facts according to a set of dimensions in a relational database
system, SQL aggregation is typically used. SQL aggregation basically means data is

grouped according to certain criteria (dimensions) and the result set consists of
aggregates of facts such as counts, sums, and averages of the data in each group.

The GROUP BY clause of the SQL SELECT command supports the following extensions
that simplify the process of producing aggregate results.

¶ ROLLUP extension

¶ CUBE extension

¶ GROUPING SETS extension

In addition, the GROUPING function and the GROUPING_ID function can be used in the

SELECT list or the HAVING clause to aid with the interpretation of the results when these
extensions are used.

Note: The sample dept and emp tables are used extensively in this discussion to provide
usage examples. The following changes were applied to these tables to provide more
informative results.

UPDATE dept SET loc = 'BOSTON' WHERE deptno = 20;

INSERT INTO emp (empno,ename,job,deptno) VALUES (9001,'SMIT H','CLERK',40);

INSERT INTO emp (empno,ename,job,deptno) VALUES (9002,'JONES','ANALYST',40);

INSERT INTO emp (empno,ename,job,deptno) VALUES (9003,'ROGERS','MANAGER',40);

The following rows from a join of the emp and dept tables are used:

SELECT loc, dname , job, empno FROM emp e, dept d

WHERE e.deptno = d.deptno

ORDER BY 1, 2, 3, 4;

 loc | dname | job | empno

---------- +------------ +----------- +-------

 BOSTON | OPERATIONS | ANALYST | 9002

 BOSTON | OPERATIONS | CLERK | 9001

 BOSTON | OPERATIONS | MANAGER | 9003

 BOSTON | RESEARCH | ANALYST | 7788

 BOSTON | RESEARCH | ANALYST | 7902

 BOSTON | RESEARCH | CLERK | 7369

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

63

 BOSTON | RESEARCH | CLERK | 7876

 BOSTON | RESEARCH | MANAGER | 7566

 CHICAGO | SALES | CLERK | 7900

 CHICAGO | SALES | MANAGER | 7698

 CHICAGO | SALES | SALESMAN | 7499

 CHICAGO | SALES | SALESMAN | 7521

 CHICAGO | SALES | SALESMAN | 7654

 CHICAGO | SALES | SALESMAN | 78 44

 NEW YORK | ACCOUNTING | CLERK | 7934

 NEW YORK | ACCOUNTING | MANAGER | 7782

 NEW YORK | ACCOUNTING | PRESIDENT | 7839

(17 rows)

The loc , dname, and job columns are used for the dimensions of the SQL aggregations

used in the examples. The resulting facts of the aggregations are the number of

employees obtained by using the COUNT(*) function.

A basic query grouping the loc , dname, and job columns is given by the following.

SELECT loc, dname, job, COUNT(*) AS "employees" FROM emp e, dept d

WHERE e.deptno = d.deptno

GROUP BY loc, dname, job

ORDER BY 1, 2, 3;

The rows of this result set using the basic GROUP BY clause without extensions are
referred to as the base aggregate rows.

 loc | dname | job | employees

---------- +----------- - +----------- +-----------

 BOSTON | OPERATIONS | ANALYST | 1

 BOSTON | OPERATIONS | CLERK | 1

 BOSTON | OPERATIONS | MANAGER | 1

 BOSTON | RESEARCH | ANALYST | 2

 BOSTON | RESEARCH | CLERK | 2

 BOSTON | RESEARCH | MANAGER | 1

 CHICAGO | SALES | CLERK | 1

 CHICAGO | SALES | MANAGER | 1

 CHICAGO | SALES | SALESMAN | 4

 NEW YORK | ACCOUNTING | CLERK | 1

 NEW YORK | ACCOUNTING | MANAGER | 1

 NEW YORK | ACCOUNTING | PRESIDENT | 1

(12 rows)

The ROLLUP and CUBE extensions add to the base aggregate rows by providing additional
levels of subtotals to the result set.

The GROUPING SETS extension provides the ability to combine different types of
groupings into a single result set.

The GROUPING and GROUPING_ID functions aid in the interpretation of the result set.

The additions provided by these extensions are discussed in more detail in the subsequent
sections.

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

64

2.2.6.1 ROLLUP Extension

The ROLLUP extension produces a hierarchical set of groups with subtotals for each
hierarchical group as well as a grand total. The order of the hierarchy is determined by

the order of the expressions given in the ROLLUP expression list. The top of the hierarchy
is the leftmost item in the list. Each successive item proceeding to the right moves down
the hierarchy with the rightmost item being the lowest level.

The syntax for a single ROLLUP is as follows:

ROLLUP ({ expr_1 | (expr_1a [, expr_1b] ...) }

 [, expr_2 | (expr_2a [, expr_2b] ...)] ...)

Each expr is an expression that determines the grouping of the result set. If enclosed

within parenthesis as (expr_1a , expr_1b , ...) then the combination of values
returned by expr_1a and expr_1b defines a single grouping level of the hierarchy.

The base level of aggregates returned in the result set is for each unique combination of
values returned by the expression list.

In addition, a subtotal is returned for the first item in the list (expr_1 or the combination

of (expr_1a , expr_1b , ...) , whichever is specified) for each unique value. A

subtotal is returned for the second item in the list (expr_2 or the combination of (

expr_2a , expr_2b , ...) , whichever is specified) for each unique value, within each

grouping of the first item and so on. Finally a grand total is returned for the entire result
set.

For the subtotal rows, null is returned for the items across which the subtotal is taken.

The ROLLUP extension specified within the context of the GROUP BY clause is shown by
the following:

SELECT select _list FROM ...

GROUP BY [... ,] ROLLUP (expression_list) [, ...]

The items specified in select _list must also appear in the ROLLUP

expression_list ; or they must be aggregate functions such as COUNT, SUM, AVG, MIN,

or MAX; or they must be constants or functions whose return values are independent of the
individual rows in the group (for example, the SYSDATE function).

The GROUP BY clause may specify multiple ROLLUP extensions as well as multiple
occurrences of other GROUP BY extensions and individual expressions.

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

65

The ORDER BY clause should be used if you want the output to display in a hierarchical
or other meaningful structure. There is no guarantee on the order of the result set if no
ORDER BY clause is specified.

The number of grouping levels or totals is n + 1 where n represents the number of items

in the ROLLUP expression list. A parenthesized list counts as one item.

The following query produces a rollup based on a hierarchy of columns loc , dname,
then job .

SELECT loc, dname, job, COUNT(*) AS "employees" FROM emp e, dept d

WHERE e.deptno = d.deptno

GROUP BY ROLLUP (loc, dname, job)

ORDER BY 1, 2, 3;

The following is the result of the query. There is a count of the number of employees for

each unique combination of loc , dname, and job , as well as subtotals for each unique

combination of loc and dname, for each unique value of loc , and a grand total
displayed on the last line.

 loc | dname | job | employees

---------- +----------- - +----------- +-----------

 BOSTON | OPERATIONS | ANALYST | 1

 BOSTON | OPERATIONS | CLERK | 1

 BOSTON | OPERATIONS | MANAGER | 1

 BOSTON | OPERATIONS | | 3

 BOSTON | RESEARCH | ANALYST | 2

 BOSTON | RESEARCH | CLERK | 2

 BOSTON | RESEARCH | MANAGER | 1

 BOSTON | RESEARCH | | 5

 BOSTON | | | 8

 CHICAGO | SALES | CLERK | 1

 CHICAGO | SALE S | MANAGER | 1

 CHICAGO | SALES | SALESMAN | 4

 CHICAGO | SALES | | 6

 CHICAGO | | | 6

 NEW YORK | ACCOUNTING | CLERK | 1

 NEW YORK | ACCOUNTING | MANAGER | 1

 NEW YORK | ACCOUNTING | PRESIDENT | 1

 NEW YORK | ACCOUNTING | | 3

 NEW YORK | | | 3

 | | | 17

(20 rows)

The following query shows the effect of combining items in the ROLLUP list within
parenthesis.

SELECT loc, dname, job, COUNT(*) AS "employees" FROM emp e, dept d

WHERE e.deptno = d.deptno

GROUP BY ROLLUP (loc, (dname, job))

ORDER BY 1, 2, 3;

In the output, note that there are no subtotals for loc and dname combinations as in the
prior example.

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

66

 loc | dname | job | employees

---------- +------------ +----------- +-----------

 BOSTON | OPERATIONS | ANALYST | 1

 BOSTON | OPERATIONS | CLERK | 1

 BOSTON | OPERATIONS | MANAGER | 1

 BOSTON | RESEARCH | ANALYST | 2

 BOSTON | RESEARCH | CLERK | 2

 BOSTON | RESEARCH | MANAGER | 1

 BOSTON | | | 8

 CHICAGO | SALES | CLERK | 1

 CHICAGO | SALES | MANAGER | 1

 CHICAGO | SALES | SALESMAN | 4

 CHICAGO | | | 6

 NEW YORK | ACCOUNTING | CLERK | 1

 NEW YORK | ACCOUNTING | MANAGER | 1

 NEW YORK | ACCOUNTING | PRESIDENT | 1

 NEW YORK | | | 3

 | | | 17

(16 rows)

If the first two columns in the ROLLUP list are enclosed in parenthesis, the subtotal levels
differ as well.

SELECT loc, dn ame, job, COUNT(*) AS "employees" FROM emp e, dept d

WHERE e.deptno = d.deptno

GROUP BY ROLLUP ((loc, dname), job)

ORDER BY 1, 2, 3;

Now there is a subtotal for each unique loc and dname combination, but none for unique

values of loc .

 loc | dname | job | employees

---------- +------------ +----------- +-----------

 BOSTON | OPERATIONS | ANALYST | 1

 BOSTON | OPERATIONS | CLERK | 1

 BOSTON | OPERATIONS | MANAGER | 1

 BOSTON | OPERATIONS | | 3

 BOSTON | RESEARCH | ANALYST | 2

 BOSTON | RESEARCH | CLERK | 2

 BOSTON | RESEARCH | MANAGER | 1

 BOSTON | RESEARCH | | 5

 CHICAGO | SALES | CLERK | 1

 CHICAGO | SA LES | MANAGER | 1

 CHICAGO | SALES | SALESMAN | 4

 CHICAGO | SALES | | 6

 NEW YORK | ACCOUNTING | CLERK | 1

 NEW YORK | ACCOUNTING | MANAGER | 1

 NEW YORK | ACCOUNTING | PRESIDENT | 1

 NEW YORK | ACCOUNTING | | 3

 | | | 17

(17 rows)

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

67

2.2.6.2 CUBE Extension

The CUBE extension is similar to the ROLLUP extension. However, unlike ROLLUP, which
produces groupings and results in a hierarchy based on a left to right listing of items in

the ROLLUP expression list, a CUBE produces groupings and subtotals based on every

permutation of all items in the CUBE expression list. Thus, the result set contains more
rows than a ROLLUP performed on the same expression list.

The syntax for a single CUBE is as follows:

CUBE ({ expr_1 | (expr_1a [, expr_1b] ...) }

 [, expr_2 | (expr_2a [, expr_2b] ...)] ...)

Each expr is an expression that determines the grouping of the result set. If enclosed

within parenthesis as (expr_1a , expr_1b , ...) then the combination of values
returned by expr_1a and expr_1b defines a single group.

The base level of aggregates returned in the result set is for each unique combination of
values returned by the expression list.

In addition, a subtotal is returned for the first item in the list (expr_1 or the combination

of (expr_1a , expr_1b , ...) , whichever is specified) for each unique value. A

subtotal is returned for the second item in the list (expr_2 or the combination of (

expr_2a , expr_2b , ...) , whichever is specified) for each unique value. A subtotal

is also returned for each unique combination of the first item and the second item.
Similarly, if there is a third item, a subtotal is returned for each unique value of the third
item, each unique value of the third item and first item combination, each unique value of

the third item and second item combination, and each unique value of the third item,
second item, and first item combination. Finally a grand total is returned for the entire
result set.

For the subtotal rows, null is returned for the items across which the subtotal is taken.

The CUBE extension specified within the context of the GROUP BY clause is shown by the
following:

SELECT select _list FROM ...

GROUP BY [... ,] CUBE (expression_list) [, ...]

The items specified in select _list must also appear in the CUBE expression_list ;

or they must be aggregate functions such as COUNT, SUM, AVG, MIN, or MAX; or they must
be constants or functions whose return values are independent of the individual rows in

the group (for example, the SYSDATE function).

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

68

The GROUP BY clause may specify multiple CUBE extensions as well as multiple
occurrences of other GROUP BY extensions and individual expressions.

The ORDER BY clause should be used if you want the output to display in a meaningful

structure. There is no guarantee on the order of the result set if no ORDER BY clause is
specified.

The number of grouping levels or totals is 2 raised to the power of n where n represents

the number of items in the CUBE expression list. A parenthesized list counts as one item.

The following query produces a cube based on permutations of columns loc , dname, and
job .

SELECT loc, dname, job, COUNT(*) AS "employees" FROM emp e, dept d

WHERE e.deptno = d.deptno

GROUP BY CUBE (loc, dname, job)

ORDER BY 1, 2, 3;

The following is the result of the query. There is a count of the number of employees for

each combination of loc , dname, and job , as well as subtotals for each combination of

loc and dname, for each combination of loc and job , for each combination of dname

and job , for each unique value of loc , for each unique value of dname, for each unique
value of job , and a grand total displayed on the last line.

 loc | dname | job | emp loyees

---------- +------------ +----------- +-----------

 BOSTON | OPERATIONS | ANALYST | 1

 BOSTON | OPERATIONS | CLERK | 1

 BOSTON | OPERATIONS | MANAGER | 1

 BOSTON | OPERATIONS | | 3

 BOSTON | RESEARCH | ANALYST | 2

 BOSTON | RESEARCH | CLERK | 2

 BOSTON | RESEARCH | MANAGER | 1

 BOSTON | RESEARCH | | 5

 BOSTON | | ANALYST | 3

 BOSTON | | CLERK | 3

 BOSTON | | MANAGER | 2

 BOSTON | | | 8

 CHICAGO | SALES | CLERK | 1

 CHICAGO | SALES | MANAGER | 1

 CHICAGO | SALES | SALESMAN | 4

 CHICAGO | SALES | | 6

 CHICAGO | | CLERK | 1

 CHICAGO | | MANAGER | 1

 CHICAGO | | SALESMAN | 4

 CHICAGO | | | 6

 NEW YORK | ACCOUNTING | CLE RK | 1

 NEW YORK | ACCOUNTING | MANAGER | 1

 NEW YORK | ACCOUNTING | PRESIDENT | 1

 NEW YORK | ACCOUNTING | | 3

 NEW YORK | | CLERK | 1

 NEW YORK | | MANAGER | 1

 NEW YORK | | PRESIDENT | 1

 NEW YORK | | | 3

 | ACCOUNTING | CLERK | 1

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

69

 | ACCOUNTING | MANAGER | 1

 | ACCOUNTING | PRESIDENT | 1

 | ACCOUNTING | | 3

 | OPERATIONS | ANALYST | 1

 | OPERATIONS | CLERK | 1

 | OPERATIONS | MANAGER | 1

 | OPERATIONS | | 3

 | RESEARCH | ANALYST | 2

 | RESEARCH | CLERK | 2

 | RESEARCH | MANAGER | 1

 | RESEARCH | | 5

 | SALES | CLERK | 1

 | SALES | MANAGER | 1

 | SALES | SALESMAN | 4

 | SALES | | 6

 | | ANALYST | 3

 | | CLERK | 5

 | | MANAGER | 4

 | | PRESIDENT | 1

 | | SALESMAN | 4

 | | | 17

(50 rows)

The following query shows the effect of combining items in the CUBE list within
parenthesis.

SELECT loc, dname, job, COUNT(*) AS "employees" FRO M emp e, dept d

WHERE e.deptno = d.deptno

GROUP BY CUBE (loc, (dname, job))

ORDER BY 1, 2, 3;

In the output note that there are no subtotals for permutations involving loc and dname
combinations, loc and job combinations, or for dname by itself, or for job by itself.

 loc | dname | job | employees

---------- +------------ +----------- +-----------

 BOSTON | OPERATIONS | ANALYST | 1

 BOSTON | OPERATIONS | CLERK | 1

 BOSTON | OPERATIONS | MANAGER | 1

 BOSTON | RESEARCH | ANALYST | 2

 BOSTON | RESEARCH | CLERK | 2

 BOSTON | RESEARCH | MANAGER | 1

 BOSTON | | | 8

 CHICAGO | SALES | CLERK | 1

 CHICAGO | SALES | MAN AGER | 1

 CHICAGO | SALES | SALESMAN | 4

 CHICAGO | | | 6

 NEW YORK | ACCOUNTING | CLERK | 1

 NEW YORK | ACCOUNTING | MANAGER | 1

 NEW YORK | ACCOUNTING | PRESIDENT | 1

 NEW YORK | | | 3

 | ACCOUNTING | CLERK | 1

 | ACCOUNTING | MANAGER | 1

 | ACCOUNTING | PRESIDENT | 1

 | OPERATIONS | ANALYST | 1

 | OPERATIONS | CLERK | 1

 | OPERATIONS | MANAGER | 1

 | RESEARCH | ANALYST | 2

 | RESEARCH | CLERK | 2

 | RESEARCH | MANAGER | 1

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

70

 | SALES | CLERK | 1

 | SALES | MANAGER | 1

 | SALES | SALESMAN | 4

 | | | 17

(28 rows)

The following query shows another variation whereby the first expression is specified

outside of the CUBE extension.

SELECT loc, dname, job, COUNT(*) AS "employees" FROM emp e, dept d

WHERE e.deptno = d.deptno

GROUP BY loc, CUBE (dname, job)

ORDER BY 1, 2, 3;

In this output, the permutations are performed for dname and job within each grouping

of loc .

 l oc | dname | job | employees

---------- +------------ +----------- +-----------

 BOSTON | OPERATIONS | ANALYST | 1

 BOSTON | OPERATIONS | CLERK | 1

 BOSTON | OPERATIONS | MANAGER | 1

 BOSTON | OPERATIONS | | 3

 BOSTON | RESEARCH | ANALYST | 2

 BOSTON | RESEARCH | CLERK | 2

 BOSTON | RESEARCH | MANAGER | 1

 BOSTON | RESEARCH | | 5

 BOSTON | | ANALYST | 3

 BOSTON | | CLERK | 3

 BOSTON | | MANAGER | 2

 BOSTON | | | 8

 CHICAGO | SALES | CLERK | 1

 CHICAGO | SALES | MANAGER | 1

 CHICAGO | SALES | SALESMAN | 4

 CHICAGO | SALES | | 6

 CHICAGO | | CLERK | 1

 CHICAGO | | MANAGER | 1

 CHICAGO | | SALESMAN | 4

 CHICAGO | | | 6

 NEW YORK | ACCOUNTING | CLERK | 1

 NEW YORK | ACCOUNTING | MANAGER | 1

 NEW YORK | ACCOUNTING | PRESIDENT | 1

 NEW YORK | ACCOUNTING | | 3

 NEW YORK | | CLERK | 1

 NEW YORK | | MANAGER | 1

 NEW YORK | | PRESIDENT | 1

 NEW YORK | | | 3

(28 rows)

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

71

2.2.6.3 GROUPING SETS Extension

The use of the GROUPING SETS extension within the GROUP BY clause provides a
means to produce one result set that is actually the concatenation of multiple results sets

based upon different groupings. In other words, a UNION ALL operation is performed
combining the result sets of multiple groupings into one result set.

Note that a UNION ALL operation, and therefore the GROUPING SETS extension, do not
eliminate duplicate rows from the result sets that are being combined together.

The syntax for a single GROUPING SETS extension is as follows:

GROUPING SETS (

 { expr_1 | (expr_1a [, expr_1b] ...) |

 ROLLUP (expr_list) | CUBE (expr_list)

 } [, ...])

A GROUPING SETS extension can contain any combination of one or more comma-

separated expressions, lists of expressions enclosed within parenthesis, ROLLUP
extensions, and CUBE extensions.

The GROUPING SETS extension is specified within the context of the GROUP BY clause
as shown by the following:

SELECT select _list FROM ...

GROUP BY [... ,] GROUPING SETS (expression_list) [, ...]

The items specified in select _list must also appear in the GROUPING SETS

expression_list ; or they must be aggregate functions such as COUNT, SUM, AVG, MIN,

or MAX; or they must be constants or functions whose return values are independent of the
individual rows in the group (for example, the SYSDATE function).

The GROUP BY clause may specify multiple GROUPING SETS extensions as well as
multiple occurrences of other GROUP BY extensions and individual expressions.

The ORDER BY clause should be used if you want the output to display in a meaningful

structure. There is no guarantee on the order of the result set if no ORDER BY clause is
specified.

The following query produces a union of groups given by columns loc , dname, and job .

SELECT loc, dname, job, COUNT(*) AS "employees" FROM emp e, dept d

WHERE e.deptno = d.deptno

GROUP BY GROUPING SETS (loc, dname, job)

ORDER BY 1, 2, 3;

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

72

The result is as follows:

 loc | dname | job | employees

---------- +------------ +----------- +-----------

 BOSTON | | | 8

 CHICAGO | | | 6

 NEW YORK | | | 3

 | ACCOUNTING | | 3

 | OPERATIONS | | 3

 | RESEARCH | | 5

 | SALES | | 6

 | | ANALYST | 3

 | | CLERK | 5

 | | MANAGER | 4

 | | PRESIDENT | 1

 | | SALESMAN | 4

(12 rows)

This is equivalent to the following query, which employs the use of the UNION ALL
operator.

SELECT loc AS "loc", NULL AS "dname", NULL AS "job", COUNT(*) AS "employees"

FROM emp e, dept d

WHERE e.deptno = d.deptno

GROUP BY loc

 UNION ALL

SELECT NULL, dname, NULL, COUNT(*) AS "employees" FROM emp e, dept d

WHERE e.deptno = d.deptno

GROUP BY dname

 UNION ALL

SELECT NULL, NULL, job, COUNT(*) AS "employees" FROM emp e, dept d

WHERE e.deptno = d.deptno

GROUP BY job

ORDER BY 1, 2, 3;

The output from the UNION ALL query is the same as the GROUPING SETS output.

 loc | dname | job | employees

---------- +------------ +----------- +-----------

 BOSTON | | | 8

 CHICAGO | | | 6

 NEW YORK | | | 3

 | ACCOUNTING | | 3

 | OPERATIONS | | 3

 | RESEARCH | | 5

 | SALES | | 6

 | | ANALYST | 3

 | | CLERK | 5

 | | MANAGER | 4

 | | PRESIDENT | 1

 | | SALESMAN | 4

(12 rows)

The following example shows how various types of GROUP BY extensions can be used
together within a GROUPING SETS expression list.

SELECT loc, dname, job, COUNT(*) AS "employees" FROM emp e, dept d

WHERE e.deptno = d.deptno

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

73

GROUP BY GROUPING SETS (loc, ROLLUP (dname, job), CUBE (job, loc))

ORDER BY 1, 2, 3;

The following is the output from this query.

 loc | dname | job | employees

---------- +------------ +----------- +-----------

 BOSTON | | ANALYST | 3

 BOSTON | | CLERK | 3

 BOSTON | | MANAGER | 2

 BOSTON | | | 8

 BOSTON | | | 8

 CHICAGO | | CLERK | 1

 CHICAGO | | MANAGER | 1

 CHICAGO | | SALESMAN | 4

 CHICAGO | | | 6

 CHICAGO | | | 6

 NEW YORK | | CLERK | 1

 NEW YORK | | MANAGER | 1

 NEW YORK | | PRESIDENT | 1

 NEW YORK | | | 3

 NEW YORK | | | 3

 | ACCOUNTING | CLERK | 1

 | ACCOUNTING | MANAGER | 1

 | ACCOUNTING | PRESIDENT | 1

 | ACCOUNTING | | 3

 | OPERATIONS | ANALYST | 1

 | OPERATIONS | CLERK | 1

 | OPERATIONS | MANAGER | 1

 | OPERATIONS | | 3

 | RESEARCH | ANALYST | 2

 | RESEARCH | CLERK | 2

 | RESEARCH | MANAGER | 1

 | RESEARCH | | 5

 | SALES | CLERK | 1

 | SALES | MANAGER | 1

 | SALES | SALESMAN | 4

 | SALES | | 6

 | | ANALYST | 3

 | | CLERK | 5

 | | MANAGER | 4

 | | PRESIDENT | 1

 | | SALESMAN | 4

 | | | 17

 | | | 17

(38 rows)

The output is basically a concatenation of the result sets that would be produced

individually from GROUP BY loc , GROUP BY ROLLUP (dname, job) , and GROUP

BY CUBE (job, loc) . These individual queries are shown by the following.

SELECT loc, NULL AS "dname", NULL AS "job", COUNT(*) AS "employees"

FROM emp e, dept d

WHERE e.deptno = d.deptno

GROUP BY loc

ORDER BY 1;

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

74

The following is the result set from the GROUP BY loc clause.

 loc | dname | job | employees

---------- +------- +----- +-----------

 BOSTON | | | 8

 CHICAGO | | | 6

 NEW YORK | | | 3

(3 rows)

The following query uses the GROUP BY ROLLUP (dname, job) clause.

SELECT NULL AS "loc", dname, job, COUNT(*) AS "employees" FROM emp e, dept d

WHERE e.deptno = d.deptno

GROUP BY ROLLUP (dname, job)

ORDER BY 2, 3;

The following is the result set from the GROUP BY ROLLUP (d name, job) clause.

 loc | dname | job | employees

----- +------------ +----------- +-----------

 | ACCOUNTING | CLERK | 1

 | ACCOUNTING | MANAGER | 1

 | ACCOUNTING | PRESIDENT | 1

 | ACCOUNTING | | 3

 | OPERATIONS | ANALYST | 1

 | OPERATIONS | CLERK | 1

 | OPERATIONS | MANAGER | 1

 | OPERATIONS | | 3

 | RESEARCH | ANALYST | 2

 | RESEARCH | CLERK | 2

 | RESEARCH | MANAGER | 1

 | RESEARCH | | 5

 | SALES | CLERK | 1

 | SALES | MANAGER | 1

 | SALES | SALESMAN | 4

 | SALES | | 6

 | | | 17

(17 rows)

The following query uses the GROUP BY CUBE (job, loc) clause.

SELECT loc, NULL AS "dname", job, COUNT(*) AS "employees" FROM emp e, dept d

WHERE e.deptno = d.deptno

GROUP BY CUBE (job, loc)

ORDER BY 1, 3;

The following is the result set from the GROUP BY CUBE (job, loc) clause.

 loc | dname | job | employees

---------- +------- +----------- +-----------

 BOSTON | | ANALYST | 3

 BOSTON | | CLERK | 3

 BOSTON | | MANAGER | 2

 BOSTON | | | 8

 CHICAGO | | CLERK | 1

 CHICAGO | | MANAGER | 1

 CHICAGO | | SALESMAN | 4

 CHICAGO | | | 6

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

75

 NEW YORK | | CLERK | 1

 NEW YORK | | MANAGER | 1

 NEW YORK | | PRESIDENT | 1

 NEW YORK | | | 3

 | | ANALYST | 3

 | | CLERK | 5

 | | MANAGER | 4

 | | PRESIDENT | 1

 | | SALESMAN | 4

 | | | 17

(18 rows)

If the previous three queries are combined with the UNION ALL operator, a concatenation
of the three results sets is produced.

SELECT loc AS "loc", NULL AS "dname", NULL AS "job", COUNT(*) AS "employees"

FROM emp e, dept d

WHERE e.deptno = d.deptno

GROUP BY loc

 UNION ALL

SELECT NULL, dname, job, count(*) AS "employees" FROM emp e, dept d

WHERE e.deptno = d.deptno

GROUP BY ROLLUP (dname, job)

 UNION ALL

SELECT loc, NULL, job, count(*) AS "employees" FROM emp e, dept d

WHERE e.deptno = d.deptno

GROUP BY CUBE (job, loc)

ORDER BY 1, 2, 3;

The following is the output, which is the same as when the GROUP BY GROUPING SETS

(loc, ROLLUP (dname, job), CUBE (job, loc)) clause is used.

 loc | dname | job | employees

---------- +------------ +----------- +-----------

 BOSTON | | ANALYST | 3

 BOSTON | | CL ERK | 3

 BOSTON | | MANAGER | 2

 BOSTON | | | 8

 BOSTON | | | 8

 CHICAGO | | CLERK | 1

 CHICAGO | | MANAGER | 1

 CHICAGO | | SALESMAN | 4

 CHICAGO | | | 6

 CHICAGO | | | 6

 NEW YORK | | CLERK | 1

 NEW YORK | | MANAGER | 1

 NEW YORK | | PRESIDENT | 1

 NEW YORK | | | 3

 NEW YORK | | | 3

 | ACCOUNTING | CLERK | 1

 | ACCOUNTING | MANAGER | 1

 | ACCOUNTING | PRESIDENT | 1

 | ACCOUNTING | | 3

 | OPERATIONS | ANALYST | 1

 | OPERATIONS | CLERK | 1

 | OPERATIONS | MANAGER | 1

 | OPERATIONS | | 3

 | RESEA RCH | ANALYST | 2

 | RESEARCH | CLERK | 2

 | RESEARCH | MANAGER | 1

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

76

 | RESEARCH | | 5

 | SALES | CLERK | 1

 | SALES | MANAGER | 1

 | SALES | SALESMAN | 4

 | SALES | | 6

 | | ANALYST | 3

 | | CLERK | 5

 | | MANAGER | 4

 | | PRESIDENT | 1

 | | SALESMAN | 4

 | | | 17

 | | | 17

(38 rows)

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

77

2.2.6.4 GROUPING Function

When using the ROLLUP, CUBE, or GROUPING SETS extensions to the GROUP BY clause,
it may sometimes be difficult to differentiate between the various levels of subtotals

generated by the extensions as well as the base aggregate rows in the result set. The
GROUPING function provides a means of making this distinction.

The general syntax for use of the GROUPING function is shown by the following.

SELECT [expr ...,] GROUPING(col _expr) [, expr] ...

FROM ...

GROUP BY [...,]

 { ROLLUP | CUBE | GROUPING SETS }([...,] col_expr

 [, ...]) [, ...]

The GROUPING function takes a single parameter that must be an expression of a

dimension column specified in the expression list of a ROLLUP, CUBE, or GROUPING

SETS extension of the GROUP BY clause.

The return value of the GROUPING function is either a 0 or 1. In the result set of a query,

if the column expression specified in the GROUPING function is null because the row

represents a subtotal over multiple values of that column then the GROUPING function
returns a value of 1. If the row returns results based on a particular value of the column

specified in the GROUPING function, then the GROUPING function returns a value of 0. In
the latter case, the column can be null as well as non-null, but in any case, it is for a
particular value of that column, not a subtotal across multiple values.

The following query shows how the return values of the GROUPING function correspond
to the subtotal lines.

SELECT loc, dname, job, COUNT(*) AS "employees",

 GROUPING(loc) AS "gf_loc",

 GROUPING(dname) AS "gf_dname",

 GROUPING(job) AS "gf_job"

FROM emp e, dept d

WHERE e.deptno = d.deptno

GROUP BY ROLLUP (loc, dname, job)

ORDER BY 1, 2, 3;

In the three right-most columns displaying the output of the GROUPING functions, a value

of 1 appears on a subtotal line wherever a subtotal is taken across values of the
corresponding columns.

 loc | dname | job | employees | gf_loc | gf_dname | gf_job

---------- +------------ +----------- +----------- +-------- +---------- +--------

 BOSTON | OPERATIONS | ANALYST | 1 | 0 | 0 | 0

 BOSTON | OPERATIONS | CLERK | 1 | 0 | 0 | 0

 BOSTON | OPERATIONS | MANAGER | 1 | 0 | 0 | 0

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

78

 BOSTON | OPERATIONS | | 3 | 0 | 0 | 1

 BOSTON | RESEARCH | ANALYST | 2 | 0 | 0 | 0

 BOSTON | RESEARCH | CLERK | 2 | 0 | 0 | 0

 BOSTON | RESEARCH | MANAGER | 1 | 0 | 0 | 0

 BOSTON | RESEARCH | | 5 | 0 | 0 | 1

 BOSTON | | | 8 | 0 | 1 | 1

 CHICAGO | SALES | CLERK | 1 | 0 | 0 | 0

 CHICAGO | SALES | MANAGER | 1 | 0 | 0 | 0

 CHICAGO | SALES | SALESMAN | 4 | 0 | 0 | 0

 CHICAGO | SALES | | 6 | 0 | 0 | 1

 CHICAGO | | | 6 | 0 | 1 | 1

 NEW YORK | ACCOUNTING | CLERK | 1 | 0 | 0 | 0

 NEW YORK | ACCOUNTING | MANAGER | 1 | 0 | 0 | 0

 NEW YORK | ACCOUNTING | PRESIDENT | 1 | 0 | 0 | 0

 NEW YORK | ACCOUNTING | | 3 | 0 | 0 | 1

 NEW YORK | | | 3 | 0 | 1 | 1

 | | | 17 | 1 | 1 | 1

(20 rows)

These indicators can be used as screening criteria for particular subtotals. For example,

using the previous query, you can display only those subtotals for loc and dname
combinations by using the GROUPING function in a HAVING clause.

SELECT loc, dname, job, COUNT(*) AS "employees",

 GROUPING(loc) AS "gf_loc",

 GROUPING(dname) AS "gf_dname",

 GROUPING(job) AS "gf_job"

FROM emp e, dept d

WHERE e.deptno = d.deptno

GROUP BY ROLLUP (loc, dname, job)

HAVING GROUPING(loc) = 0

 AND GROUPING(dname) = 0

 AND GROUPING(job) = 1

ORDER BY 1, 2;

This query produces the following result:

 loc | dname | job | employees | gf_loc | gf_dname | gf_job

---------- +------------ +----- +----------- +-------- +---------- +--------

 BOSTON | OPERATIONS | | 3 | 0 | 0 | 1

 BOSTON | RESEARCH | | 5 | 0 | 0 | 1

 CHICAGO | SALES | | 6 | 0 | 0 | 1

 NEW YORK | ACCOUNTING | | 3 | 0 | 0 | 1

(4 rows)

The GROUPING function can be used to distinguish a subtotal row from a base aggregate
row or from certain subtotal rows where one of the items in the expression list returns

null as a result of the column on which the expression is based being null for one or more
rows in the table, as opposed to representing a subtotal over the column.

To illustrate this point, the following row is added to the emp table. This provides a row
with a null value for the job column.

INSERT INTO emp (empno,ename,deptno) VALUES (9004,'PETERS',40);

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

79

The following query is issued using a reduced number of rows for clarity.

SELECT loc, job, COUNT(*) AS "employees",

 GROUPING(loc) AS "gf_loc",

 GROUPING(job) AS "gf_job"

FROM emp e, dept d

WHERE e.deptno = d.deptno AND loc = ' BOSTON'

GROUP BY CUBE (loc, job)

ORDER BY 1, 2;

Note that the output contains two rows containing BOSTON in the loc column and spaces

in the job column (fourth and fifth entries in the table).

 loc | job | employees | gf_loc | gf_job

-------- +--------- +----------- +-------- +--------

 BOSTON | ANALYST | 3 | 0 | 0

 BOSTON | CLERK | 3 | 0 | 0

 BOSTON | MANAGER | 2 | 0 | 0

 BOSTON | | 1 | 0 | 0

 BOSTON | | 9 | 0 | 1

 | ANALYST | 3 | 1 | 0

 | CLERK | 3 | 1 | 0

 | MANAGER | 2 | 1 | 0

 | | 1 | 1 | 0

 | | 9 | 1 | 1

(10 rows)

The fifth row where the GROUPING function on the job column (gf_job) returns 1
indicates this is a subtotal over all jobs. Note that the row contains a subtotal value of 9 in

the employees column.

The fourth row where the GROUPING function on the job column as well as on the loc

column returns 0 indicates this is a base aggregate of all rows where loc is BOSTON and

job is null, which is the row inserted for this example. The employees column contains
1, which is the count of the single such row inserted.

Also note that in the ninth row (next to last) the GROUPING function on the job column

returns 0 while the GROUPING function on the loc column returns 1 indicating this is a

subtotal over all locations where the job column is null, which again, is a count of the
single row inserted for this example.

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

80

2.2.6.5 GROUPING_ID Functi on

The GROUPING_ID function provides a simplification of the GROUPING function in order

to determine the subtotal level of a row in the result set from a ROLLBACK, CUBE, or
GROUPING SETS extension.

The GROUPING function takes only one column expression and returns an indication of
whether or not a row is a subtotal over all values of the given column. Thus, multiple

GROUPING functions may be required to interpret the level of subtotals for queries with
multiple grouping columns.

The GROUPING_ID function accepts one or more column expressions that have been used

in the ROLLBACK, CUBE, or GROUPING SETS extensions and returns a single integer that
can be used to determine over which of these columns a subtotal has been aggregated.

The general syntax for use of the GROUPING_ID function is shown by the following.

SELECT [expr ...,]

 GROUPING_ID(col _expr_1 [, col_expr_2] ...)

 [, expr] ...

FROM ...

GROUP BY [...,]

 { ROLLUP | CUBE | GROUPING SETS }([...,] col_expr_1

 [, col_expr_2] [, ...]) [, ...]

The GROUPING_ID function takes one or more parameters that must be expressions of

dimension columns specified in the expression list of a ROLLUP, CUBE, or GROUPING

SETS extension of the GROUP BY clause.

The GROUPING_ID function returns an integer value. This value corresponds to the base-
10 interpretation of a bit vector consisting of the concatenated 1ôs and 0ôs that would be

returned by a series of GROUPING functions specified in the same left-to-right order as

the ordering of the parameters specified in the GROUPING_ID function.

The following query shows how the returned values of the GROUPING_ID function

represented in column gid correspond to the values returned by two GROUPING functions
on columns loc and dname.

SELECT loc, dname, COUNT(*) AS "employees",

 GROUPING(loc) AS "gf_loc", GROUPING(dname) AS "gf_dname",

 GROUPING_ID(loc, dname) AS "gid"

FROM emp e, dept d

WHERE e.deptno = d.deptno

GROUP BY CUBE (loc, dname)

ORDER BY 6, 1, 2;

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

81

In the following output, note the relationship between a bit vector consisting of the

gf_loc value and gf_dname value compared to the integer given in gid .

 loc | dname | employees | gf_loc | gf_dname | gid

---------- +------------ +----------- +-------- +---------- +-----

 BOSTON | OPERATIONS | 3 | 0 | 0 | 0

 BOSTON | RESEARCH | 5 | 0 | 0 | 0

 CHICAGO | SALES | 6 | 0 | 0 | 0

 NEW YORK | ACCOUNTING | 3 | 0 | 0 | 0

 BOSTON | | 8 | 0 | 1 | 1

 CHICAGO | | 6 | 0 | 1 | 1

 NEW YORK | | 3 | 0 | 1 | 1

 | ACCOUNTING | 3 | 1 | 0 | 2

 | OPERATIONS | 3 | 1 | 0 | 2

 | RESEARCH | 5 | 1 | 0 | 2

 | SALES | 6 | 1 | 0 | 2

 | | 17 | 1 | 1 | 3

(12 rows)

The following table provides specific examples of the GROUPING_ID function

calculations based on the GROUPING function return values for four rows of the output.

loc dname
Bit Vector

gf_loc gf_dname

GROUPING_ID

gid

BOSTON OPERATIONS 0 * 2
1
 + 0 * 2

0
 0

BOSTON null 0 * 2
1
 + 1 * 2

0
 1

null ACCOUNTING 1 * 2
1
 + 0 * 2

0
 2

null null 1 * 2
1
 + 1 * 2

0
 3

The following table summarizes how the GROUPING_ID function return values
correspond to the grouping columns over which aggregation occurs.

Aggregation by Column
Bit Vector

gf_loc gf_dname

GROUPING_ID

gid

loc, dname 0 0 0

loc 0 1 1

dname 1 0 2

Grand Total 1 1 3

So to display only those subtotals by dname, the following simplified query can be used

with a HAVING clause based on the GROUPING_ID function.

SELECT loc, dname, COUNT(*) AS "employees",

 GROUPING(loc) AS "gf_loc", GROUPING(dname) AS "gf_dname",

 GROUPING_ID(loc, dname) AS "gid"

FROM emp e, dept d

WHERE e.deptno = d.deptno

GROUP BY CUBE (loc, dname)

HAVING GROUPING_ID(loc, dname) = 2

ORDER BY 6, 1, 2;

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

82

The following is the result of the query.

loc | dname | employees | gf_loc | gf_dname | gid

----- +------------ +----------- +-------- +---------- +-----

 | ACCOUNTING | 3 | 1 | 0 | 2

 | OPERATIONS | 3 | 1 | 0 | 2

 | RESEARCH | 5 | 1 | 0 | 2

 | SALES | 6 | 1 | 0 | 2

(4 rows)

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

83

2.3 Profile Management

Advanced Server 9.6 allows a database superuser to create named profiles. Each profile

defines rules for password management that augment password and md5 authentication.
The rules in a profile can:

¶ count failed login attempts

¶ lock an account due to excessive failed login attempts

¶ mark a password for expiration

¶ define a grace period after a password expiration

¶ define rules for password complexity

¶ define rules that limit password re-use

A profile is a named set of password attributes that allow you to easily manage a group of

roles that share comparable authentication requirements. If the password requirements

change, you can modify the profile to have the new requirements applied to each user that
is associated with that profile.

After creating the profile, you can associate the profile with one or more users. When a
user connects to the server, the server enforces the profile that is associated with their

login role. Profiles are shared by all databases within a cluster, but each cluster may have
multiple profiles. A single user with access to multiple databases will use the same
profile when connecting to each database within the cluster.

Advanced Server 9.6 creates a profile named default that is associated with a new role
when the role is created unless an alternate profile is specified. If you upgrade to
Advanced Server 9.6 from a previous server version, existing roles will automatically be
assigned to the default profile. You cannot delete the default profile.

The default profile specifies the following attributes:

FAILED_LOGIN_ATTEMPTS UNLIMITED
PASSWORD_LOCK_TIME UNLIMITED
PASSWORD_LIFE_TIME UNLIMITED
PASSWORD_GRACE_TIME UNLIMITED

PASSWORD_REUSE_TIME UNLIMITED

PASSWORD_REUSE_MAX UNLIMITED

PASSWORD_VERIFY_FUNCTION NULL

A database superuser can use the ALTER PROFILE command to modify the values

specified by the default profile. For more information about modifying a profile, see
Section 2.3.2.

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

84

2.3.1 Creating a New Profile

Use the CREATE PROFILE command to create a new profile. The syntax is:

CREATE PROFILE profile_name

 [LIMIT { parameter value } ...];

Include the LIMIT clause and one or more space-delimited parameter /value pairs to
specify the rules enforced by Advanced Server.

Parameters:

profile_name specifies the name of the profile.

parameter specifies the attribute limited by the profile.

value specifies the parameter limit.

Advanced Server supports the value shown below for each parameter :

FAILED_LOGIN_ATTEMPTS specifies the number of failed login attempts that a user
may make before the server locks the user out of their account for the length of time

specified by PASSWORD_LOCK_TIME. Supported values are:

¶ An INTEGER value greater than 0.

¶ DEFAULT - the value of FAILED_LOGIN_ATTEMPTS specified in the

DEFAULT profile.

¶ UNLIMITED ï the connecting user may make an unlimited number of failed
login attempts.

PASSWORD_LOCK_TIME specifies the length of time that must pass before the server

unlocks an account that has been locked because of FAILED_LOGIN_ATTEMPTS.

Supported values are:

¶ A NUMERIC value greater than or equal to 0. To specify a fractional portion

of a day, specify a decimal value. For example, use the value 4.5 to specify 4

days, 12 hours.

¶ DEFAULT - the value of PASSWORD_LOCK_TIME specified in the DEFAULT
profile.

¶ UNLIMITED ï the account is locked until it is manually unlocked by a
database superuser.

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

85

PASSWORD_LIFE_TIME specifies the number of days that the current password may

be used before the user is prompted to provide a new password. Include the

PASSWORD_GRACE_TIME clause when using the PASSWORD_LIFE _TIME clause to

specify the number of days that will pass after the password expires before

connections by the role are rejected. If PASSWORD_GRACE_TIME is not specified, the
password will expire on the day specified by the default value of

PASSWORD_GRACE_TIME, and the user will not be allowed to execute any command
until a new password is provided. Supported values are:

¶ A NUMERIC value greater than or equal to 0. To specify a fractional portion

of a day, specify a decimal value. For example, use the value 4.5 to specify 4

days, 12 hours.

¶ DEFAULT - the value of PASSWORD_LIFE_TIME specified in the DEFAULT
profile.

¶ UNLIMITED ï The password does not have an expiration date.

PASSWORD_GRACE_TIME specifies the length of the grace period after a password

expires until the user is forced to change their password. When the grace period
expires, a user will be allowed to connect, but will not be allowed to execute any
command until they update their expired password. Supported values are:

¶ A NUMERIC value greater than or equal to 0. To specify a fractional portion

of a day, specify a decimal value. For example, use the value 4.5 to specify 4

days, 12 hours.

¶ DEFAULT - the value of PASSWORD_GRACE_TIME specified in the DEFAULT
profile.

¶ UNLIMITED ï The grace period is infinite.

PASSWORD_REUSE_TIME specifies the number of days a user must wait before re-

using a password. The PASSWORD_REUSE_TIME and PASSWORD_REUSE_MAX
parameters are intended to be used together. If you specify a finite value for one of

these parameters while the other is UNLIMITED, old passwords can never be reused.

If both parameters are set to UNLIMITED there are no restrictions on password reuse.
Supported values are:

¶ A NUMERIC value greater than or equal to 0. To specify a fractional portion

of a day, specify a decimal value. For example, use the value 4.5 to specify 4

days, 12 hours.

¶ DEFAULT - the value of PASSWORD_REUSE_TIME specified in the DEFAULT
profile.

¶ UNLIMITED ï The password can be re-used without restrictions.

PASSWORD_REUSE_MAX specifies the number of password changes that must occur

before a password can be reused. The PASSWORD_REUSE_TIME and

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

86

PASSWORD_REUSE_MAX parameters are intended to be used together. If you specify a

finite value for one of these parameters while the other is UNLIMITED, old passwords

can never be reused. If both parameters are set to UNLIMITED there are no
restrictions on password reuse. Supported values are:

¶ An INTEGER value greater than or equal to 0.

¶ DEFAULT - the value of PASSWORD_REUSE_MAX specified in the DEFAULT
profile.

¶ UNLIMITED ï The password can be re-used without restrictions.

PASSWORD_VERIFY_FUNCTION specifies password complexity. Supported values
are:

¶ The name of a PL/SQL function.

¶ DEFAULT - the value of PASSWORD_VERIFY_FUNCTION specified in the

DEFAULT profile.

¶ NULL

Notes

Use DROP PROFILE command to remove the profile.

Examples

The following command creates a profile named acctg . The profile specifies that if a
user has not authenticated with the correct password in five attempts, the account will be
locked for one day:

CREATE PROFILE acctg LIMIT

 FAILED_LOGIN_ATTEMPTS 5

 PASSWORD_LOCK_TIME 1;

The following command creates a profile named sales . The profile specifies that a user
must change their password every 90 days:

CREATE PROFILE sales LIMIT

 PASSWORD_LIFE_TIME 90

 PASSWORD_GRACE_TIME 3;

If the user has not changed their password before the 90 days specified in the profile has

passed, they will be issued a warning at login. After a grace period of 3 days, their
account will not be allowed to invoke any commands until they change their password.

The following command creates a profile named accts . The profile specifies that a user
cannot re-use a password within 180 days of the last use of the password, and must
change their password at least 5 times before re-using the password:

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

87

CREATE PROFILE accts LIMIT

 PASSWORD_REUSE_TIME 180

 PASSWORD_REUSE_MAX 5;

The following command creates a profile named res ources ; the profile calls a user-

defined function named password_rules that will verify that the password provided
meets their standards for complexity:

CREATE PROFILE resources LIMIT

 PASSWORD_VERIFY_FUNCTION password_rules;

2.3.1.1 Creating a Password Function

When specifying PASSWORD_VERIFY_FUNCTION, you can provide a customized

function that specifies the security rules that will be applied when your users change their
password. For example, you can specify rules that stipulate that the new password must
be at least n characters long, and may not contain a specific value.

The password function has the following signature:

function _name (user _name VARCHAR2,

 new_password VARCHAR2,

 old _password VARCHAR2) RETURN boolean

Where:

user _name is the name of the user.

new_password is the new password.

old _password is the user's previous password. If you reference this parameter
within your function:

When a database superuser changes their password, the third parameter

will always be NULL.

When a user with the CREATEROLE attribute changes their password, the
parameter will pass the previous password if the statement includes the

REPLACE clause. Note that the REPLACE clause is optional syntax for a
user with the CREATEROLE privilege.

When a user that is not a database superuser and does not have the

CREATEROLE attribute changes their password, the third parameter will
contain the previous password for the role.

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

88

The function returns a Boolean value. If the function returns true and does not raise an
exception, the password is accepted; if the function returns false or raises an exception,

the password is rejected. If the function raises an exception, the specified error message
is displayed to the user. If the function does not raise an exception, but returns false, the
following error message is displayed:

ERROR: password verification for the specified password failed

The function must be owned by a database superuser, and reside in the sys schema.

Example:

The following example creates a profile and a custom function; then, the function is

associated with the profile. The following CREATE PROFILE command creates a profile
named acctg _pwd_profile :

CREATE PROFILE acctg _pwd_profile;

The following commands create a (schema-qualified) function named

verify_ password :

CREATE OR REPLACE FUNCTION sys. verify_ password (user _name varchar2,

new_password varchar2, old_password varchar2)

RETURN boolean IMMUTABLE

IS

BEGIN

 IF (length(new_password) < 5)

 THEN

 raise_application_error(- 20001 , 'too short');

 END IF;

 IF substring(new_password FROM old_password) IS NOT NULL

 THEN

 raise_application_error(- 20002, 'includes old password');

 END IF;

 RETURN true;

END;

The function first ensures that the password is at least 5 characters long, and then

compares the new password to the old password. If the new password contains fewer
than 5 characters, or contains the old password, the function raises an error.

The following statement sets the ownership of the verify _password function to the
enterprisedb database superuser:

ALTER FUNCTION verify_password (varchar2, varchar2, varchar2) OWNER TO

enterprisedb;

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

89

Then, the verify _password function is associated with the profile:

ALTER PROFILE acctg_pwd _profile LI MIT PASSWORD_VERIFY_FUNCTION

verify_ password ;

The following statements confirm that the function is working by first creating a test user

(alice), and then attempting to associate invalid and valid passwords with her role:

CREATE ROLE alice WITH LOGIN PASSWORD 'temp_password' PROF ILE

acctg_pwd_profile;

Then, when alice connects to the database and attempts to change her password, she

must adhere to the rules established by the profile function. A non-superuser without
CREATEROLE must include the REPLACE clause when changing a password:

edb=> ALTER ROLE alice PASSWORD 'hey';

ERROR: missing REPLACE clause

The new password must be at least 5 characters long:

edb=> ALTER USER alice PASSWORD 'hey' REPLACE 'temp_password';

ERROR: EDB- 20001: too short

CONTEXT: edb - spl function verify_ password(character varying,character

varying,character varying) line 5 at procedure/function invocation statement

If the new password is acceptable, the command completes without error:

edb=> ALTER USER alice PASSWORD 'hello' REPLACE 'temp_password';

ALTER ROLE

If alice decides to change her password, the new password must not contain the old
password:

edb=> ALTER USER alice PASSWORD 'helloworld' REPLACE 'hello';

ERROR: EDB- 20002: includes old password

CONTEXT: edb - spl function verify_password(character varying,character

varying,character varying) line 10 at procedure/function invocation statement

To remove the verify function, set password _verify _function to NULL:

ALTER PROFILE acctg_pwd_profile LIMIT password_verify_function NULL;

Then, all password constraints will be lifted:

edb=# ALTER ROLE alice PASSWORD 'hey';

ALTER ROLE

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

90

2.3.2 Altering a Profile

Use the ALTER PROFILE command to modify a user-defined profile; Advanced Server
supports two forms of the command:

ALTER PROFILE profile_name RENAME TO new_name;

ALTER PROFILE profile_name

 LIMIT { parameter value }[...];

Include the LIMIT clause and one or more space-delimited parameter /value pairs to

specify the rules enforced by Advanced Server, or use ALTER PROFILEéRENAME TO to
change the name of a profile.

Parameters:

profile_name specifies the name of the profile.

new_name specifies the new name of the profile.

parameter specifies the attribute limited by the profile.

value specifies the parameter limit.

See the table in Section 2.3.1 for a complete list of accepted parameter/value pairs.

Examples

The following example modifies a profile named acctg_profile :

ALTER PROFILE acctg_profile

 LIMIT FAILED_LOGIN_ATTEMPTS 3 PASSWORD_LOCK_TIME 1;

acctg_profile will count failed connection attempts when a login role attempts to

connect to the server. The profile specifies that if a user has not authenticated with the
correct password in three attempts, the account will be locked for one day.

The following example changes the name of acctg_profile to payables_profile :

ALTER PROFILE acctg_profile RENAME TO payables_profile;

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

91

2.3.3 Dropping a Profile

Use the DROP PROFILE command to drop a profile. The syntax is:

DROP PROFILE [IF EXISTS] profile _name [CASCADE|RESTRICT];

Include the IF EXISTS clause to instruct the server to not throw an error if the specified
profile does not exist. The server will issue a notice if the profile does not exist.

Include the optional CASCADE clause to reassign any users that are currently associated

with the profile to the default profile, and then drop the profile. Include the optional

RESTRICT clause to instruct the server to not drop any profile that is associated with a
role. This is the default behavior.

Parameters

profile_ name

The name of the profile being dropped.

Examples

The following example drops a profile named acctg_profile :

DROP PROFILE acctg_profile CASCADE;

The command first re-associates any roles associated with the acctg_profile profile

with the default profile, and then drops the acctg_profile profile.

The following example drops a profile named acctg_profile :

DROP PROFILE acctg_profile RESTRICT;

The RESTRICT clause in the command instructs the server to not drop acctg_profile
if there are any roles associated with the profile.

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

92

2.3.4 Associating a Profile with an Existing Role

After creating a profile, you can use the ALTER USERé PROFILE or ALTER ROLEé

PROFILE command to associate the profile with a role. The command syntax related to
profile management functionality is:

ALTER USER|ROLE name [[WITH] option[é]

where option can be the following compatible clauses:

 PROFILE profile_name

 | ACCOUNT {LOCK|UNLOCK}

 | PASSWORD EXPIRE [AT ' timestamp ']

or option can be the following non-compatible clauses:

 | PASSWORD SET AT ' timestamp '

 | LOCK TIME ' timestamp '

 | STORE PRIOR PASSWORD { 'password' 'timestamp } [, ...]

For information about the administrative clauses of the ALTER USER or ALTER ROLE
command that are supported by Advanced Server, please see the PostgreSQL core
documentation available at:

http://www.postgresql.org/docs/9.5/static/sql-commands.html

Only a database superuser can use the ALTER USER|ROLE clauses that enforce profile
management. The clauses enforce the following behaviors:

Include the PROFILE clause and a profile_name to associate a pre-defined

profile with a role, or to change which pre-defined profile is associated with a
user.

Include the ACCOUNT clause and the LOCK or UNLOCK keyword to specify that the
user account should be placed in a locked or unlocked state.

Include the LOCK TIME ' timestamp ' clause and a date/time value to lock the

role at the specified time, and unlock the role at the time indicated by the

PASSWORD_LOCK_TIME parameter of the profile assigned to this role. If LOCK

TIME is used with the ACCOUNT LOCK clause, the role can only be unlocked by a
database superuser with the ACCOUNT UNLOCK clause.

http://www.postgresql.org/docs/9.5/static/sql-commands.html

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

93

Include the PASSWORD EXPIRE clause with the AT ' timestamp ' keywords to

specify a date/time when the password associated with the role will expire. If you
omit the AT ' timestamp ' keywords, the password will expire immediately.

Include the PASSWORD SET AT ' timestamp ' keywords to set the password
modification date to the time specified.

Include the STORE PRIOR PASSWORD { 'password' 'timestamp } [, ...]

clause to modify the password history, adding the new password and the time the
password was set.

Each login role may only have one profile. To discover the profile that is currently
associated with a login role, query the profile column of the DBA_USERS view.

Parameters

name

The name of the role with which the specified profile will be associated.

password

The password associated with the role.

profile_name

The name of the profile that will be associated with the role.

timestamp

The date and time at which the clause will be enforced. When specifying a value
for timestamp , enclose the value in single-quotes.

Examples

The following command uses the ALTER USERé PROFILE command to associate a
profile named acctg with a user named john :

ALTER USER john PROFILE acctg_profile;

The following command uses the ALTER ROLEé PROFILE command to associate a

profile named acctg with a user named j ohn :

ALTER ROLE john PROFILE acctg_profile;

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

94

2.3.5 Unlocking a Locked Account

A database superuser can use clauses of the ALTER USER|ROLEé command to lock or
unlock a role. The syntax is:

ALTER USER|ROLE name

 ACCOUNT {LOCK|UNLOCK}

 LOCK TIME ' time stamp '

Include the ACCOUNT LOCK clause to lock a role immediately; when locked, a roleôs

LOGIN functionality is disabled. When you specify the ACCOUNT LOCK clause without

the LOCK TIME clause, the state of the role will not change until a superuser uses the
ACCOUNT UNLOCK clause to unlock the role.

Use the ACCOUNT UNLOCK clause to unlock a role.

Use the LOCK TIME ' timestamp ' clause to instruct the server to lock the account at the

time specified by the given timestamp for the length of time specified by the

PASSWORD_LOCK_TIME parameter of the profile associated with this role.

Combine the LOCK TIME ' timestamp ' clause and the ACCOUNT LOCK clause to lock

an account at a specified time until the account is unlocked by a superuser invoking the
ACCOUNT UNLOCK clause.

Parameters

name

The name of the role that is being locked or unlocked.

timestamp

The date and time at which the role will be locked. When specifying a value for
timestamp , enclose the value in single-quotes.

Note

This command (available only in Advanced Server) is implemented to support Oracle-
styled profile management.

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

95

Examples

The following example uses the ACCOUNT LOCK clause to lock the role named john .

The account will remain locked until the account is unlocked with the ACCOUNT UNLOCK
clause:

ALTER ROLE john ACCOUNT LOCK;

The following example uses the ACCOUNT UNLOCK clause to unlock the role named
john :

ALTER USER john ACCOUNT UNLOCK;

The following example uses the LOCK TIME ' timestamp ' clause to lock the role

named john on September 4, 2015:

ALTER ROLE john LOCK TIME óSeptember 4 12:00:00 2015ô;

The role will remain locked for the length of time specified by the

PASSWORD_LOCK_TIME parameter.

The following example combines the LOCK TIME ' timestamp ' clause and the

ACCOUNT LOCK clause to lock the role named john on September 4, 2015:

ALTER ROLE john LOCK TIME óSeptember 4 12:00:00 2015ô ACCOUNT LOCK;

The role will remain locked until a database superuser uses the ACCOUNT UNLOCK
command to unlock the role.

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

96

2.3.6 Creating a New Role Associated wit h a Profile

A database superuser can use clauses of the CREATE USER|ROLE command to assign a
named profile to a role when creating the role, or to specify profile management details
for a role. The command syntax related to profile management functionality is:

CREATE USER|ROLE name [[WITH] option [é]]

where option can be the following compatible clauses:

 PROFILE profile_name

 | ACCOUNT {LOCK|UNLOCK}

 | PASSWORD EXPIRE [AT ' timestamp ']

or option can be the following non-compatible clauses:

 | LOCK TIME ' timestamp '

For information about the administrative clauses of the CREATE USER or CREATE ROLE

command that are supported by Advanced Server, please see the PostgreSQL core
documentation available at:

http://www.postgresql.org/docs/9.5/static/sql-commands.html

CREATE ROLE|USERé PROFILE adds a new role with an associated profile to an
Advanced Server database cluster.

Roles created with the CREATE USER command are (by default) login roles. Roles

created with the CREATE ROLE command are (by default) not login roles. To create a
login account with the CREATE ROLE command, you must include the LOGIN keyword.

Only a database superuser can use the CREATE USER|ROLE clauses that enforce profile
management; these clauses enforce the following behaviors:

Include the PROFILE clause and a profile_name to associate a pre-defined

profile with a role, or to change which pre-defined profile is associated with a
user.

Include the ACCOUNT clause and the LOCK or UNLOCK keyword to specify that the
user account should be placed in a locked or unlocked state.

Include the LOCK TIME ' timestamp ' clause and a date/time value to lock the

role at the specified time, and unlock the role at the time indicated by the

PASSWORD_LOCK_TIME parameter of the profile assigned to this role. If LOCK

http://www.postgresql.org/docs/9.5/static/sql-commands.html
http://www.postgresql.org/docs/9.5/static/sql-commands.html

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

97

TIME is used with the ACCOUNT LOCK clause, the role can only be unlocked by a
database superuser with the ACCOUNT UNLOCK clause.

Include the PASSWORD EXPIRE clause with the optional AT ' timestamp '

keywords to specify a date/time when the password associated with the role will
expire. If you omit the AT ' timestamp ' keywords, the password will expire
immediately.

Each login role may only have one profile. To discover the profile that is currently

associated with a login role, query the profile column of the DBA_USERS view.

Parameters

name

The name of the role.

profile_name

The name of the profile associated with the role.

timestamp

The date and time at which the clause will be enforced. When specifying a value
for timestamp , enclose the value in single-quotes.

Examples

The following example uses CREATE USER to create a login role named john who is
associated with the acctg_profile profile:

CREATE USER john PROFILE acctg_profile IDENTIFIED BY ñ1safepwdò;

john can log in to the server, using the password 1safepwd .

The following example uses CREATE ROLE to create a login role named john who is
associated with the acctg _profile profile:

CREATE ROLE john PROFILE acctg_profile LOGIN PASSWORD ñ1safepwdò;

john can log in to the server, using the password 1safepwd .

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

98

2.3.7 Backing up Profile Management Functions

A profile may include a PASSWORD_VERIFY_FUNCTION clause that refers to a user-
defined function that specifies the behavior enforced by Advanced Server. Profiles are

global objects; they are shared by all of the databases within a cluster. While profiles are
global objects, user-defined functions are database objects.

Invoking pg_dumpall with the ïg or ïr option will create a script that recreates the
definition of any existing profiles, but that does not recreate the user-defined functions

that are referred to by the PASSWORD_VERIFY_FUNCTION clause. You should use the

pg_dump utility to explicitly dump (and later restore) the database in which those
functions reside.

The script created by pg_dump will contain a command that includes the clause and
function name:

ALTER PROFILEé LIMIT PASSWORD_VERIFY_FUNCTION function_name

to associate the restored function with the profile with which it was previously associated.

If the PASSWORD_VERIFY_FUNCTION clause is set to DEFAULT or NULL, the behavior

will be replicated by the script generated by the pg_dumpall ïg or pg_dumpall ïr
command.

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

99

2.4 Optimize r Hints

When you invoke a DELETE, INSERT, SELECT or UPDATE command, the server
generates a set of execution plans; after analyzing those execution plans, the server

selects a plan that will (generally) return the result set in the least amount of time. The
server's choice of plan is dependent upon several factors:

¶ The estimated execution cost of data handling operations.

¶ Parameter values assigned to parameters in the Query Tuning section of the

postgresql.conf file.

¶ Column statistics that have been gathered by the ANALYZE command.

As a rule, the query planner will select the least expensive plan. You can use an
optimizer hint to influence the server as it selects a query plan.

An optimizer hint is a directive (or multiple directives) embedded in a comment-like

syntax that immediately follows a DELETE, INSERT, SELECT or UPDATE command.
Keywords in the comment instruct the server to employ or avoid a specific plan when
producing the result set.

Synopsis

{ DELETE | INSERT | SELECT | UPDATE } /*+ { hint [comment] }

[...] */

 statement_body

{ DELETE | INSERT | SELECT | UPDATE } -- + { hint [comment] }

[...]

 statement_body

Optimizer hints may be included in either of the forms shown above. Note that in both

forms, a plus sign (+) must immediately follow the /* or -- opening comment symbols,
with no intervening space, or the server will not interpret the following tokens as hints.

If you are using the first form, the hint and optional comment may span multiple lines.
The second form requires all hints and comments to occupy a single line; the remainder
of the statement must start on a new line.

Description

Please Note:

¶ The database server will always try to use the specified hints if at all possible.

http://www.enterprisedb.com/docs/en/9.3/pg/sql-analyze.html

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

100

¶ If a planner method parameter is set so as to disable a certain plan type, then this
plan will not be used even if it is specified in a hint, unless there are no other

possible options for the planner. Examples of planner method parameters are

enable_indexscan , enable_seqscan , enable_hashjoin ,

enable_mergejoin , and enable_nestloop . These are all Boolean
parameters.

¶ Remember that the hint is embedded within a comment. As a consequence, if the
hint is misspelled or if any parameter to a hint such as view, table, or column
name is misspelled, or non-existent in the SQL command, there will be no

indication that any sort of error has occurred. No syntax error will be given and
the entire hint is simply ignored.

¶ If an alias is used for a table or view name in the SQL command, then the alias

name, not the original object name, must be used in the hint. For example, in the

command, SELECT /*+ FULL(acct) */ * FROM accounts acct ...,

acct , the alias for accounts , must be specified in the FULL hint, not the table

name, accounts .

Use the EXPLAIN command to ensure that the hint is correctly formed and the planner is

using the hint. See the Advanced Server documentation set for information on the
EXPLAIN command.

¶ In general, optimizer hints should not be used in production applications.
Typically, the table data changes throughout the life of the application. By

ensuring that the more dynamic columns are ANALYZEd frequently, the column
statistics will be updated to reflect value changes and the planner will use such
information to produce the least cost plan for any given command execution. Use

of optimizer hints defeats the purpose of this process and will result in the same
plan regardless of how the table data changes.

Parameters

hint

An optimizer hint directive.

comment

A string with additional information. Note that there are restrictions as to what
characters may be included in the comment. Generally, comment may only

consist of alphabetic, numeric, the underscore, dollar sign, number sign and space

characters. These must also conform to the syntax of an identifier. Any
subsequent hint will be ignored if the comment is not in this form.

statement_body

The remainder of the DELETE, INSERT, SELECT, or UPDATE command.

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

101

The following sections describe the optimizer hint directives in more detail.

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

102

2.4.1 Default Optimization Modes

There are a number of optimization modes that can be chosen as the default setting for an
Advanced Server database cluster. This setting can also be changed on a per session basis

by using the ALTER SESSION command as well as in individual DELETE, SELECT, and

UPDATE commands within an optimizer hint. The configuration parameter that controls

these default modes is named OPTIMIZER_MODE. The following table shows the possible
values.

Table 3-2-1 Default Optimization Modes

Hint Description

ALL_ROWS Optimizes for retrieval of all rows of the result set.

CHOOSE
Does no default optimization based on assumed number of rows to be retrieved

from the result set. This is the default.

FIRST_ROWS Optimizes for retrieval of only the first row of the result set.

FIRST_ROWS_10 Optimizes for retrieval of the first 10 rows of the results set.

FIRST_ROWS_100 Optimizes for retrieval of the first 100 rows of the result set.

FIRST_ROWS_1000 Optimizes for retrieval of the first 1000 rows of the result set.

FIRST_ROWS(n)

Optimizes for retrieval of the first n rows of the result set. This form may not be

used as the object of the ALTER SESSION SET OPTIMIZER_MODE command.

It may only be used in the form of a hint in a SQL command.

These optimization modes are based upon the assumption that the client submitting the

SQL command is interested in viewing only the first ñnò rows of the result set and will
then abandon the remainder of the result set. Resources allocated to the query are
adjusted as such.

Examples

Alter the current session to optimize for retrieval of the first 10 rows of the result set.

ALTER SESSION SET OPTIMIZER_MODE = FIRST_ROWS_10;

The current value of the OPTIMIZER_MODE parameter can be shown by using the SHOW

command. Note that this command is a utility dependent command. In PSQL, the SHOW
command is used as follows:

SHOW OPTIMIZER_MODE;

optimizer_mode

 first_rows_10

(1 row)

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

103

The SHOW command, compatible with Oracle databases, has the following syntax:

SHOW PARAMETER OPTIMIZER_MODE;

NAME

--

VALUE

--

optimizer_mode

first_rows_10

The following example shows an optimization mode used in a SELECT command as a
hint:

SELECT /*+ FIRST_ROWS(7) */ * FROM emp;

 empno | ename | job | mgr | hiredate | sal | comm | deptno

------- +-------- +----------- +------ +--------------- ----- +--------- +--------- +--------

 7369 | SMITH | CLERK | 7902 | 17 - DEC- 80 00:00:00 | 800.00 | | 20

 7499 | ALLEN | SALESMAN | 7698 | 20 - FEB- 81 00:00:00 | 1600.00 | 300.00 | 30

 7521 | WARD | SALESMAN | 7698 | 22 - FEB- 81 00:0 0:00 | 1250.00 | 500.00 | 30

 7566 | JONES | MANAGER | 7839 | 02 - APR- 81 00:00:00 | 2975.00 | | 20

 7654 | MARTIN | SALESMAN | 7698 | 28 - SEP- 81 00:00:00 | 1250.00 | 1400.00 | 30

 7698 | BLAKE | MANAGER | 7839 | 01 - MAY- 81 00:00 :00 | 2850.00 | | 30

 7782 | CLARK | MANAGER | 7839 | 09 - JUN- 81 00:00:00 | 2450.00 | | 10

 7788 | SCOTT | ANALYST | 7566 | 19 - APR- 87 00:00:00 | 3000.00 | | 20

 7839 | KING | PRESIDENT | | 17 - NOV- 81 00:00: 00 | 5000.00 | | 10

 7844 | TURNER | SALESMAN | 7698 | 08 - SEP- 81 00:00:00 | 1500.00 | 0.00 | 30

 7876 | ADAMS | CLERK | 7788 | 23 - MAY- 87 00:00:00 | 1100.00 | | 20

 7900 | JAMES | CLERK | 7698 | 03 - DEC- 81 00:00:0 0 | 950.00 | | 30

 7902 | FORD | ANALYST | 7566 | 03 - DEC- 81 00:00:00 | 3000.00 | | 20

 7934 | MILLER | CLERK | 7782 | 23 - JAN- 82 00:00:00 | 1300.00 | | 10

(14 rows)

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

104

2.4.2 Access Method Hints

The following hints influence how the optimizer accesses relations to create the result set.

Table 3-2-2 Access Method Hints

Hint Description

FULL(table) Perform a full sequential scan on table .

INDEX(table [index] [...]) Use in dex on table to access the relation.

NO_INDEX(table [index] [...]) Do not use index on table to access the relation.

In addition, the ALL_ROWS, FIRST_ROWS, and FIRST_ROWS(n) hints of Table 3-2-1 can

be used.

Examples

The sample application does not have sufficient data to illustrate the effects of optimizer
hints so the remainder of the examples in this section will use a banking database created
by the pgbench application located in the Advanced Server bin subdirectory.

The following steps create a database named, bank , populated by the tables,

pgbench_accounts , pgbench_branches , pgbench_tellers , and

pgbench_history . The ïs 20 option specifies a scaling factor of twenty, which
results in the creation of twenty branches, each with 100,000 accounts, resulting in a total

of 2,000,000 rows in the pgbench_accounts table and twenty rows in the

pgbench_branches table. Ten tellers are assigned to each branch resulting in a total of
200 rows in the pgbench_tellers table.

The following initializes the pgbench application in the bank database.

createdb - U enterprisedb bank

CREATE DATABASE

pgbe nch - i - s 20 - U enterprisedb bank

NOTICE: table "pgbench_history" does not exist, skipping

NOTICE: table "pgbench_tellers" does not exist, skippin g

NOTICE: table "pgbench_accounts" does not exist, skipping

NOTICE: table "pgbench_branches" does not exist, skipping

creating tables...

100000 of 2000000 tuples (5%) done (elapsed 0.11 s, remaining 2.10 s)

200000 of 2000000 tuples (10%) done (elapsed 0. 22 s, remaining 1.98 s)

300000 of 2000000 tuples (15%) done (elapsed 0.33 s, remaining 1.84 s)

400000 of 2000000 tuples (20%) done (elapsed 0.42 s, remaining 1.67 s)

500000 of 2000000 tuples (25%) done (elapsed 0.52 s, remaining 1.57 s)

600000 of 2000000 t uples (30%) done (elapsed 0.62 s, remaining 1.45 s)

700000 of 2000000 tuples (35%) done (elapsed 0.73 s, remaining 1.35 s)

800000 of 2000000 tuples (40%) done (elapsed 0.87 s, remaining 1.31 s)

900000 of 2000000 tuples (45%) done (elapsed 0.98 s, remaining 1.19 s)

1000000 of 2000000 tuples (50%) done (elapsed 1.09 s, remaining 1.09 s)

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

105

1100000 of 2000000 tuples (55%) done (elapsed 1.22 s, remaining 1.00 s)

1200000 of 2000000 tuples (60%) done (elapsed 1.36 s, remaining 0.91 s)

1300000 of 2000000 tuples (65%) done (elapsed 1.51 s, remaining 0.82 s)

1400000 of 2000000 tuples (70%) done (elapsed 1.65 s, remaining 0.71 s)

1500000 of 2000000 tuples (75%) done (elapsed 1.78 s, remaining 0.59 s)

1600000 of 2000000 tuples (80%) done (elapsed 1.93 s, remaining 0.48 s)

1700000 of 2000000 tuples (85%) done (elapsed 2.10 s, remaining 0.37 s)

1800000 of 2000000 tuples (90%) done (elapsed 2.23 s, remaining 0.25 s)

1900000 of 2000000 tuples (95%) done (elapsed 2.37 s, remaining 0.12 s)

2000000 of 2000000 tuples (100%) done (elapsed 2.48 s, remaining 0.00 s)

vacuum...

set primary keys...

done.

A total of 500,00 transactions are then processed. This will populate the

pgbench_history table with 500,000 rows.

pgbench - U enterprisedb - t 500000 bank

starting vacuum...end.

transact ion type: <builtin: TPC - B (sort of)>

scaling factor: 20

query mode: simple

number of clients: 1

number of threads: 1

number of transactions per client: 500000

number of transactions actually processed: 500000/500000

latency average: 0.000 ms

tps = 1464.338 375 (including connections establishing)

tps = 1464.350357 (excluding connections establishing)

The table definitions are shown below:

\ d pgbench_accounts

 Table "public.pgbench_accounts"

 Column | Type | Modifiers

---------- +--------------- +-----------

 aid | integer | not null

 bid | integer |

 abalance | integer |

 filler | character(84) |

Indexes:

 "pgbench_accounts_pkey" PRIMARY KEY, btree (aid)

\ d pgbench_branches

 Table "public.pgbench_branches"

 Column | Type | Modifiers

---------- +--------------- +-----------

 bid | integer | not null

 bbalance | integer |

 filler | character(88) |

Indexes:

 "pgbench_branches_pkey" PRIMARY KEY, btree (bid)

\ d pgbench_tellers

 Table "public.pgbench_tellers"

 Column | Type | Modifiers

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

106

---------- +--------------- +-----------

 tid | integer | not null

 bid | integer |

 tbalance | integer |

 filler | character(84) |

Indexes:

 "pgben ch_tellers_pkey" PRIMARY KEY, btree (tid)

\ d pgbench_history

 Table "public.pgbench_history"

 Column | Type | Modifiers

-------- +----------------------------- +-----------

 tid | integer |

 bid | integer |

 aid | integer |

 delta | integer |

 mtime | timestamp without time zone |

 filler | character(22) |

The EXPLAIN command shows the plan selected by the query planner. In the following

example, aid is the primary key column, so an indexed search is used on index,

pgbench_accounts _pkey .

EXPLAIN SELECT * FROM pgbench_ accounts WHERE aid = 100;

 QUERY PLAN

 Index Scan using pgbench_accounts_pkey on pgbench_accounts (cost=0.43..8.45

rows=1 width=97)

 Index Cond: (aid = 100)

(2 rows)

The FULL hint is used to force a full sequential scan instead of using the index as shown
below:

EXPLAIN SELECT /*+ FULL(pgbench_ accounts) */ * FROM pgbench_ accounts WHERE

aid = 100;

 QUERY PLAN

---------- ---

 Seq Scan on pgbench_accounts (cost=0.00..58781.69 rows=1 width=97)

 Filter: (aid = 100)

(2 rows)

The NO_INDEX hint forces a parallel sequential scan instead of use of the index as shown
below:

EXPLAIN SELECT /*+ NO_INDEX(pgbench_ accounts pgbench_ accounts_pkey) */ * FROM

pgbench_ accounts WHERE aid = 100;

 QUERY PLAN

--- --------------------

 Gather (cost=1000.00..45094.80 rows=1 width=97)

 Workers Planned: 2

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

107

 - > Parallel Seq Scan on pgbench_accounts (cost=0.00..44094.70 rows=1

width=97)

 Filter: (aid = 100)

(4 rows)

In addition to using the EXPLAIN command as shown in the prior examples, more

detailed information regarding whether or not a hint was used by the planner can be

obtained by setting the trace_hints configuration parameter as follows:

SET trace_hints TO on ;

The SELECT command with the NO_INDEX hint is repeated below to illustrate the

additional information produced when the trace_hints configuration parameters is set.

EXPLAIN SELECT /*+ NO_INDEX(pgbench_ accounts pgbench_ accounts_pkey) */ * FROM

pgbench_ accounts WHERE aid = 100;

INFO: [HINT S] Index Scan of [pgbench_accounts].[pgbench_accounts_pkey]

rejected due to NO_INDEX hint.

 QUERY PLAN

--- ----

 Gather (cost=1000.00..45094.80 rows=1 width=97)

 Workers Planned: 2

 - > Parallel Seq Scan on pgbench_accounts (cost=0.00..44094.70 rows=1

width=97)

 Filter: (aid = 100)

(4 rows)

Note that if a hint is ignored, the INFO: [HINTS] line will not appear. This may be an

indication that there was a syntax error or some other misspelling in the hint as shown in
the following example where the index name is misspelled.

EXPLAIN SELECT /*+ NO_INDEX(pgbench_ accounts pgbench_ accounts_xxx) */ * FROM

pgbench_ accounts WHERE aid = 100;

 QUERY PLAN

 Index Scan using pgbench_acc ounts_pkey on pgbench_accounts (cost=0.43..8.45

rows=1 width=97)

 Index Cond: (aid = 100)

(2 rows)

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

108

2.4.3 Specifying a Join Order

Include the ORDERED directive to instruct the query optimizer to join tables in the order in

which they are listed in the FROM clause. If you do not include the ORDERED keyword,
the query optimizer will choose the order in which to join the tables.

For example, the following command allows the optimizer to choose the order in which

to join the tables listed in the FROM clause:

SELECT e.ename, d.dname, h.startdate

 FROM emp e, dept d, jobhist h

 WHERE d.deptno = e.deptno

 AND h.empno = e.empno;

The following command instructs the optimizer to join the tables in the ordered specified:

SELECT /*+ ORDERED */ e.ename, d.dname, h.star tdate

 FROM emp e, dept d, jobhist h

 WHERE d.deptno = e.deptno

 AND h.empno = e.empno;

In the ORDERED version of the command, Advanced Server will first join emp e with

dept d before joining the results with jobhist h . Without the ORDERED directive, the
join order is selected by the query optimizer.

Please note: the ORDERED directive does not work for Oracle-style outer joins (those joins
that contain a '+' sign).

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

109

2.4.4 Joining Relations Hints

When two tables are to be joined, there are three possible plans that may be used to
perform the join.

¶ Nested Loop Join ï A table is scanned once for every row in the other joined

table.

¶ Merge Sort Join ï Each table is sorted on the join attributes before the join starts.
The two tables are then scanned in parallel and the matching rows are combined

to form the join rows.

¶ Hash Join ï A table is scanned and its join attributes are loaded into a hash table
using its join attributes as hash keys. The other joined table is then scanned and its

join attributes are used as hash keys to locate the matching rows from the first
table.

The following table lists the optimizer hints that can be used to influence the planner to
use one type of join plan over another.

Table 3-2-3 Join Hints

Hint Description

USE_HASH(table [...]) Use a hash join for table .

NO_USE_HASH(table [...]) Do not use a hash join for table .

USE_MERGE(table [...]) Use a merge sort join for table .

NO_USE_MERGE(table [...]) Do not use a merge sort join for table .

USE_NL(table [...]) Use a nested loop join for table .

NO_USE_NL(table [...]) Do not use a nested loop join for table .

Examples

In the following example, the USE_HASH hint is used for a join on the

pgbench_branches and pgbench_accounts tables. The query plan shows that a hash

join is used by creating a hash table from the join attribute of the pgbench_branches
table.

EXPLAIN SELECT /*+ USE_HASH(b) */ b.bid, a.aid, abalance FROM

pgbench_ branches b, pgbench_ accounts a WHERE b.bid = a.bid;

 QUERY PLAN

 Hash Join (cost=21.45..81463.06 rows=2014215 width=12)

 Hash Cond: (a.bid = b.bid)

 - > Seq Scan on pgbench_accounts a (cost=0.00..53746.15 rows=2014215

width=12)

 - > Hash (cost=21.20..21.20 rows=20 width=4)

 - > Seq Scan on pgbench_branches b (cost=0.00..21.20 rows=20

width=4)

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

110

(5 rows)

Next, the NO_USE_HASH(a b) hint forces the planner to use an approach other than
hash tables. The result is a merge join.

EXPLAIN SELECT /*+ NO_USE_HASH(a b) */ b.bid, a.aid, abalance FROM

pgbench_ branches b, pgbench_ accounts a WHERE b.bid = a.bid;

 QUERY PLAN

 Merge Join (cost=333526.08..368774.94 rows=2014215 width=12)

 Merge Cond: (b.bid = a.bid)

 - > Sort (cost=21.63..21.6 8 rows=20 width=4)

 Sort Key: b.bid

 - > Seq Scan on pgbench_branches b (cost=0.00..21.20 rows=20

width=4)

 - > Materialize (cost=333504.45..343575.53 rows=2014215 width=12)

 - > Sort (cost=333504.45..338539.99 rows=2014215 wid th=12)

 Sort Key: a.bid

 - > Seq Scan on pgbench_accounts a (cost=0.00..53746.15

rows=2014215 width=12)

(9 rows)

Finally, the USE_MERGE hint forces the planner to use a merge join.

EXPLAIN SELECT /*+ USE_MERGE(a) */ b.bid, a.ai d, abalance FROM

pgbench_ branches b, pgbench_ accounts a WHERE b.bid = a.bid;

 QUERY PLAN

----- -------------

 Merge Join (cost=333526.08..368774.94 rows=2014215 width=12)

 Merge Cond: (b.bid = a.bid)

 - > Sort (cost=21.63..21.68 rows=20 width=4)

 Sort Key: b.bid

 - > Seq Scan on pgbench_branches b (cost=0.00..21.20 rows=20

wid th=4)

 - > Materialize (cost=333504.45..343575.53 rows=2014215 width=12)

 - > Sort (cost=333504.45..338539.99 rows=2014215 width=12)

 Sort Key: a.bid

 - > Seq Scan on pgbench_accounts a (cost=0.00..53746.15

rows=201 4215 width=12)

(9 rows)

In this three-table join example, the planner first performs a hash join on the

pgbench_branches and pgbench_history tables, then finally performs a hash join
of the result with the pgbench_accounts table.

EXPLAIN SELECT h.mtime, h. delta, b.bid, a.aid FROM pgbench_ history h, pgbench_ branches

b, pgbench_ accounts a WHERE h.bid = b.bid AND h.aid = a.aid;

 QUERY PLAN

-- ---

-

 Hash Join (cost=86814.29..123103.29 rows=500000 width=20)

 Hash Cond: (h.aid = a.aid)

 - > Hash Join (cost=21.45..15081.45 rows=500000 width=20)

 Hash Cond: (h.bid = b.bid)

 - > Seq Scan o n pgbench_history h (cost=0.00..8185.00 rows=500000 width=20)

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

111

 - > Hash (cost=21.20..21.20 rows=20 width=4)

 - > Seq Scan on pgbench_branches b (cost=0.00..21.20 rows=20 width=4)

 - > Hash (cost=53746.15..53746.15 rows=2014215 w idth=4)

 - > Seq Scan on pgbench_accounts a (cost=0.00..53746.15 rows=2014215 width=4)

(9 rows)

This plan is altered by using hints to force a combination of a merge sort join and a hash
join.

EXPLAIN SELECT /*+ USE_MERGE(h b) USE_HASH(a) */ h.mti me, h.delta, b.bid, a.aid FROM

pgbench_ history h, pgbench_ branches b, pgbench_ accounts a WHERE h.bid = b.bid AND h.aid

= a.aid;

 QUERY PLAN

---------------------------- ---

 Hash Join (cost=152583.39..182562.49 rows=500000 width=20)

 Hash Cond: (h.aid = a.aid)

 - > Merge Join (cost=65790.55..74540.65 rows=500000 width=20)

 Merge Cond: (b.bid = h.bid)

 - > Sort (cost=21.63..21.68 rows=20 width=4)

 Sort Key: b.bid

 - > Seq Scan on pgbench_branches b (cost=0.00..21.20 rows=20 width=4)

 - > Materialize (cost=65768.92..68268.92 rows=500000 width=20)

 - > Sort (cost=65768.92..67018.92 rows=500000 width=20)

 Sort Key: h.bid

 - > Seq Scan on pgbench_history h (cost=0.00..8185.00 rows=500000

width=20)

 - > Hash (cost=53746.15..53746.15 rows=2014215 width=4)

 - > Seq Scan on pgbench_accounts a (cost=0.00..53746.15 rows=2014215 width=4)

(13 rows)

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

112

2.4.5 Global Hints

Thus far, hints have been applied directly to tables that are referenced in the SQL
command. It is also possible to apply hints to tables that appear in a view when the view

is referenced in the SQL command. The hint does not appear in the view, itself, but rather
in the SQL command that references the view.

When specifying a hint that is to apply to a table within a view, the view and table names
are given in dot notation within the hint argument list.

Synopsis

hint (view . table)

Parameters

hint

Any of the hints in Table 3-2-2 or Table 3-2-3.

view

The name of the view containing table .

ta ble

The table on which the hint is to be applied.

Examples

A view named, tx , is created from the three-table join of pgbench_history ,

pgbench_branches , and pgbench_accounts shown in the final example of Section
2.4.4.

CREATE VIEW tx AS SELECT h.mtime, h.delta, b.bid, a.aid FROM pgbench_ history

h, pgbench_ branches b, pgbench_ accounts a WHERE h.bid = b.bid AND h.aid =

a.aid;

The query plan produced by selecting from this view is show below:

EXPLAIN SELECT * FROM tx;

 QUERY PLAN

-

 Hash Join (cost=86814.29..123103.29 rows=500000 width=20)

 Hash Cond: (h.aid = a.aid)

 - > Hash Join (cost=21.45..15081.45 rows=500000 width=20)

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

113

 Hash Cond: (h.bid = b.bid)

 - > Seq Scan on pgbench_history h (cost=0.00..8185.00 rows=500000 width=20)

 - > Hash (cost=21.20..21.20 rows=20 width=4)

 - > Seq Scan on pgbench_branches b (cost=0.00..21.20 rows=20 width=4)

 - > Hash (cost=53746.15..53746.15 rows=2014215 width=4)

 - > Seq Scan on pgbench_accounts a (cost=0.00..53746.15 rows=2014215 width=4)

(9 rows)

The same hints that were applied to this join at the end of Section 2.4.4 can be applied to
the view as follows:

EXPLAIN SELECT /*+ USE_MERGE(tx.h tx.b) USE_HASH(tx.a) */ * FROM tx;

 QUERY PLAN

 Hash Join (cost=152583.39..182562.49 rows=500000 width=20)

 Hash Cond: (h.aid = a.aid)

 - > Merge Join (cost=65790.55..74540.6 5 rows=500000 width=20)

 Merge Cond: (b.bid = h.bid)

 - > Sort (cost=21.63..21.68 rows=20 width=4)

 Sort Key: b.bid

 - > Seq Scan on pgbench_branches b (cost=0.00..21.20 rows=20 width=4)

 - > Materializ e (cost=65768.92..68268.92 rows=500000 width=20)

 - > Sort (cost=65768.92..67018.92 rows=500000 width=20)

 Sort Key: h.bid

 - > Seq Scan on pgbench_history h (cost=0.00..8185.00 rows=500000

width=20)

 - > Hash (cost=53746.15..53746.15 rows=2014215 width=4)

 - > Seq Scan on pgbench_accounts a (cost=0.00..53746.15 rows=2014215 width=4)

(13 rows)

In addition to applying hints to tables within stored views, hints can be applied to tables

within subqueries as illustrated by the following example. In this query on the sample

application emp table, employees and their managers are listed by joining the emp table
with a subquery of the emp table identified by the alias, b.

SELECT a.empno, a.ename, b.empno "mgr empno", b.ename "mgr ename" FROM emp a,

(SELECT * FROM emp) b WHERE a.mgr = b.empno;

 empno | ename | mgr empno | mgr ename

------- +-------- +----------- +-----------

 7369 | SMITH | 7902 | FORD

 7499 | ALLEN | 7698 | BLAKE

 75 21 | WARD | 7698 | BLAKE

 7566 | JONES | 7839 | KING

 7654 | MARTIN | 7698 | BLAKE

 7698 | BLAKE | 7839 | KING

 7782 | CLARK | 7839 | KING

 7788 | SCOTT | 7566 | JONES

 7844 | TURNER | 7698 | BLAKE

 7876 | AD AMS | 7788 | SCOTT

 7900 | JAMES | 7698 | BLAKE

 7902 | FORD | 7566 | JONES

 7934 | MILLER | 7782 | CLARK

(13 rows)

The plan chosen by the query planner is shown below:

EXPLAIN SELECT a.empno, a.ename, b.empno "mgr empno", b.enam e "mgr ename"

FROM emp a, (SELECT * FROM emp) b WHERE a.mgr = b.empno;

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

114

 QUERY PLAN

 Hash Join (cost=1.32..2.64 rows=13 width=22)

 Hash Cond: (a.mgr = emp.empno)

 - > Seq Scan on emp a (cost=0.00..1.14 rows=14 width=16)

 - > Hash (cost=1.14..1.14 rows=14 width=11)

 - > Seq Scan on emp (cost=0.00..1.14 rows=14 width=11)

(5 rows)

A hint can be applied to the emp table within the subquery to perform an index scan on
index, emp_pk, instead of a table scan. Note the difference in the query plans.

EXPLAIN SELECT /*+ INDEX(b.emp emp_pk) */ a.empno, a.ename, b.empno "mgr

empno", b.ename "mgr ename" FROM emp a, (SELECT * FROM emp) b WHERE a.mgr =

b.empno;

 QUERY PLAN

 Merge Join (cost=4.17..13.11 rows=13 width=22)

 Merge Cond: (a.mgr = emp.e mpno)

 - > Sort (cost=1.41..1.44 rows=14 width=16)

 Sort Key: a.mgr

 - > Seq Scan on emp a (cost=0.00..1.14 rows=14 width=16)

 - > Index Scan using emp_pk on emp (cost=0.14..12.35 rows=14 width=11)

(6 rows)

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

115

2.4.6 Using the APPEND Optimiz er Hint

By default, Advanced Server will add new data into the first available free-space in a

table (vacated by vacuumed records). Include the APPEND directive after an INSERT or

SELECT command to instruct the server to bypass mid-table free space, and affix new
rows to the end of the table. This optimizer hint can be particularly useful when bulk
loading data.

The syntax is:

/*+APPEND*/

For example, the following command, compatible with Oracle databases, instructs the

server to append the data in the INS ERT statement to the end of the sales table:

INSERT /*+APPEND*/ INTO sales VALUES

(10, 10, '01 - Mar- 2011', 10, 'OR') ;

Note that Advanced Server supports the APPEND hint when adding multiple rows in a
single INSERT statement:

INSERT /*+APPEND*/ INTO sales VA LUES

(20, 20, '01 - Aug- 2011', 20, 'NY'),

(30, 30, '01 - Feb- 2011', 30, 'FL'),

(40, 40, '01 - Nov- 2011', 40, 'TX');

The APPEND hint can also be included in the SELECT clause of an INSERT INTO
statement:

INSERT INTO sales_history SELECT /*+APPEND*/ FROM sales;

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

116

2.4.7 Parallelism Hints

The PARALLEL optimizer hint is used to force parallel scanning.

The NO_PARALLEL optimizer hint prevents usage of a parallel scan.

Synopsis

PARALLEL (table [parallel_degree | DEFAULT])

NO_PARALLEL (table)

Description

Parallel scanning is the usage of multiple background workers to simultaneously perform
a scan of a table (that is, in parallel) for a given query. This process provides performance
improvement over other methods such as the sequential scan.

Parameters

table

The table to which the parallel hint is to be applied.

parallel _degree | DEFAULT

parallel _degree is a positive integer that specifies the desired number of

workers to use for a parallel scan. If specified, the lesser of parallel _degree

and configuration parameter max_para llel_workers _per_gather is used as
the planned number of workers. For information on the

max_parallel_workers _per_gather parameter, please see Section 18.4.6

Asynchronous Behavior located in Section 18.4 Resource Consumption in
the PostgreSQL core documentation available at:

https://www.postgresql.org/docs/9.6/static/runtime-config-resource.html

If DEFAULT is specified, then the maximum possible parallel degree is used.

If both parallel_degree and DEFAULT are omitted, then the query optimizer

determines the parallel degree. In this case, if table has been set with the

parallel_workers storage parameter, then this value is used as the parallel
degree, otherwise the optimizer uses the maximum possible parallel degree as if

DEFAULT was specified. For information on the parallel_workers storage

https://www.postgresql.org/docs/9.6/static/runtime-config-resource.html

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

117

parameter, please see the Storage Parame ters subsection located under
CREATE TABLE in the PostgreSQL core documentation available at:

https://www.postgresql.org/docs/9.6/static/sql-createtable.html

Regardless of the circumstance, the parallel degree never exceeds the setting of
configuration parameter max_par allel_workers _per_gather .

Examples

The following configuration parameter settings are in effect:

SHOW max_worker_processes;

 max_worker_processes

 8

(1 row)

SHOW max_parallel_workers_per_gather;

 max_parallel_workers_per_gather

 2

(1 row)

The following example shows the default scan on table pgbench_accounts . Note that a
sequential scan is shown in the query plan.

SET trace_hints TO on;

EXPLAIN SELECT * FROM pgbench_accounts;

 QUERY PLAN

 Seq Scan on pgbench_accounts (cost=0.00..53746.15 rows=2014215 width=97)

(1 row)

The following example uses the PARALLEL hint. In the query plan, the Gather node,

which launches the background workers, indicates that two workers are planned to be
used.

Note: If trace_hints is set to on , the INFO: [HINTS] lines appear stating that

PARALLEL has been accepted for pgbench_accou nts as well as other hint information.
For the remaining examples, these lines will not be displayed as they generally show the
same output (that is, trace_hints has been reset to off).

EXPLAIN SELECT /*+ PARALLEL(pgbench_accounts) */ * FROM pgbench_accoun ts;

INFO: [HINTS] SeqScan of [pgbench_accounts] rejected due to PARALLEL hint.

INFO: [HINTS] PARALLEL on [pgbench_accounts] accepted.

INFO: [HINTS] Index Scan of [pgbench_accounts].[pgbench_accounts_pkey]

rejected due to PARALLEL hint.

https://www.postgresql.org/docs/9.6/static/sql-createtable.html

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

118

 QUERY PLAN

 Gather (cost=1000.00..244418.06 rows=2014215 width=97)

 Workers Planned: 2

 - > Parall el Seq Scan on pgbench_accounts (cost=0.00..41996.56

rows=839256 width=97)

(3 rows)

Now, the max_parallel_workers_per_gather setting is increased:

SET max_parallel_workers_per_gather TO 6;

SHOW max_parallel_workers_per_gather;

 max_parallel_workers_per_ gather

 6

(1 row)

The same query on pgbench_accounts is issued again with no parallel degree

specification in the PARALLEL hint. Note that the number of planned workers has
increased to 4 as determined by the optimizer.

EXPLAIN SELECT /*+ PARALLEL(pgbench_accounts) */ * FROM pgbench_accounts;

 QUERY PLAN

 Gather (cost=1000.00..241061.04 rows=2014215 width=97)

 Workers Planned: 4

 - > Parallel Seq Scan on pgbench_accounts (cost=0.00..38639.54

rows=503554 width=97)

(3 rows)

Now, a value of 6 is specified for the parallel degree parameter of the PARALLEL hint.
The planned number of workers is now returned as this specified value:

EXPLAIN SELECT /*+ PARALLEL(pgbench_accounts 6) */ * FROM pgbench_accounts;

 QUERY PLAN

------------ ---

 Gather (cost=1000.00..239382.52 rows=2014215 width=97)

 Workers Planned: 6

 - > Parallel Seq Scan on pgbench_accounts (cost=0.00..36961.03

rows=335702 width=97)

(3 rows)

The same query is now issued with the DEFAULT setting for the parallel degree. The
results indicate that the maximum allowable number of workers is planned.

EXPLAIN SELECT /*+ PARALLEL(pgbench_accounts DEFAULT) */ * FROM

pgbench_accounts;

 QUERY PLAN

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

119

 Gather (cost=1000.00..239382.52 rows=2014215 width=97)

 Workers Planned: 6

 - > Paralle l Seq Scan on pgbench_accounts (cost=0.00..36961.03

rows=335702 width=97)

(3 rows)

Table pgbench_accounts is now altered so that the parallel_workers storage
parameter is set to 3.

Note: This format of the ALTER TABLE command to set the parallel_workers
parameter is not compatible with Oracle databases.

The parallel_workers setting is shown by the PSQL \ d+ command.

ALTER TABLE pgbench_accounts SET (parallel_workers=3);

\ d+ pgbench_accounts

 Table "public.pgbench_accounts"

 Column | Type | Modifiers | Storage | Stats target | Description

---------- +--------------- +----------- +---------- +-------------- +------------

-

 aid | integer | not null | plain | |

 bid | integer | | pl ain | |

 abalance | integer | | plain | |

 filler | character(84) | | extended | |

Indexes:

 "pgbench_accounts_pkey" PRIMARY KEY, btree (aid)

Options: fillfactor=100, parallel_w orkers=3

Now, when the PARALLEL hint is given with no parallel degree, the resulting number of

planned workers is the value from the parallel_workers parameter:

EXPLAIN SELECT /*+ PARALLEL(pgbench_accounts) */ * FROM pgbench_accounts;

 QUERY PLAN

 Gather (cost=1000.00..242522.97 rows=2014215 width=97)

 Workers Planned: 3

 - > Parallel S eq Scan on pgbench_accounts (cost=0.00..40101.47

rows=649747 width=97)

(3 rows)

Specifying a parallel degree value or DEFAULT in the PARALLEL hint overrides the

parallel_workers setting.

The following example shows the NO_PARALLEL hint. Note that with tra ce_hints set

to on , the INFO: [HINTS] message states that the parallel scan was rejected due to the
NO_PARALLEL hint.

EXPLAIN SELECT /*+ NO_PARALLEL(pgbench_accounts) */ * FROM pgbench_accounts;

INFO: [HINTS] Parallel SeqScan of [pgbench_accounts] rejecte d due to

NO_PARALLEL hint.

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

120

 QUERY PLAN

 Seq Scan on pgbench_accounts (cost=0.00..53746.15 rows=2014215 width=97)

(1 row)

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

121

2.4.8 Conflicting Hints

If a command includes two or more conflicting hints, the server will ignore the
contradictory hints. The following table lists hints that are contradictory to each other.

Table 3-2-4 Conflicting Hints

Hint Conflicting Hint

ALL_ROWS FIRST_ROWS - all formats

FULL(table)
INDEX(table [index])

PARALLEL(table [degree])

INDEX(table)

FULL(table)

NO_INDEX(table)

PARALLEL(table [degree])

INDEX(table index)

FULL(table)

NO_INDEX(table i ndex)

PARALLEL(table [degree])

PARALLEL(table [degree])

FULL(table)

INDEX(table)

NO_PARALLEL(table)

USE_HASH(table) NO_USE_HASH(table)

USE_MERGE(table) NO_USE_MERGE(table)

USE_NL(table) NO_USE_NL(table)

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

122

3 Stored Procedure Language

This chapter describes the Stored Procedure Language (SPL). SPL is a highly

productive, procedural programming language for writing custom procedures, functions,
triggers, and packages for Advanced Server that provides:

¶ full procedural programming functionality to complement the SQL language

¶ a single, common language to create stored procedures, functions, triggers, and

packages for the Advanced Server database

¶ a seamless development and testing environment

¶ the use of reusable code
¶ ease of use

This chapter describes the basic elements of an SPL program, before providing an

overview of the organization of an SPL program and how it is used to create a procedure
or a function. Triggers, while still utilizing SPL, are sufficiently different to warrant a
separate discussion (see Section 4 for information about triggers). Packages are discussed

in the Database Compatibility for Oracle Developers Built-in Package Guide available
at:

http://www.enterprisedb.com/products-services-training/products/documentation

The remaining sections of this chapter delve into the details of the SPL language and
provide examples of its application.

3.1 Basic SPL Elements

This section discusses the basic programming elements of an SPL program.

3.1.1 Character Set

SPL programs are written using the following set of characters:

¶ Uppercase letters A thru Z and lowercase letters a thru z

¶ Digits 0 thru 9

¶ Symbols () + - * / < > = ! ~ ̂ ; : . ' @ % , " # $ & _ | { } ? []
¶ White space characters tabs, spaces, and carriage returns

Identifiers, expressions, statements, control structures, etc. that comprise the SPL
language are written using these characters.

http://www.enterprisedb.com/products-services-training/products/documentation

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

123

Note: The data that can be manipulated by an SPL program is determined by the
character set supported by the database encoding.

3.1.2 Case Sensitivity

Keywords and user-defined identifiers that are used in an SPL program are case

insensitive. So for example, the statement DBMS_OUTPUT.PUT_LINE('Hello

World'); is interpreted to mean the same thing as dbms_output.put_line('Hello

World'); or Dbms_Output.Put_Line('Hello World'); or
DBMS_output.Put_line('Hello World'); .

Character and string constants, however, are case sensitive as well as any data retrieved
from the Advanced Server database or data obtained from other external sources. The

statement DBMS_OUTPUT.PUT_LINE('Hello World!'); produces the following
output:

Hello World!

However the statement DBMS_OUTPUT.PUT_LINE('HELLO WORLD!'); produces the
output:

HELLO WORLD!

3.1.3 Identifiers

Identifiers are user-defined names that are used to identify various elements of an SPL

program including variables, cursors, labels, programs, and parameters. The syntax rules
for valid identifiers are the same as for identifiers in the SQL language.

An identifier must not be the same as an SPL keyword or a keyword of the SQL
language. The following are some examples of valid identifiers:

x

last___name

a_$_Sign

Many$$$$$$$$signs_____

THIS_IS_AN_EXTREMELY_LONG_NAME

A1

3.1.4 Qualifiers

A qualifier is a name that specifies the owner or context of an entity that is the object of

the qualification. A qualified object is specified as the qualifier name followed by a dot
with no intervening white space, followed by the name of the object being qualified with
no intervening white space. This syntax is called dot notation.

The following is the syntax of a qualified object.

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

124

qualifier . [qualifier .]... object

qualifier is the name of the owner of the object. object is the name of the entity

belonging to qualifier . It is possible to have a chain of qualifications where the
preceding qualifier owns the entity identified by the subsequent qualifier(s) and object.

Almost any identifier can be qualified. What an identifier is qualified by depends upon
what the identifier represents and the context of its usage.

Some examples of qualification follow:

¶ Procedure and function names qualified by the schema to which they belong -
e.g., schema_name. procedure_name (...)

¶ Trigger names qualified by the schema to which they belong - e.g.,
schema_name . trigger_name

¶ Column names qualified by the table to which they belong - e.g., emp.empno

¶ Table names qualified by the schema to which they belong - e.g., public.emp

¶ Column names qualified by table and schema - e.g., public.emp.empno

As a general rule, wherever a name appears in the syntax of an SPL statement, its

qualified name can be used as well. Typically a qualified name would only be used if
there is some ambiguity associated with the name. For example, if two procedures with
the same name belonging to two different schemas are invoked from within a program or
if the same name is used for a table column and SPL variable within the same program.

You should avoid using qualified names if at all possible. In this chapter, the following
conventions are adopted to avoid naming conflicts:

¶ All variables declared in the declaration section of an SPL program are prefixed

by v_ . E.g., v_empno

¶ All formal parameters declared in a procedure or function definition are prefixed

by p_ . E.g., p_empno

¶ Column names and table names do not have any special prefix conventions. E.g.,

column empno in table emp

3.1.5 Constants

Constants or literals are fixed values that can be used in SPL programs to represent

values of various types - e.g., numbers, strings, dates, etc. Constants come in the
following types:

¶ Numeric (Integer and Real)

¶ Character and String

¶ Date/time

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

125

3.1.6 User-Defined PL/SQL Subtypes

Advanced Server supports user-defined PL/SQL subtypes and (subtype) aliases. A
subtype is a data type with an optional set of constraints that restrict the values that can

be stored in a column of that type. The rules that apply to the type on which the subtype
is based are still enforced, but you can use additional constraints to place limits on the
precision or scale of values stored in the type.

You can define a subtype in the declaration of a PL function, procedure, anonymous
block or package. The syntax is:

SUBTYPE subtype _name IS type _name[(constraint)] [NOT NULL]

Where constraint is:

{ precision [, scale]} | length

Where:

subtype _name

subtype _name specifies the name of the subtype.

type _name

type _name specifies the name of the original type on which the subtype is based.

type_name may be:

¶ The name of any of the type supported by Advanced Server.

¶ The name of any composite type.

¶ A column anchored by a %TYPE operator.

¶ The name of another subtype.

Include the constraint clause to define restrictions for types that support precision or

scale.

precision

precision specifies the total number of digits permitted in a value of the
subtype.

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

126

scale

scale specifies the number of fractional digits permitted in a value of the
subtype.

length

length specifies the total length permitted in a value of CHARACTER, VARCHAR,

or TEXT base types

Include the NOT NULL clause to specify that NULL values may not be stored in a column
of the specified subtype.

Note that a subtype that is based on a column will inherit the column size constraints, but
the subtype will not inherit NOT NULL or CHECK constraints.

Unconstrained Subtypes

To create an unconstrained subtype, use the SUBTYPE command to specify the new
subtype name and the name of the type on which the subtype is based. For example, the

following command creates a subtype named address that has all of the attributes of the
type, CHAR:

SUBTYPE address IS CHAR;

You can also create a subtype (constrained or unconstrained) that is a subtype of another
subtype:

SUBTYPE cust_address IS address NOT NULL ;

This command creates a subtype named cust _address that shares all of the attributes

of the address subtype. Include the NOT NULL clause to specify that a value of the
cust _address may not be NULL.

Constrained Subtypes

Include a length value when creating a subtype that is based on a character type to
define the maximum length of the subtype. For example:

SUBTYPE acct_name IS VARCHAR (15);

This example creates a subtype named acct _name that is based on a VARCHAR data type,
but is limited to 15 characters in length.

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

127

Include values for precision (to specify the maximum number of digits in a value of

the subtype) and optionally, scale (to specify the number of digits to the right of the
decimal point) when constraining a numeric base type. For example:

SUBTYPE acct_balance IS NUMBER (5 , 2);

This example creates a subtype named acct_balance that shares all of the attributes of

a NUMBER type, but that may not exceed 3 digits to the left of the decimal point and 2
digits to the right of the decimal.

An argument declaration (in a function or procedure header) is a formal argument. The
value passed to a function or procedure is an actual argument. When invoking a function

or procedure, the caller provides (0 or more) actual arguments. Each actual argument is
assigned to a formal argument that holds the value within the body of the function or
procedure.

If a formal argument is declared as a constrained subtype:

¶ Advanced Server does not enforce subtype constraints when assigning an actual
argument to a formal argument when invoking a function.

¶ Advanced Server enforces subtype constraints when assigning an actual argument
to a formal argument when invoking a procedure.

Using the % TYPE Operator

You can use %TYPE notation to declare a subtype anchored to a column. For example:

SUBTYPE emp_type IS emp.empno%TYPE

This command creates a subtype named emp_type whose base type matches the type of

the empno column in the emp table. A subtype that is based on a column will share the
column size constraints; NOT NULL and CHECK constraints are not inherited.

Subtype Conversion

Unconstrained subtypes are aliases for the type on which they are based. Any variable of
type subtype (unconstrained) is interchangeable with a variable of the base type without
conversion, and vice versa.

A variable of a constrained subtype may be interchanged with a variable of the base type
without conversion, but a variable of the base type may only be interchanged with a
constrained subtype if it complies with the constraints of the subtype. A variable of a

constrained subtype may be implicitly converted to another subtype if it is based on the
same subtype, and the constraint values are within the values of the subtype to which it is
being converted.

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

128

3.2 SPL Programs

SPL is a procedural, block-structured language. There are four different types of

programs that can be created using SPL, namely procedures, functions, triggers, and
packages.

In addition, SPL is used to create subprograms. A subprogram refers to a subprocedure
or a subfunction, which are nearly identical in appearance to procedures and functions,

but differ in that procedures and functions are standalone programs, which are
individually stored in the database and can be invoked by other SPL programs or from

PSQL. Subprograms can only be invoked from within the standalone program within
which they have been created.

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

129

3.2.1 SPL Block Structure

Regardless of whether the program is a procedure, function, subprogram, or trigger, an
SPL program has the same block structure. A block consists of up to three sections - an

optional declaration section, a mandatory executable section, and an optional exception
section. Minimally, a block has an executable section that consists of one or more SPL

statements within the keywords, BEGIN and END.

The optional declaration section is used to declare variables, cursors, types, and

subprograms that are used by the statements within the executable and exception

sections. Declarations appear just prior to the BEGIN keyword of the executable section.
Depending upon the context of where the block is used, the declaration section may begin
with the keyword DECLARE.

You can include an exception section within the BEGIN - END block. The exception

section begins with the keyword, EXCEPTION, and continues until the end of the block in
which it appears. If an exception is thrown by a statement within the block, program

control goes to the exception section where the thrown exception may or may not be
handled depending upon the exception and the contents of the exception section.

The following is the general structure of a block:

[[DECLARE]
 declarations]

 BEGIN

 statements

 [EXCEPTION

 WHEN exception_condition THEN

 statements [, ...]]

 END;

declarations are one or more variable, cursor, type, or subprogram declarations that

are local to the block. If subprogram declarations are included, they must be declared
after all other variable, cursor, and type declarations. Each declaration must be terminated

by a semicolon. The use of the keyword DECLARE depends upon the context in which the
block appears.

statements are one or more SPL statements. Each statement must be terminated by a

semicolon. The end of the block denoted by the keyword END must also be terminated by
a semicolon.

If present, the keyword EXCEPTION marks the beginning of the exception section.
exception_condition is a conditional expression testing for one or more types of

exceptions. If a thrown exception matches one of the exceptions in
exception_condition , the statements following the WHEN

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

130

exception_condition clause are executed. There may be one or more WHEN
exception_condition clauses, each followed by statements .

Note: A BEGIN/END block in itself, is considered a statement; thus, blocks may be
nested. The exception section may also contain nested blocks.

The following is the simplest possible block consisting of the NULL statement within the
executable section. The NULL statement is an executable statement that does nothing.

BEGIN

 NULL;

END;

The following block contains a declaration section as well as the executable section.

DECLARE

 v_numerator NUMBER(2);

 v_denominator NUMBER(2);

 v_result NUMBER(5,2);

BEGIN

 v_numerator := 75;

 v_denominator := 14;

 v_result := v_numerator / v_denominator;

 DBMS_OUTPUT.PUT_LINE(v_numerator || ' divided by ' || v_denominator ||

 ' is ' || v_result);

END;

In this example, three numeric variables are declared of data type NUMBER. In the

executable section, values are assigned to two of the variables and then one number is
divided by the other, storing the results in a third variable which is then displayed. If
executed, the output would be:

75 divided by 14 is 5.36

The following block consists of a declaration, an executable, and an exception:

DECLARE

 v_numerator NUMBER(2);

 v_denominator N UMBER(2);

 v_result NUMBER(5,2);

BEGIN

 v_numerator := 75;

 v_denominator := 0;

 v_result := v_numerator / v_denominator;

 DBMS_OUTPUT.PUT_LINE(v_numerator || ' divided by ' || v_denominator ||

 ' is ' || v_result);

EXCEPTION

 WHEN OTHERS THEN

 DBMS_OUTPUT.PUT_LINE('An exception occurred');

END;

The following output shows that the statement within the exception section is executed as
a result of the division by zero.

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

131

An exception occurred

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

132

3.2.2 Anonymous Blocks

Blocks are typically written as part of a procedure, function, subprogram, or trigger.

Procedure, function, and trigger programs are named and stored in the database for re-
use. For quick (one-time) execution (such as testing), you can simply enter the block
without providing a name or storing it in the database.

A block of this type is called an anonymous block. An anonymous block is unnamed and

is not stored in the database. Once the block has been executed and erased from the
application buffer, it cannot be re-executed unless the block code is re-entered into the
application.

Typically, the same block of code will be re-executed many times. In order to run a block

of code repeatedly without the necessity of re-entering the code each time, with some
simple modifications, an anonymous block can be turned into a procedure or function.

The following sections discuss how to create a procedure or function that can be stored in
the database and invoked repeatedly by another procedure, function, or application
program.

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

133

3.2.3 Procedures Overview

Procedures are standalone SPL programs that are invoked or called as an individual SPL
program statement. When called, procedures may optionally receive values from the

caller in the form of input parameters and optionally return values to the caller in the
form of output parameters.

3.2.3.1 Creating a Procedure

The CREATE PROCEDURE command defines and names a standalone procedure that will
be stored in the database.

CREATE [OR REPLACE] PROCEDURE name [(parameters)]

 [

 IMMUTABLE

 | STABLE

 | VOLATILE

 | DETERMINISTIC

 | [NOT] LEAKPROOF

 | CALLED ON NULL INPUT

 | RETURNS NULL ON NULL INPUT

 | STRICT

 | [EXTERNAL] SECURITY INVOKER

 | [EXTERNAL] SECURITY DEFI NER

 | AUTHID DEFINER

 | AUTHID CURRENT_USER

 | PARALLEL { UNSAFE | RESTRICTED | SAFE }

 | COST execution _cost

 | ROWS result _rows

 | SET configuration _parameter

 { TO value | = value | FROM CURRENT }

 ...]

{ IS | AS }

 [declarations]

 BEGIN

 statements

 END [name];

Where:

name

name is the identifier of the procedure. If you specify the [OR REPLACE] clause

and a procedure with the same name already exists in the schema, the new

procedure will replace the existing one. If you do not specify [OR REPLACE] ,
the new procedure will not replace the existing procedure with the same name in
the same schema.

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

134

parameters

parameters is a list of formal parameters.

declarations

declarations are variable, cursor, type, or subprogram declarations. If

subprogram declarations are included, they must be declared after all other
variable, cursor, and type declarations.

statements

statements are SPL program statements (the BEGIN - END block may contain

an EXCEPTION section).

IMMUTABLE

STABLE

VOLATILE

These attributes inform the query optimizer about the behavior of the procedure;

you can specify only one choice. VOLATILE is the default behavior.

IMMUTABLE indicates that the procedure cannot modify the database and always
reaches the same result when given the same argument values; it does not do

database lookups or otherwise use information not directly present in its argument
list. If you include this clause, any call of the procedure with all-constant
arguments can be immediately replaced with the procedure value.

STABLE indicates that the procedure cannot modify the database, and that within a

single table scan, it will consistently return the same result for the same argument
values, but that its result could change across SQL statements. This is the
appropriate selection for procedures that depend on database lookups, parameter
variables (such as the current time zone), etc.

VOLATILE indicates that the procedure value can change even within a single
table scan, so no optimizations can be made. Please note that any function that
has side-effects must be classified volatile, even if its result is quite predictable, to
prevent calls from being optimized away.

DETERMINISTIC

DETERMINISTIC is a synonym for IMMUTABLE. A DETERMINISTIC

procedure cannot modify the database and always reaches the same result when
given the same argument values; it does not do database lookups or otherwise use

information not directly present in its argument list. If you include this clause,
any call of the procedure with all-constant arguments can be immediately
replaced with the procedure value.

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

135

[NOT] LEAKPROOF

A LEAKPROOK procedure has no side effects, and reveals no information about the
values used to call the procedure.

CALLED ON NULL INPUT

RETURNS NULL ON NULL INPUT

STRICT

CALLED ON NULL INPUT (the default) indicates that the procedure will be called

normally when some of its arguments are NULL. It is the author's responsibility to
check for NULL values if necessary and respond appropriately.

RETURNS NULL ON NULL INPUT or STRICT indicates that the procedure always

returns NULL whenever any of its arguments are NULL. If these clauses are

specified, the procedure is not executed when there are NULL arguments; instead a
NULL result is assumed automatically.

[EXTERNAL] SECURITY DEFINER

SECURITY DEFINER specifies that the procedure will execute with the privileges

of the user that created it; this is the default. The key word EXTERNAL is allowed
for SQL conformance, but is optional.

[EXTERNAL] SECURITY INVOKER

The SECURITY INVOKER clause indicates that the procedure will execute with the

privileges of the user that calls it. The key word EXTERNAL is allowed for SQL
conformance, but is optional.

AUTHID DEFIN ER

AUTHID CURRENT_USER

The AUTHID DEFINER clause is a synonym for [EXTERNAL] SECURITY

DEFINER. If the AUTHID clause is omitted or if AUTHID DEFINER is specified,
the rights of the procedure owner are used to determine access privileges to
database objects.

The AUTHID CURRENT_USER clause is a synonym for [EXTERNAL] SECURITY

INVOKER. If AUTHID CURRENT_USER is specified, the rights of the current user
executing the procedure are used to determine access privileges.

PARALLEL { UNSAFE | RESTRICTED | SAFE }

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

136

The PARALLEL clause enables the use of parallel sequential scans (parallel mode).
A parallel sequential scan uses multiple workers to scan a relation in parallel
during a query in contrast to a serial sequential scan.

When set to UNSAFE, the procedure cannot be executed in parallel mode. The

presence of such a procedure forces a serial execution plan. This is the default
setting if the PARALLEL clause is omitted.

When set to RESTRICTED, the procedure can be executed in parallel mode, but
the execution is restricted to the parallel group leader. If the qualification for any
particular relation has anything that is parallel restricted, that relation won't be
chosen for parallelism.

When set to SAFE, the procedure can be executed in parallel mode with no
restriction.

COST execution _cost

execution _cost is a positive number giving the estimated execution cost for

the procedure, in units of cpu _operator _cost . If the procedure returns a set,
this is the cost per returned row. Larger values cause the planner to try to avoid
evaluating the function more often than necessary.

ROWS result _rows

result _rows is a positive number giving the estimated number of rows that the

planner should expect the procedure to return. This is only allowed when the
procedure is declared to return a set. The default assumption is 1000 rows.

SET configuration _parameter { TO value | = value | FROM CURRENT }

The SET clause causes the specified configuration parameter to be set to the
specified value when the procedure is entered, and then restored to its prior value

when the procedure exits. SET FROM CURRENT saves the session's current value
of the parameter as the value to be applied when the procedure is entered.

If a SET clause is attached to a procedure, then the effects of a SET LOCAL
command executed inside the procedure for the same variable are restricted to the
procedure; the configuration parameter's prior value is restored at procedure exit.

An ordinary SET command (without LOCAL) overrides the SET clause, much as it

would do for a previous SET LOCAL command, with the effects of such a
command persisting after procedure exit, unless the current transaction is rolled
back.

Please Note: The STRICT, LEAKPROOF, PARALLEL, COST, ROWS and SET keywords
provide extended functionality for Advanced Server and are not supported by Oracle.

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

137

Example

The following is an example of a simple procedure that takes no parameters.

CREATE OR REPLACE PROCEDURE simple_procedure

IS

BEGIN

 DBMS_OUTPUT.PUT_LINE('That''s all folks!');

END simple_procedure;

The procedure is stored in the database by entering the procedure code in Advanced
Server.

The following example demonstrates using the AUTHID DEFINER and SET clauses in a

procedure declaration. The update _salary procedure conveys the privileges of the
role that defined the procedure to the role that is calling the procedure (while the
procedure executes):

CREATE OR REPLACE PROCEDURE update_salary(id INT, new_salary NUMBER)

 SET SEARCH_PATH = 'public' SET WORK_MEM = '1MB'

 AUTHID DEFINER IS

BEGIN

 UPDATE emp SET salary = new_salary WHERE emp_id = id;

END;

Include the SET clause to set the procedure's search path to public and the work

memory to 1MB. Other procedures, functions and objects will not be affected by these
settings.

In this example, the AUTHID DEFINER clause temporarily grants privileges to a role that
might otherwise not be allowed to execute the statements within the procedure. To
instruct the server to use the privileges associated with the role invoking the procedure,

replace the AUTHID DEFINER clause with the AUTHID CURRENT_USER clause.

3.2.3.2 Calling a Procedure

A procedure can be invoked from another SPL program by simply specifying the
procedure name followed by its parameters, if any, followed by a semicolon.

name [([parameters])];

Where:

name is the identifier of the procedure.

parameters is a list of actual parameters.

Note: If there are no actual parameters to be passed, the procedure may be called with an
empty parameter list, or the opening and closing parenthesis may be omitted entirely.

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

138

Note: The syntax for calling a procedure is the same as in the preceding syntax diagram

when executing it with the EXEC command in PSQL or EDB*Plus. See the Database
Compatibility for Oracle Developers Tools and Utilities Guide for information about the

EXEC command.

The following is an example of calling the procedure from an anonymous block:

BEGIN

 simple_procedure;

END;

That's all folks!

Note: Each application has its own unique way to call a procedure. For example, in a
Java application, the application programming interface, JDBC, is used.

3.2.3.3 Deleting a Procedure

A procedure can be deleted from the database using the DROP PROCEDURE command.

DROP PROCEDURE name;

Where name is the name of the procedure to be dropped.

The previously created procedure is dropped in this example:

DROP PROCEDURE simple_procedure;

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

139

3.2.4 Functions Overview

Functions are standalone SPL programs that are invoked as expressions. When evaluated,

a function returns a value that is substituted in the expression in which the function is
embedded. Functions may optionally take values from the calling program in the form of
input parameters. In addition to the fact that the function, itself, returns a value, a

function may optionally return additional values to the caller in the form of output
parameters. The use of output parameters in functions, however, is not an encouraged
programming practice.

3.2.4.1 Creating a Function

The CREATE FUNCTION command defines and names a standalone function that will be
stored in the database.

CREATE [OR REPLACE] FUNCTION name [(parameters)]

 RETURN data_type

 [

 IMMUTABLE

 | STABLE

 | VOLATILE

 | DETERMINISTIC

 | [NOT] LEAKPROOF

 | CALLED ON NULL INPUT

 | RETURNS NULL ON NULL INPUT

 | STRICT

 | [EXTERNAL] SECURITY INVOKER

 | [EXTERNAL] SECURITY DEFINER

 | AUTHID DEFINER

 | AUTHID CURRENT_USER

 | PARALLEL { UNSAFE | RESTRICTED | SAFE }

 | COST execution _cost

 | ROWS result _rows

 | SET configuration _parameter

 { TO value | = value | FROM CURRENT }

 ...]

{ IS | AS }

 [declarations]

 BEGIN

 statements

 END [name];

Where:

name

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

140

name is the identifier of the function. If you specify the [OR REPLACE] clause

and a function with the same name already exists in the schema, the new function

will replace the existing one. If you do not specify [OR REPLACE] , the new

function will not replace the existing function with the same name in the same
schema.

paramete rs

parameters is a list of formal parameters.

data_type

data_type is the data type of the value returned by the functionôs RETURN
statement.

declarations

declarations are variable, cursor, type, or subprogram declarations. If

subprogram declarations are included, they must be declared after all other
variable, cursor, and type declarations.

statements

statements are SPL program statements (the BEGIN - END block may contain

an EXCEPTION section).

IMMUTABLE

STABLE

VOLATILE

These attributes inform the query optimizer about the behavior of the function;

you can specify only one choice. VOLATILE is the default behavior.

IMMUTABLE indicates that the function cannot modify the database and always
reaches the same result when given the same argument values; it does not do
database lookups or otherwise use information not directly present in its argument

list. If you include this clause, any call of the function with all-constant
arguments can be immediately replaced with the function value.

STABLE indicates that the function cannot modify the database, and that within a
single table scan, it will consistently return the same result for the same argument
values, but that its result could change across SQL statements. This is the

appropriate selection for function that depend on database lookups, parameter
variables (such as the current time zone), etc.

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

141

VOLATILE indicates that the function value can change even within a single table
scan, so no optimizations can be made. Please note that any function that has
side-effects must be classified volatile, even if its result is quite predictable, to
prevent calls from being optimized away.

DETERMINISTIC

DETERMINISTIC is a synonym for IMMUTABLE. A DETERMINISTIC function
cannot modify the database and always reaches the same result when given the

same argument values; it does not do database lookups or otherwise use
information not directly present in its argument list. If you include this clause,

any call of the function with all-constant arguments can be immediately replaced
with the function value.

 [NOT] LEAKPROOF

A LEAKPROOK function has no side effects, and reveals no information about the
values used to call the function.

CALLED ON NULL INPUT

RETURNS NULL ON NULL INPUT

STRICT

CALLED ON NULL INPUT (the default) indicates that the procedure will be called

normally when some of its arguments are NULL. It is the author's responsibility to
check for NULL values if necessary and respond appropriately.

RETURNS NULL ON NULL INPUT or STRICT indicates that the procedure always

returns NULL whenever any of its arguments are NULL. If these clauses are

specified, the procedure is not executed when there are NULL arguments; instead a
NULL result is assumed automatically.

[EXTERNAL] SECURITY DEFINER

SECURITY DEFINER specifies that the function will execute with the privileges of

the user that created it; this is the default. The key word EXTERNAL is allowed for
SQL conformance, but is optional.

[EXTERNAL] SECURITY INVOKER

The SECURITY INVOKER clause indicates that the function will execute with the

privileges of the user that calls it. The key word EXTERNAL is allowed for SQL
conformance, but is optional.

AUTHID DEFINER

AUTHID CURRENT_USER

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

142

The AUTHID DEFINER clause is a synonym for [EXTERNAL] SECURITY

DEFINER. If the AUTHID clause is omitted or if AUTHID DEFINER is specified,
the rights of the function owner are used to determine access privileges to
database objects.

The AUTHID CURRENT_USER clause is a synonym for [EXTERNAL] SECURITY

INVOKER. If AUTHID CURRENT_USER is specified, the rights of the current user
executing the function are used to determine access privileges.

PARALLEL { UNSAFE | RESTRICTED | SAFE }

The PARALLEL clause enables the use of parallel sequential scans (parallel mode).
A parallel sequential scan uses multiple workers to scan a relation in parallel
during a query in contrast to a serial sequential scan.

When set to UNSAFE, the function cannot be executed in parallel mode. The
presence of such a function in a SQL statement forces a serial execution plan.
This is the default setting if the PARALLEL clause is omitted.

When set to RESTRICTED, the function can be executed in parallel mode, but the
execution is restricted to the parallel group leader. If the qualification for any
particular relation has anything that is parallel restricted, that relation won't be
chosen for parallelism.

When set to SAFE, the function can be executed in parallel mode with no
restriction.

COST execution _cost

execution _cost is a positive number giving the estimated execution cost for

the function, in units of cpu _operator _cost . If the function returns a set, this

is the cost per returned row. Larger values cause the planner to try to avoid
evaluating the function more often than necessary.

ROWS result _rows

result _rows is a positive number giving the estimated number of rows that the

planner should expect the function to return. This is only allowed when the
function is declared to return a set. The default assumption is 1000 rows.

SET configuration _parameter { TO value | = value | FROM CURRENT }

The SET clause causes the specified configuration parameter to be set to the

specified value when the function is entered, and then restored to its prior value

when the function exits. SET FROM CURRENT saves the session's current value of
the parameter as the value to be applied when the function is entered.

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

143

If a SET clause is attached to a function, then the effects of a SET LOCAL
command executed inside the function for the same variable are restricted to the
function; the configuration parameter's prior value is restored at function exit. An

ordinary SET command (without LOCAL) overrides the SET clause, much as it

would do for a previous SET LOCAL command, with the effects of such a
command persisting after procedure exit, unless the current transaction is rolled
back.

Please Note: The STRICT, LEAKPROOF, PARALLEL, COST, ROWS and SET keywords
provide extended functionality for Advanced Server and are not supported by Oracle.

Examples

The following is an example of a simple function that takes no parameters.

CREATE OR REPLACE FUNCTION simple_function

 RETURN VARCHAR2

IS

BEGIN

 RETURN 'That''s All Folks!';

END simple_function;

The following function takes two input parameters. Parameters are discussed in more
detail in subsequent sections.

CREATE OR REPLACE FUNCTION emp_comp (

 p_sal NUMBER,

 p_comm NUMBER

) RETURN NUMBER

IS

BEGIN

 RETURN (p_sal + NVL(p_comm, 0)) * 24;

END emp_comp;

The following example demonstrates using the AUTHID CURRENT_USER clause and

STRICT keyword in a function declaration:

CREATE OR REPLACE FUNCTION dept_salaries(dept_id int) RETURN NUMBER

 STRICT

 AUTHID CURRENT_USER

BEGIN

 RETURN QUERY (SELECT sum(salary) FROM emp WHERE deptno = id);

END;

Include the STRICT keyword to instruct the server to return NULL if any input parameter

passed is NULL; if a NULL value is passed, the function will not execute.

The dept _salar ies function executes with the privileges of the role that is calling the

function. If the current user does not have sufficient privileges to perform the SELECT

statement querying the emp table (to display employee salaries), the function will report
an error. To instruct the server to use the privileges associated with the role that defined

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

144

the function, replace the AUTHID CURRENT_USER clause with the AUTHID DEFINER
clause.

3.2.4.2 Calling a Function

A function can be used anywhere an expression can appear within an SPL statement. A

function is invoked by simply specifying its name followed by its parameters enclosed in
parenthesis, if any.

name [([parameters])]

name is the name of the function. parameters is a list of actual parameters.

Note: If there are no actual parameters to be passed, the function may be called with an
empty parameter list, or the opening and closing parenthesis may be omitted entirely.

The following shows how the function can be called from another SPL program.

BEGIN

 DBMS_OUTPUT.PUT_LINE(simple_function);

END;

That's All Folks!

A function is typically used within a SQL statement as shown in the following.

SELECT empno "EMPNO", ename "ENAME", sal "SAL", comm "COMM",

 emp_comp(sal, comm) "YEARLY COMPENSATION" FROM emp;

 EMPNO | ENAME | SAL | COMM | YEARLY COMPENSATION

------- +-------- +--------- +--------- +----------------- ----

 7369 | SMITH | 800.00 | | 19200.00

 7499 | ALLEN | 1600.00 | 300.00 | 45600.00

 7521 | WARD | 1250.00 | 500.00 | 42000.00

 7566 | JONES | 2975.00 | | 71400.00

 7654 | MARTIN | 1 250.00 | 1400.00 | 63600.00

 7698 | BLAKE | 2850.00 | | 68400.00

 7782 | CLARK | 2450.00 | | 58800.00

 7788 | SCOTT | 3000.00 | | 72000.00

 7839 | KING | 5000.00 | | 120000.00

 7844 | TURNER | 1500.00 | 0.00 | 36000.00

 7876 | ADAMS | 1100.00 | | 26400.00

 7900 | JAMES | 950.00 | | 22800.00

 7902 | FORD | 3000.00 | | 72000.00

 7934 | MILLER | 1300.00 | | 31200.00

(14 rows)

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

145

3.2.4.3 Deleting a Function

A function can be deleted from the database using the DROP FUNCTION command.

DROP FUNCTION name [(parameters)];

Where name is the name of the function to be dropped.

Note: The specification of the parameter list is required in Advanced Server under certain
circumstances. Oracle requires that the parameter list always be omitted.

The previously created function is dropped in this example:

DROP FUNCTION simple_function;

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

146

3.2.5 Pro cedure and Function Parameters

An important aspect of using procedures and functions is the capability to pass data from
the calling program to the procedure or function and to receive data back from the
procedure or function. This is accomplished by using parameters.

Parameters are declared in the procedure or function definition, enclosed within
parenthesis following the procedure or function name. Parameters declared in the
procedure or function definition are known as formal parameters. When the procedure or

function is invoked, the calling program supplies the actual data that is to be used in the
called programôs processing as well as the variables that are to receive the results of the

called programôs processing. The data and variables supplied by the calling program
when the procedure or function is called are referred to as the actual parameters.

The following is the general format of a formal parameter declaration.

(name [IN | OUT | IN OUT] data_type [DEFAULT value])

name is an identifier assigned to the formal parameter. If specified, IN defines the

parameter for receiving input data into the procedure or function. An IN parameter can

also be initialized to a default value. If specified, OUT defines the parameter for returning

data from the procedure or function. If specified, IN OUT allows the parameter to be used

for both input and output. If all of IN , OUT, and IN OUT are omitted, then the parameter

acts as if it were defined as IN by default. Whether a parameter is IN , OUT, or IN OUT is
referred to as the parameterôs mode. data_type defines the data type of the parameter.

value is a default value assigned to an IN parameter in the called program if an actual
parameter is not specified in the call.

The following is an example of a procedure that takes parameters:

CREATE OR REPLACE PROCEDURE emp_query (

 p_deptno IN NUMBER,

 p_empno IN OUT NUMBER,

 p_ename IN OUT VARCHAR2,

 p_job OUT VARCHAR2,

 p_hiredate OUT DATE,

 p_sal OUT NUMBER

)

IS

BEGIN

 SELECT empno, ename, job, hiredate, sal

 INTO p_empno, p_ename, p_job, p_hiredate, p_sal

 FROM emp

 WHERE deptno = p_deptno

 AND (empno = p_empno

 OR ename = UPPER(p_ename));

END;

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

147

In this example, p_deptno is an IN formal parameter, p_empno and p_ename are IN

OUT formal parameters, and p_job , p_hiredate , and p_sal are OUT formal
parameters.

Note: In the previous example, no maximum length was specified on the VARCHAR2

parameters and no precision and scale were specified on the NUMBER parameters. It is
illegal to specify a length, precision, scale or other constraints on parameter declarations.

These constraints are automatically inherited from the actual parameters that are used
when the procedure or function is called.

The emp_query procedure can be called by another program, passing it the actual
parameters. The following is an example of another SPL program that calls emp_query .

DECLARE

 v_deptno NUMBER(2);

 v_empno NUMBER(4);

 v_ename VARCHAR2(10);

 v_job VARCHAR2(9);

 v_hiredate DATE;

 v_sal NUMBER;

BEGIN

 v_deptno := 30;

 v_empno := 7900;

 v_ename := '';

 emp_query(v_deptno, v_empno, v_ename, v_job, v_hir edate, v_sal);

 DBMS_OUTPUT.PUT_LINE('Department : ' || v_deptno);

 DBMS_OUTPUT.PUT_LINE('Employee No: ' || v_empno);

 DBMS_OUTPUT.PUT_LINE('Name : ' || v_ename);

 DBMS_OUTPUT.PUT_LINE('Job : ' || v_job);

 DBMS_OUTPUT.PUT_LINE(' Hire Date : ' || v_hiredate);

 DBMS_OUTPUT.PUT_LINE('Salary : ' || v_sal);

END;

In this example, v_deptno , v_empno , v_ename , v_job , v_hiredate , and v_sal are
the actual parameters.

The output from the preceding example is shown as follows:

Departme nt : 30

Employee No: 7900

Name : JAMES

Job : CLERK

Hire Date : 03 - DEC- 81

Salary : 950

3.2.5.1 Positional vs. Named Parameter Notation

You can use either positional or named parameter notation when passing parameters to a

function or procedure. If you specify parameters using positional notation, you must list

the parameters in the order that they are declared; if you specify parameters with named
notation, the order of the parameters is not significant.

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

148

To specify parameters using named notation, list the name of each parameter followed by

an arrow (=>) and the parameter value. Named notation is more verbose, but makes your
code easier to read and maintain.

A simple example that demonstrates using positional and named parameter notation
follows:

CREATE OR REPLACE PROCEDURE emp_info (

 p_deptno IN NUMBER,

 p_empno IN OUT NUMBER,

 p_ename IN OUT VARCHAR2,

)

IS

BEGIN

 dbms_output.put_line('Department Number =' || p_deptno);

 dbms_output.put_line('Employee N umber =' | | p_empno);

 dbms_output.put_line('Employee Name =' || p_ename;

END;

To call the procedure using positional notation, pass the following:

emp_info(30, 7455, 'Clark');

To call the procedure using named notation, pass the following:

emp_info(p_e name =>'Clark', p_empno=>7455, p_deptno=>30);

Using named notation can alleviate the need to re-arrange a procedureôs parameter list if

the parameter list changes, if the parameters are reordered or if a new optional parameter
is added.

In a case where you have a default value for an argument and the argument is not a
trailing argument, you must use named notation to call the procedure or function. The
following case demonstrates a procedure with two, leading, default arguments.

CREATE OR REPLACE PROCEDURE check_balance (

 p_customerID IN NUMBER DEFAULT NULL,

 p_balance IN NUMBER DEFAULT NULL,

 p_amount IN NUMBER

)

IS

DECLARE

 balance NUMBER;

BEGIN

 IF (p_balance IS NULL AND p_customerID IS NULL) THEN

 RAISE_APPLICATION_ERROR

 (- 20010, 'Must provide balance or customer') ;

 ELSEIF (p_balance IS NOT NULL AND p_customerID IS NOT NULL) THEN

 RAISE_APPLICATION_ERROR

 (- 20020, 'Must provide balance or customer, not both');

 ELSEIF (p_balance IS NULL) T HEN

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

149

 balance := getCustomerBalance(p_customerID);

 ELSE

 balance := p_balance;

 END IF;

 IF (amount > balance) THEN

 RAISE_APPLICATION_ERROR

 (- 20030, 'Balance insuffic ient ');

 END IF;

END;

You can only omit non-trailing argument values (when you call this procedure) by using

named notation; when using positional notation, only trailing arguments are allowed to
default. You can call this procedure with the following arguments:

check_balance(p_customerID => 10, p_amount = 500.00)

check_balance(p_balance => 1000.00, p_amount = 500.00)

You can use a combination of positional and named notation (mixed notation) to specify

parameters. A simple example that demonstrates using mixed parameter notation
follows:

CREATE OR REPLACE PROCEDURE emp_info (

 p_deptno IN NUMBER,

 p_empno IN OUT NUMBER,

 p_ename IN OUT VARCHAR2,

)

IS

BEGIN

 dbms_output.put_line('Department Number =' || p_deptno);

 dbms_output.put_line('Employee Number =' | | p_empn o);

 dbms_output.put_line('Employee Name =' || p_ename;

END;

You can call the procedure using mixed notation:

emp_info(30, p_ename =>'Clark', p_empno=>7455);

If you do use mixed notation, remember that named arguments cannot precede positional
arguments.

3.2.5.2 Parameter Modes

As previously discussed, a parameter has one of three possible modes - IN , OUT, or IN

OUT. The following characteristics of a formal parameter are dependent upon its mode:

¶ Its initial value when the procedure or function is called.

¶ Whether or not the called procedure or function can modify the formal parameter.

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

150

¶ How the actual parameter value is passed from the calling program to the called
program.

¶ What happens to the formal parameter value when an unhandled exception occurs
in the called program.

The following table summarizes the behavior of parameters according to their mode.

Table 4-3-1 Parameter Modes

Mode Property IN IN OUT OUT

Formal parameter initialized to: Actual parameter value Actual parameter value Actual parameter value

Formal parameter modifiable by the

called program?
No Yes Yes

Actual parameter contains: (after

normal called program termination)

Original actual

parameter value prior

to the call

Last value of the

formal parameter

Last value of the

formal parameter

Actual parameter contains: (after a

handled exception in the called

program)

Original actual

parameter value prior

to the call

Last value of the

formal parameter

Last value of the

formal parameter

Actual parameter contains: (after an

unhandled exception in the called

program)

Original actual

parameter value prior

to the call

Original actual

parameter value prior

to the call

Original actual

parameter value prior

to the call

As shown by the table, an IN formal parameter is initialized to the actual parameter with

which it is called unless it was explicitly initialized with a default value. The IN
parameter may be referenced within the called program, however, the called program

may not assign a new value to the IN parameter. After control returns to the calling
program, the actual parameter always contains the same value as it was set to prior to the
call.

The OUT formal parameter is initialized to the actual parameter with which it is called.
The called program may reference and assign new values to the formal parameter. If the

called program terminates without an exception, the actual parameter takes on the value
last set in the formal parameter. If a handled exception occurs, the value of the actual
parameter takes on the last value assigned to the formal parameter. If an unhandled
exception occurs, the value of the actual parameter remains as it was prior to the call.

Like an IN parameter, an IN OUT formal parameter is initialized to the actual parameter

with which it is called. Like an OUT parameter, an IN OUT formal parameter is
modifiable by the called program and the last value in the formal parameter is passed to
the calling programôs actual parameter if the called program terminates without an

exception. If a handled exception occurs, the value of the actual parameter takes on the
last value assigned to the formal parameter. If an unhandled exception occurs, the value
of the actual parameter remains as it was prior to the call.

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

151

3.2.5.3 Using Default Values in Parameters

You can set a default value of a formal parameter by including the DEFAULT clause or

using the assignment operator (:=) in the CREATE PROCEDURE or CREATE FUNCTION
statement.

The general form of a formal parameter declaration is:

(name [IN | OUT| IN OUT] data_type [{DEFAULT | := } expr])

name is an identifier assigned to the parameter.

IN|OUT|IN OUT specifies the parameter mode.

data_type is the data type assigned to the variable.

expr is the default value assigned to the parameter. If you do not include a DEFAULT
clause, the caller must provide a value for the parameter.

The default value is evaluated every time the function or procedure is invoked. For

example, assigning SYSDATE to a parameter of type DATE causes the parameter to have
the time of the current invocation, not the time when the procedure or function was
created.

The following simple procedure demonstrates using the assignment operator to set a
default value of SYSDATE into the parameter, hiredate :

CREATE OR REPLACE PROCEDURE hire_emp (

 p_empno NUMBER,

 p_ename VARCHAR2,

 p_hiredate DATE := SYSDATE

)

IS

BEGIN

 INSERT INTO emp(empno, ename, hiredate)

 VALUES(p_empno, p_ename, p_hiredate);

 DBMS_OUTPUT.PUT_LINE('Hired!');

END hire_emp ;

If the parameter declaration includes a default value, you can omit the parameter from the
actual parameter list when you call the procedure. Calls to the sample procedure

(hire_emp) must include two arguments: the employee number (p_empno) and

employee name (p_empno). The third parameter (p_hiredate) defaults to the value of
SYSDATE:

 hire_emp (7575, Clark)

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

152

If you do include a value for the actual parameter when you call the procedure, that value
takes precedence over the default value:

hire_emp (7575, Clar k, 15 - FEB- 2010)

Adds a new employee with a hiredate of February 15, 2010 , regardless of the current

value of SYSDATE.

You can write the same procedure by substituting the DEFAULT keyword for the
assignment operator:

CREATE OR REPLACE PROCEDURE hire_emp (

 p_empno NUMBER,

 p_ename VARCHAR2,

 p_hiredate DATE DEFAULT SYSDATE

)

IS

BEGIN

 INSERT INTO emp(empno, ename, hiredate)

 VALUES(p_empno, p_ename, p_hiredate);

 DBMS_OUTPUT.PUT_LINE('Hired!');

END hire_ emp;

3.2.6 Subprograms ï Subprocedures and Subfunctions

The capability and functionality of SPL procedure and function programs can be used in

an advantageous manner to build well-structured and maintainable programs by
organizing the SPL code into subprocedures and subfunctions.

The same SPL code can be invoked multiple times from different locations within a

relatively large SPL program by declaring subprocedures and subfunctions within the
SPL program.

Subprocedures and subfunctions have the following characteristics:

¶ The syntax, structure, and functionality of subprocedures and subfunctions are
practically identical to standalone procedures and functions. The major difference

is the use of the keyword PROCEDURE or FUNCTION instead of CREATE

PROCEDURE or CREATE FUNCTION to declare the subprogram.

¶ Subprocedures and subfunctions provide isolation for the identifiers (that is,
variables, cursors, types, and other subprograms) declared within itself. That is,
these identifiers cannot be accessed nor altered from the upper, parent level SPL

programs or subprograms outside of the subprocedure or subfunction. This
ensures that the subprocedure and subfunction results are reliable and predictable.

¶ The declaration section of subprocedures and subfunctions can include its own
subprocedures and subfunctions. Thus, a multi-level hierarchy of subprograms

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

153

can exist in the standalone program. Within the hierarchy, a subprogram can
access the identifiers of upper level parent subprograms and also invoke upper

level parent subprograms. However, the same access to identifiers and invocation
cannot be done for lower level child subprograms in the hierarchy.

Subprocedures and subfunctions can be declared and invoked from within any of the
following types of SPL programs:

¶ Standalone procedures and functions

¶ Anonymous blocks

¶ Triggers

¶ Packages

¶ Procedure and function methods of an object type body

¶ Subprocedures and subfunctions declared within any of the preceding programs

The rules regarding subprocedure and subfunction structure and access are discussed in
more detail in the next sections.

3.2.6.1 Creating a Subprocedure

The PROCEDURE clause specified in the declaration section defines and names a
subprocedure local to that block.

The term block refers to the SPL block structure consisting of an optional declaration

section, a mandatory executable section, and an optional exception section. Blocks are
the structures for standalone procedures and functions, anonymous blocks, subprograms,
triggers, packages, and object type methods.

The phrase the identifier is local to the block means that the identifier (that is, a variable,

cursor, type, or subprogram) is declared within the declaration section of that block and is
therefore accessible by the SPL code within the executable section and optional exception
section of that block.

Subprocedures can only be declared after all other variable, cursor, and type declarations
included in the declaration section. (That is, subprograms must be the last set of
declarations.)

PROCEDURE name [(parameters)]

{ IS | AS }

 [declarations]

 BEGIN

 statements

 END [name];

Where:

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

154

name

name is the identifier of the subprocedure.

parameters

parameters is a list of formal parameters.

declarations

declarations are variable, cursor, type, or subprogram declarations. If

subprogram declarations are included, they must be declared after all other
variable, cursor, and type declarations.

statements

statements are SPL program statements (the BEGIN - END block may contain

an EXCEPTION section).

Examples

The following example is a subprocedure within an anonymous block.

DECLARE

 PROCEDURE list_emp

 IS

 v_empno NUMBER(4);

 v_ename VARCHAR2(10);

 CURSOR emp_cur IS

 SELECT empno, ename FROM emp ORDER BY empno;

 BEGIN

 OPEN emp_cur;

 DBMS_OUTPUT.PUT_LINE('Subprocedure list_emp:');

 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');

 DBMS_OUTPUT.PUT_LINE('----- ------- ');

 LOOP

 FETCH emp_cur INTO v_empno, v_ename;

 EXIT WHEN emp_cur%NOTFOUND;

 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || v_ename);

 END LOOP;

 CLOSE emp_cur;

 END;

BEGIN

 list_emp;

END;

Invoking this anonymous block produces the following output:

Subprocedure list_emp:

EMPNO ENAME

---- - -------

7369 SMITH

7499 ALLEN

7521 WARD

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

155

7566 JONES

7654 MARTIN

7698 BLAKE

7782 CLARK

7788 SCOTT

7839 KING

7844 TURNER

7876 ADAMS

7900 JAMES

7902 FORD

7934 MILLER

The following example is a subprocedure within a trigger.

CREATE OR REPLACE TRIGGER dept_audit_trig

 AFTER INSERT OR UPDATE OR DELETE ON dept

DECLARE

 v_action VARCHAR2(24);

 PROCEDURE display_action (

 p_action IN VARCHAR2

)

 IS

 BEGIN

 DBMS_OUTPUT.PUT_LINE('User ' || USER || ' ' || p_action ||

 ' dept on ' || TO_CHAR(SYSDATE,'YYYY - MM- DD'));

 END display_action;

BEGIN

 IF INSERTING THEN

 v_action := 'added';

 ELSIF UPDATING THEN

 v_action := 'updated';

 ELSIF DELETING THEN

 v_action := 'deleted';

 END IF;

 display_action(v_action);

END;

Invoking this trigger produces the following output:

INSERT INTO dept VALUES (50,'HR','DENVER');

User enterprisedb added dept on 2016 - 07 - 26

3.2.6.2 Creating a Subfunction

The FUNCTION clause specified in the declaration section defines and names a
subfunction local to that block.

The term block refers to the SPL block structure consisting of an optional declaration

section, a mandatory executable section, and an optional exception section. Blocks are
the structures for standalone procedures and functions, anonymous blocks, subprograms,
triggers, packages, and object type methods.

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

156

The phrase the identifier is local to the block means that the identifier (that is, a variable,
cursor, type, or subprogram) is declared within the declaration section of that block and is

therefore accessible by the SPL code within the executable section and optional exception
section of that block.

FUNCTION name [(parameters)]

RETURN data _type

{ IS | AS }

 [declarations]

 BEGIN

 statements

 END [name];

Where:

name

name is the identifier of the subfunction.

parameters

parameters is a list of formal parameters.

data_ type

data_type is the data type of the value returned by the functionôs RETURN
statement.

declarations

declarations are variable, cursor, type, or subprogram declarations. If

subprogram declarations are included, they must be declared after all other
variable, cursor, and type declarations.

statements

statements are SPL program statements (the BEGIN - END block may contain

an EXCEPTION section).

Examples

The following example shows the use of a recursive subfunction:

DECLARE

 FUNCTION factorial (

 n BINARY_INTEGER

) RETURN BINARY_INTEGER

 IS

 BEGIN

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

157

 IF n = 1 THEN

 RETURN n;

 ELSE

 RETURN n * factorial(n - 1);

 END IF;

 END factorial;

BEGIN

 FOR i IN 1..5 LOOP

 DBMS_OUTPUT.PUT_LINE(i || '! = ' || factorial(i));

 END LOOP;

END;

The output from the example is the following:

1! = 1

2! = 2

3! = 6

4! = 24

5! = 120

3.2.6.3 Block Relationships

This section describes the terminology of the relationship between blocks that can be

declared in an SPL program. The ability to invoke subprograms and access identifiers
declared within a block depends upon this relationship.

The following are the basic terms:

¶ A block is the basic SPL structure consisting of an optional declaration section, a
mandatory executable section, and an optional exception section. Blocks

implement standalone procedure and function programs, anonymous blocks,
triggers, packages, and subprocedures and subfunctions.

¶ An identifier (variable, cursor, type, or subprogram) local to a block means that it

is declared within the declaration section of the given block. Such local identifiers
are accessible from the executable section and optional exception section of the
block.

¶ The parent block contains the declaration of another block (the child block).

¶ Descendent blocks are the set of blocks forming the child relationship starting
from a given parent block.

¶ Ancestor blocks are the set of blocks forming the parental relationship starting
from a given child block.

¶ The set of descendent (or ancestor) blocks form a hierarchy.

¶ The level is an ordinal number of a given block from the highest, ancestor block.
For example, given a standalone procedure, the subprograms declared within the
declaration section of this procedure are all at the same level, for example call it

level 1. Additional subprograms within the declaration section of the
subprograms declared in the standalone procedure are at the next level, which is
level 2.

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

158

¶ The sibling blocks are the set of blocks that have the same parent block (that is,
they are all locally declared in the same block). Sibling blocks are also always at

the same level relative to each other.

The following schematic of a set of procedure declaration sections provides an example
of a set of blocks and their relationships to their surrounding blocks.

The two vertical lines on the left-hand side of the blocks indicate there are two pairs of

sibling blocks. block_1a and block_1b is one pair, and block_2a and block_2b is
the second pair.

The relationship of each block with its ancestors is shown on the right-hand side of the

blocks. There are three hierarchical paths formed when progressing up the hierarchy from

the lowest level child blocks. The first consists of block_0 , block_1a , block_2a , and

block_3 . The second is block_0 , block_1a , and block_2b . The third is block_0 ,
block_1b , and block_2b .

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

159

CREATE PROCEDURE block_0

IS

 .

 +---- PROCEDURE block_1a ------- Local to block_0

 | IS

 | . |

 | . |

 | . |

 | + -- PROCEDURE block_2a --- - Local to block_1a and descenda nt

 | | IS of block_0

 | | . |

 | | . |

 | | . |

 | | PROCEDURE block_3 - - Local to block_2a and descenda nt

 | | IS of block_1a, and block_0

 | Siblings . |

 | | . |

 | | . |

 | | END block_3; |

 | | END block_2a; |

 | + -- PROCEDURE block_2b --- - Local to block_1a and descenda nt

 | | IS of block_0

 Siblings | , |

 | | . |

 | | . |

 | + -- END block_2b; |

 | |

 | END block_1a; --------- +

 +---- PROCEDURE block_1b; - ------ Local to block_0

 | IS

 | . |

 | . |

 | . |

 | PROCEDURE block_2b --- - Local to block_1b and descenda nt

 | IS of block_0

 | . |

 | . |

 | . |

 | END block_2b; |

 | |

 +---- END block_1b; --------- +

BEGIN

 .

 .

 .

END block_0;

The rules for invoking subprograms based upon block location is described starting with

Section 3.2.6.4. The rules for accessing variables based upon block location is described
in Section 3.2.6.7.

3.2.6.4 Invoking Subprograms

A subprogram is invoked in the same manner as a standalone procedure or function by
specifying its name and any actual parameters.

The subprogram may be invoked with none, one, or more qualifiers, which are the names

of the parent subprograms or labeled anonymous blocks forming the ancestor hierarchy
from where the subprogram has been declared.

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

160

The invocation is specified as a dot-separated list of qualifiers ending with the
subprogram name and any of its arguments as shown by the following:

[[qualifier _1.][...] qualifier_n .] subprog [(arguments)]

If specified, qualifier_n is the subprogram in which subprog has been declared in its

declaration section. The preceding list of qualifiers must reside in a continuous path up
the hierarchy from qualifier_n to qualifier_1 . qualifier_1 may be any
ancestor subprogram in the path as well as any of the following:

¶ Standalone procedure name containing the subprogram

¶ Standalone function name containing subprogram

¶ Package name containing the subprogram

¶ Object type name containing the subprogram within an object type method

¶ An anonymous block label included prior to the DECLARE keyword if a

declaration section exists, or prior to the BEGIN keyword if there is no declaration
section.

Note: qualifier_1 may not be a schema name, otherwise an error is thrown upon

invocation of the subprogram. This Advanced Server restriction is not compatible with
Oracle databases, which allow use of the schema name as a qualifier.

arguments is the list of actual parameters to be passed to the subprocedure or
subfunction.

Upon invocation, the search for the subprogram occurs as follows:

¶ The invoked subprogram name of its type (that is, subprocedure or subfunction)
along with any qualifiers in the specified order, (referred to as the invocation list)

is used to find a matching set of blocks residing in the same hierarchical order.
The search begins in the block hierarchy where the lowest level is the block from
where the subprogram is invoked. The declaration of the subprogram must be in

the SPL code prior to the code line where it is invoked when the code is observed
from top to bottom. (An exception to this requirement can be accomplished using

a forward declaration. See Section 3.2.6.5 for information on forward
declarations.)

¶ If the invocation list does not match the hierarchy of blocks starting from the

block where the subprogram is invoked, a comparison is made by matching the
invocation list starting with the parent of the previous starting block. In other
words, the comparison progresses up the hierarchy.

¶ If there are sibling blocks of the ancestors, the invocation list comparison also
includes the hierarchy of the sibling blocks, but always comparing in an upward
level, never comparing the descendants of the sibling blocks.

¶ This comparison process continues up the hierarchies until the first complete
match is found in which case the located subprogram is invoked. Note that the
formal parameter list of the matched subprogram must comply with the actual

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

161

parameter list specified for the invoked subprogram, otherwise an error occurs
upon invocation of the subprogram.

¶ If no match is found after searching up to the standalone program, then an error is
thrown upon invocation of the subprogram.

Note: The Advanced Server search algorithm for subprogram invocation is not quite

compatible with Oracle databases. For Oracle, the search looks for the first match of the

first qualifier (that is qualifier_1). When such a match is found, all remaining

qualifiers, the subprogram name, subprogram type, and arguments of the invocation must
match the hierarchy content where the matching first qualifier is found, otherwise an

error is thrown. For Advanced Server, a match is not found unless all qualifiers, the
subprogram name, and the subprogram type of the invocation match the hierarchy
content. If such an exact match is not initially found, Advanced Server continues the
search progressing up the hierarchy.

The location of subprograms relative to the block from where the invocation is made can
be accessed as follows:

¶ Subprograms declared in the local block can be invoked from the executable
section or the exception section of the same block.

¶ Subprograms declared in the parent or other ancestor blocks can be invoked from
the child block of the parent or other ancestors.

¶ Subprograms declared in sibling blocks can be called from a sibling block or from

any descendent block of the sibling.

However, the following location of subprograms cannot be accessed relative to the block
from where the invocation is made:

¶ Subprograms declared in blocks that are descendants of the block from where the
invocation is attempted.

¶ Subprograms declared in blocks that are descendants of a sibling block from

where the invocation is attempted.

The following examples illustrate the various conditions previously described.

Invoking Locally Declared Subprograms

The following example contains a single hierarchy of blocks contained within standalone

procedure level_0 . Within the executable section of procedure level_1a , the means
of invoking the local procedure level_2a are shown, both with and without qualifiers.

Also note that access to the descendant of local procedure level_ 2a , which is procedure

level_3a , is not permitted, with or without qualifiers. These calls are commented out in
the example.

CREATE OR REPLACE PROCEDURE level_0

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

162

IS

 PROCEDURE level_1a

 IS

 PROCEDURE level_2a

 IS

 PROCEDURE level_3a

 IS

 BEGIN

 DBMS_OUTPUT.PUT_LINE('........ BLOCK level_3a');

 DBMS_OUTPUT.PUT_LINE('........ END BLOCK level_3a');

 END level_3a;

 BEGIN

 DBMS_OUTPUT.PUT_LINE('...... B LOCK level_2a');

 DBMS_OUTPUT.PUT_LINE('...... END BLOCK level_2a');

 END level_2a;

 BEGIN

 DBMS_OUTPUT.PUT_LINE('.. BLOCK level_1a');

 level_ 2a; -- Local block called

 leve l_1a.level_2 a; -- Qualified local block called

 le vel_0.level_1a.level_2a; -- Double qualified local block called

-- level_3a; -- Error - Descenda nt of local block

-- level_2a.level_3a; -- Error - Descenda nt of local block

 DBMS_OUTPUT.PUT_LINE('.. END BLOCK level_1a');

 END level_1a;

BEGIN

 DBMS_OUTPUT.PUT_LINE('BLOCK level_0');

 level_1a;

 DBMS_OUTPUT.PUT_LINE('END BLOCK level_0');

END level_0;

When the standalone procedure is invoked, the output is the following, which indicates

that procedure level_2a is successfully invoked from the calls in the executable section
of procedure level_1a .

BEGIN

 level_0;

END;

BLOCK level_0

.. BLOCK level_1a

...... BLOCK level_2a

...... END BLOCK level_2a

...... BLOCK level_2a

...... END BLOCK level_2a

...... BLOCK level_2a

...... END BLOCK level_2a

.. END BLOCK level_1a

END BLOCK level_0

If you were to attempt to run procedure level_0 with any of the calls to the descendent
block uncommented, then an error occurs.

Invoking Subprograms Declared in Ancestor Blocks

The following example shows how subprograms can be invoked that are declared in
parent and other ancestor blocks relative to the block where the invocation is made.

In this example, the executable section of procedure level_3a invokes procedure
level_2 a, which is its parent block. (Note that v_cnt is used to avoid an infinite loop.)

CREATE OR REPLACE PROCEDURE level_0

IS

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

163

 v_cnt NUMBER(2) := 0;

 PROCEDURE level_1a

 IS

 PROCEDURE level_2a

 IS

 PROCEDURE level_3a

 IS

 BEGIN

 DBMS_OUTPUT.PUT_LINE('........ BLOCK level_3a');

 v_cnt := v_cnt + 1;

 IF v_cnt < 2 THEN

 level_2a; -- Parent block called

 END IF;

 DBMS_OUTPUT.PUT_LINE('........ END BLOCK level_3a');

 END level_3a;

 BEGIN

 DBMS_OUTPUT.PUT_LINE('...... BLOC K level_2a');

 level_3a; -- Local block called

 DBMS_OUTPUT.PUT_LINE('...... END BLOCK level_2a');

 END level_2a;

 BEGIN

 DBMS_OUTPUT.PUT_LINE('.. BLOCK level_1a');

 level_2a; -- Local block called

 DBMS_OUTPUT.PUT_LINE('.. END BLOCK level_1a');

 END level_1a;

BEGIN

 DBMS_OUTPUT.PUT_LINE('BLOCK level_0');

 level_1a;

 DBMS_OUTPUT.PUT_LINE('END BLOCK level_0');

END level_0;

The following is the resulting output:

BEGIN

 level_0;

END;

BLOCK level_0

.. BLOCK level_1a

...... BLOCK level_2a

........ BLOCK level_3a

...... BLOCK level_2a

........ BLOCK level_3a

........ END BLOCK level_3a

...... END BLOCK level_2a

........ END BLOCK level_3a

.... .. END BLOCK level_2a

.. END BLOCK level_1a

END BLOCK level_0

In a similar example, the executable section of procedure level_3a invokes procedure

level_1 a, which is further up the ancestor hierarchy. (Note that v_cnt is used to avoid
an infinite loop.)

CREATE OR REPLACE PROCEDURE level_0

IS

 v_cnt NUMBER(2) := 0;

 PROCEDURE level_1a

 IS

 PROCEDURE level_2a

 IS

 PROCEDURE level_3a

 IS

 BEGIN

 DBMS_OUTPUT.PUT_LINE('........ BLOC K level_3a');

 v_cnt := v_cnt + 1;

 IF v_cnt < 2 THEN

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

164

 level_1a; -- Ancestor block called

 END IF;

 DBMS_OUTPUT.PUT_LINE('........ END BLOCK level_3a');

 END level_3a;

 BEGIN

 DBMS_OUTPUT.PUT_LINE('...... BLOCK level_2a');

 level_3a; -- Local block called

 DBMS_OUTPUT.PUT_LINE('...... END BLOCK level_2a');

 END level_2a;

 BEGIN

 DBMS_OUTPUT.PUT_LINE('.. BLOCK level_1a');

 level_2a; -- Local block called

 DBMS_OUTPUT.PUT_LINE('.. END BLOCK level_1a');

 END level_1a;

BEGIN

 DBMS_OUTPUT.PUT_LINE('BLOCK level_0');

 level_1a;

 DBMS_OUTPUT.PUT_LINE('END BLOCK level_0');

END level_0;

The following is the resulting output:

BEGIN

 level_0;

END;

BLOCK level_0

.. BLOCK level_1a

...... BLOCK level_2a

........ BLOCK level_3a

.. BLOCK level_1a

...... BLOCK level_2a

........ BLOCK level_3a

........ END BLOCK level_3a

...... END BLOCK level_2a

.. END BLOCK level_1a

........ END BLOCK level_3a

...... END BLOCK level_2a

.. END BLOCK level_1a

END BLOCK level_0

Invoking Subprograms Declared in Sibling Blocks

The following examples show how subprograms can be invoked that are declared in a

sibling block relative to the local, parent, or other ancestor blocks from where the
invocation of the subprogram is made.

In this example, the executable section of procedure level_1b invokes procedure
level_1a , which is its sibling block. Both are local to standalone procedure level_0 .

Note that invocation of level_2a or equivalently, level_1a.level_2a from within

procedure level_1b is commented out as this call would result in an error. Invoking a
descendent subprogram (level_2a) of sibling block (level_1a) is not permitted.

CREATE OR REPLACE PROCEDURE level_0

IS

 v_cnt NUMBER(2) := 0;

 PROCEDURE level_1a

 IS

 PROCEDURE level_2a

 IS

 BEGIN

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

165

 DBMS_OUTPUT.PUT_LINE('...... BLOCK level_2a');

 DBMS_OUTPUT.PUT_LINE('...... END BLOCK level_2a');

 END level_2a;

 BEGIN

 DBMS_OUTPUT.PUT_LINE('.. BLOCK level_1a');

 DBMS_OUTPUT.PUT_LINE('.. END BLOCK level_1a');

 END level_1a;

 PROCEDURE level_1b

 IS

 BEGIN

 DBMS_OUTPUT.PUT_LINE('.. BLOCK level_1b');

 level_1a; -- Sibling block called

-- level_2a; -- Error ï Descenda nt of sibling block

-- level_1 a.level_2a; -- Error - Descenda nt of sibling block

 DBMS_OUTPUT.PUT_LINE('.. END BLOCK level_1b');

 END level_1b;

BEGIN

 DBMS_OUTPUT.PUT_LINE('BLOCK level_0');

 level_1b;

 DBMS_OUTPUT.PUT_LINE('END BLOCK level_0');

END level_0;

The following is the resulting output:

BEGIN

 level_0;

END;

BLOCK level_0

.. BLOCK level_1b

.. BLOCK level_1a

.. END BLOCK level_1a

.. END BLOCK level_1b

END BLOCK level_0

In the following example, procedure level_1a , which is the sibling of procedure

level_1b , which is an ancestor of procedure level_3b is successfully invoked.

CREATE OR REPLACE PROCEDURE level_0

IS

 PROCEDURE level_1a

 IS

 BEGIN

 DBMS_OUTPUT.PUT_LINE('.. BLOCK level_1a');

 DBMS_OUTPUT.PUT_LINE('.. END BLOCK level_1a');

 END level_1a;

 PROCEDURE level_1b

 IS

 PROCEDURE level_2b

 IS

 PROCEDURE level_3b

 IS

 BEGIN

 DBMS_OUTPUT.PUT_LINE('........ BLOCK level_3b');

 level_1 a; -- Ancestor 's sibling block called

 level_0.level_1a; -- Qualified ancestor's sibling block

 DBMS_OUTPUT.PUT_LINE('........ END BLOCK level_3b');

 END level_3b;

 BEGIN

 DBMS_OUTPUT.PUT_LINE('...... BLOCK level_2b');

 level_3b; -- Local block called

 DBMS_OUTPUT.PUT_LINE('...... END BLOCK level_2b');

 END level_2b;

 BEGIN

 DBMS_OUTPUT.PUT_LINE('.. BLO CK level_1b');

 level_2b; -- Local block called

 DBMS_OUTPUT.PUT_LINE('.. END BLOCK level_1b');

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

166

 END level_1b;

BEGIN

 DBMS_OUTPUT.PUT_LINE('BLOCK level_0');

 level_1b;

 DBMS_OUTPUT.PUT_LINE('END BLOCK level_0');

END level_0;

The following is the resulting output:

BEGIN

 level_0;

END;

BLOCK level_0

.. BLOCK level_1b

...... BLOCK level_2b

........ BLOCK level_3b

.. BLOCK level_1a

.. END BLOCK level_1a

.. BLOCK level_1a

.. END BLOCK level_1a

........ E ND BLOCK level_3b

...... END BLOCK level_2b

.. END BLOCK level_1b

END BLOCK level_0

3.2.6.5 Using Forward Declarations

As discussed so far, when a subprogram is to be invoked, it must have been declared
somewhere in the hierarchy of blocks within the standalone program, but prior to where it

is invoked. In other words, when scanning the SPL code from beginning to end, the
subprogram declaration must be found before its invocation.

However, there is a method of constructing the SPL code so that the full declaration of

the subprogram (that is, its optional declaration section, its mandatory executable section,
and optional exception section) appears in the SPL code after the point in the code where
it is invoked.

This is accomplished by inserting a forward declaration in the SPL code prior to its

invocation. The forward declaration is the specification of a subprocedure or subfunction
name, formal parameters, and return type if it is a subfunction.

The full subprogram specification consisting of the optional declaration section, the
executable section, and the optional exception section must be specified in the same

declaration section as the forward declaration, but may appear following other
subprogram declarations that invoke this subprogram with the forward declaration.

Typical usage of a forward declaration is when two subprograms invoke each other as
shown by the following:

DECLARE

 FUNCTION add_one (

 p_add IN NUMBER

) RETURN NUMBER;

 FUNCTION test_max (

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

167

 p_test IN NUMBER)

 RETURN NUMBER

 IS

 BEGIN

 IF p_test < 5 THEN

 RETURN add_one(p_test);

 END IF;

 DBMS_OUTPUT.PUT('Final value is ');

 RETURN p_test;

 END;

 FUNCTION add_one (

 p_add IN NUMBER)

 RETURN NUMBER

 IS

 BEGIN

 DBMS_OUTPUT.PUT_LINE('Increase by 1');

 RETURN test_max(p_add + 1);

 END;

BEGIN

 DBMS_OUTPUT.PUT_LINE(test_max(3));

END;

Subfunction test_max invokes subfunction add_one , which also invokes subfunction

test_max , so a forward declaration is required for one of the subprograms, which is
implemented for add_one at the beginning of the anonymous block declaration section.

The resulting output from the anonymous block is as follows:

Increase by 1

Increase by 1

Final value is 5

3.2.6.6 Overloading Subprograms

Generally, subprograms of the same type (subprocedure or subfunction) with the same

name, and same formal parameter specification can appear multiple times within the
same standalone program as long as they are not sibling blocks (that is, the subprograms
are not declared in the same local block).

Each subprogram can be individually invoked depending upon the use of qualifiers and

the location where the subprogram invocation is made as discussed in the previous
sections.

It is however possible to declare subprograms, even as siblings, that are of the same
subprogram type and name as long as certain aspects of the formal parameters differ.

These characteristics (subprogram type, name, and formal parameter specification) is
generally known as a programôs signature.

The declaration of multiple subprograms where the signatures are identical except for
certain aspects of the formal parameter specification is referred to as subprogram
overloading.

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

168

Thus, the determination of which particular overloaded subprogram is to be invoked is
determined by a match of the actual parameters specified by the subprogram invocation
and the formal parameter lists of the overloaded subprograms.

Any of the following differences permit overloaded subprograms:

¶ The number of formal parameters are different.

¶ At least one pair of data types of the corresponding formal parameters (that is,
compared according to the same order of appearance in the formal parameter list)

are different, but are not aliases. Data type aliases are discussed later in this
section.

Note that the following differences alone do not permit overloaded subprograms:

¶ Different formal parameter names

¶ Different parameter modes (IN , IN OUT, OUT) for the corresponding formal
parameters

¶ For subfunctions, different data types in the RETURN clause

As previously indicated, one of the differences allowing overloaded subprograms are
different data types.

However, certain data types have alternative names referred to as aliases, which can be
used for the table definition.

For example, there are fixed length character data types that can be specified as CHAR or

CHARACTER. There are variable length character data types that can be specified as CHAR

VARYING, CHARACTER VARYING, VARCHAR, or VARCHAR2. For integers, there are

BINARY_INTEGER, PLS_INTEGER, and INTEGER data types. For numbers, there are
NUMBER, NUMERIC, DEC, and DECIMAL data types.

For detailed information about the data types supported by Advanced Server, please see
the Database Compatibility for Oracle Developers Reference Guide, available from
EnterpriseDB at:

http://www.enterprisedb.com/products-services-training/products/documentation

Thus, when attempting to create overloaded subprograms, the formal parameter data
types are not considered different if the specified data types are aliases of each other.

It can be determined if certain data types are aliases of other types by displaying the table
definition containing the data types in question.

For example, the following table definition contains some data types and their aliases.

CREATE TABLE data_type_aliases (

http://www.enterprisedb.com/products-services-training/products/documentation

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

169

 dt_BLOB BLOB,

 dt_LONG_RAW LONG RAW,

 dt_RAW RAW(4),

 dt_BYTEA BYTEA,

 dt_INTEGER INTEGER,

 dt_BINARY_INTEGER BINARY_INTEGER,

 dt_PLS_INTEGER PLS_INTEGER,

 dt_REAL REAL,

 dt_DOUBLE_PRECISION DOUBLE PRECISION,

 dt_FLOAT FLOAT,

 dt_NUMBER NUMBER,

 dt_DECIMAL DECIMAL,

 dt_NUMERIC NUMERIC,

 dt_CHAR CHAR,

 dt_CHARACTER CHARACTER,

 dt_VARCHAR2 VARCHAR2(4),

 dt_CHAR_VARYING CHAR VARYING(4),

 dt_VARCHAR VARC HAR(4)

);

Using the PSQL \ d command to display the table definition, the Type column displays
the data type internally assigned to each column based upon its data type in the table
definition:

\ d data_type_aliases

 Column | Type | Modifiers

--------------------- +---------------------- +-----------

 dt_blob | bytea |

 dt_long_raw | bytea |

 dt_raw | bytea(4) |

 dt_bytea | bytea |

 dt_integer | integer |

 dt_binary_integer | integer |

 dt_pls_integer | integer |

 dt_real | real |

 dt_double_precision | double precision |

 dt_float | doub le precision |

 dt_number | numeric |

 dt_decimal | numeric |

 dt_numeric | numeric |

 dt_char | character(1) |

 dt_character | character(1) |

 dt_var char2 | character varying(4) |

 dt_char_varying | character varying(4) |

 dt_varchar | character varying(4) |

In the example, the base set of data types are bytea , integer , real , double

precision , numeric , character , and character vary ing .

When attempting to declare overloaded subprograms, a pair of formal parameter data

types that are aliases would not be sufficient to allow subprogram overloading. Thus,

parameters with data types INTEGER and PLS_INTEGER cannot overload a pair of

subprograms, but data types INTEGER and REAL, or INTEGER and FLOAT, or INTEGER
and NUMBER can overload the subprograms.

Note: The overloading rules based upon formal parameter data types are not compatible
with Oracle databases. Generally, the Advanced Server rules are more flexible, and

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

170

certain combinations are allowed in Advanced Server that would result in an error when
attempting to create the procedure or function in Oracle databases.

For certain pairs of data types used for overloading, casting of the arguments specified by

the subprogram invocation may be required to avoid an error encountered during runtime
of the subprogram. Invocation of a subprogram must include the actual parameter list that
can specifically identify the data types. Certain pairs of overloaded data types may

require the CAST function to explicitly identify data types. For example, pairs of

overloaded data types that may require casting during the invocation are CHAR and
VARCHAR2, or NUMBER and REAL.

The following example shows a group of overloaded subfunctions invoked from within
an anonymous block. The executable section of the anonymous block contains the use of
the CAST function to invoke overloaded functions with certain data types.

DECLARE

 FUNCTION add_it (

 p_add_1 IN BINARY_INTEGER,

 p_add_2 IN BINARY_INTEGER

) RETURN VARCHAR2

 IS

 BEGIN

 RETURN 'add_it BINARY_INTEGER: ' || TO_CHAR(p_add_1 + p_add_2,9999.9999);

 END add_it;

 FUNCTION add_it (

 p_add_1 IN NUMBER,

 p_add_2 IN NUMBER

) RETURN VARCHAR2

 IS

 BEGIN

 RETURN 'add_it NUMBER: ' || TO_CHAR(p_add_1 + p_add_2,999.9999);

 END add_it;

 FUNCTION add_it (

 p_add_1 IN REAL,

 p_add_2 IN REAL

) RETURN VARCHAR2

 I S

 BEGIN

 RETURN 'add_it REAL: ' || TO_CHAR(p_add_1 + p_add_2,9999.9999);

 END add_it;

 FUNCTION add_it (

 p_add_1 IN DOUBLE PRECISION,

 p_add_2 IN DOUBLE PRECISION

) RETURN VARCHAR2

 IS

 BEGIN

 RETURN 'add_it DOUBLE PRECISION: ' || TO_CHAR(p_add_1 + p_add_2,9999.9999);

 END add_it;

BEGIN

 DBMS_OUTPUT.PUT_LINE(add_it (25, 50));

 DBMS_OUTPUT.PUT_LINE(add_it (25.3333, 50.3333));

 DBMS_OUTPUT.PUT_LINE(add_it (TO_NUMBER(25.3333), TO_NUMBER(50.33 33)));

 DBMS_OUTPUT.PUT_LINE(add_it (CAST('25.3333' AS REAL), CAST('50.3333' AS REAL)));

 DBMS_OUTPUT.PUT_LINE(add_it (CAST('25.3333' AS DOUBLE PRECISION),

 CAST('50.3333' AS DOUBLE PRECISION)));

END;

The following is the output displayed from the anonymous block:

add_it BINARY_INTEGER: 75.0000

add_it NUMBER: 75.6666

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

171

add_it NUMBER: 75.6666

add_it REAL: 75.6666

add_it DOUBLE PRECISION: 75.6666

3.2.6.7 Accessing Subprogram Variables

Variable declared in blocks such as subprograms or anonymous blocks can be accessed

from the executable section or the exception section of other blocks depending upon their
relative location.

Accessing a variable means being able to reference it within a SQL statement or an SPL
statement as is done with any local variable.

Note: If the subprogram signature contains formal parameters, these may be accessed in

the same manner as local variables of the subprogram. In this section, all discussion
related to variables of a subprogram also applies to formal parameters of the subprogram.

Access of variables not only includes those defined as a data type, but also includes
others such as record types, collection types, and cursors.

The variable may be accessed by at most one qualifier, which is the name of the
subprogram or labeled anonymous block in which the variable has been locally declared.

The syntax to reference a variable is shown by the following:

[qualifier .] variable

If specified, qualifier is the subprogram or labeled anonymous block in which
variable has been declared in its declaration section (that is, it is a local variable).

Note: In Advanced Server, there is only one circumstance where two qualifiers are
permitted. This scenario is for accessing public variables of packages where the reference
can be specified in the following format:

schema_name. package_name . public_variable_name

For more information about supported package syntax, please see the Database
Compatibility for Oracle Developers Built-In Packages Guide.

The following summarizes how variables can be accessed:

¶ Variables can be accessed as long as the block in which the variable has been

locally declared is within the ancestor hierarchical path starting from the block
containing the reference to the variable. Such variables declared in ancestor
blocks are referred to as global variables.

¶ If a reference to an unqualified variable is made, the first attempt is to locate a
local variable of that name. If such a local variable does not exist, then the search

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

172

for the variable is made in the parent of the current block, and so forth,
proceeding up the ancestor hierarchy. If such a variable is not found, then an error

occurs upon invocation of the subprogram.

¶ If a reference to a qualified variable is made, the same search process is
performed as described in the previous bullet point, but searching for the first

match of the subprogram or labeled anonymous block that contains the local
variable. The search proceeds up the ancestor hierarchy until a match is found. If

such a match is not found, then an error occurs upon invocation of the
subprogram.

The following location of variables cannot be accessed relative to the block from where
the reference to the variable is made:

¶ Variables declared in a descendent block cannot be accessed,

¶ Variables declared in a sibling block, a sibling block of an ancestor block, or any

descendants within the sibling block cannot be accessed.

Note: The Advanced Server process for accessing variables is not compatible with Oracle

databases. For Oracle, any number of qualifiers can be specified and the search is based
upon the first match of the first qualifier in a similar manner to the Oracle matching
algorithm for invoking subprograms.

The following example displays how variables in various blocks are accessed, with and
without qualifiers. The lines that are commented out illustrate attempts to access
variables that would result in an error.

CREATE OR REPLACE PROCEDURE level_0

IS

 v_level_0 VARCHAR2(20) := 'Value from level_0';

 PROCEDURE level_1a

 IS

 v_level_1a VARCHAR2(20) := 'Value from level_1a';

 PROCEDURE level_2a

 IS

 v_level_2a VARCHAR2(20) := 'Value from level_2a';

 BEGIN

 DBMS_OUTPUT.PUT_LINE('...... BLOCK level_2a');

 DBMS_OUTPUT.PUT_LINE('.... v_level_2a: ' || v_level_2a);

 DBMS_OUTPUT.PUT_LINE('........ v_level_1a: ' || v_level_1a);

 DBMS_OUTPUT.PUT_LINE('........ level_1a.v_level_1a: ' ||

 level_1a.v_level_1a);

 DBMS_OUTPUT.PUT_LINE('........ v_level_0: ' || v_level_0);

 DBMS_OUTPUT.PUT_LINE('........ level_0.v_level_0: ' || level_0.v_level_0);

 DBMS_OUTPUT.PUT_LINE('...... END BLOCK level_2a');

 END level_2a;

 BEGIN

 DBMS_OUTPUT.PUT_LINE('.. BLOCK level_1a');

 level_2a;

-- DBMS_OUTPUT.PUT_LINE('.... v_level_2a: ' || v_level_2a);

-- Error - Descendent block ---- ^

-- DBMS_OUTPUT.PUT_LINE('.... level_2a.v_level_2a: ' || level_2a.v_ level_2a);

-- Error - Descendent block --------------- ^

 DBMS_OUTPUT.PUT_LINE('.. END BLOCK level_1a');

 END level_1a;

 PROCEDURE level_1b

 IS

 v_level_1b VARCHAR2(20) := 'Value from level_1b';

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

173

 BEGIN

 DBMS_OUTPUT.PUT_LINE('.. BLOCK level_1b');

 DBMS_OUTPUT.PUT_LINE('.... v_level_1b: ' || v_level_1b);

 DBMS_OUTPUT.PUT_LINE('.... v_level_0 : ' || v_level_0);

-- DBMS_OUTPUT.PUT_LINE('.... level_1a.v_level_1a: ' || level_1a.v_l evel_1a);

-- Error - Sibling block ----------------- ^

-- DBMS_OUTPUT.PUT_LINE('.... level_2a.v_level_2a: ' || level_2a.v_level_2a);

-- Error - Sibling block descenda nt ------ ^

 DBMS_OUTPUT.PUT_LINE('.. END BLOCK level_1b');

 END level_1b;

BEGIN

 DBMS_OUTPUT.PUT_LINE('BLOCK level_0');

 DBMS_OUTPUT.PUT_LINE('.. v_level_0: ' || v_level_0);

 level_1a;

 level_1b;

 DBMS_OUTPUT.PUT_LINE('END BLOCK level_0');

END level_0;

The following is the output showing the content of each variable when the procedure is
invoked:

BEGIN

 level_0;

END;

BLOCK level_0

.. v_level_0: Value from level_0

.. BLOCK level_1a

...... BLOCK level_2a

........ v_level_2a: Value from level_2a

........ v_level_1a: Value from level_1a

........ level_1a.v_level_1a: Value from level_1a

........ v_level_0: Value from level_0

........ level_0.v_level_0: Value from level_0

...... END BLOCK level_2a

.. END BLOCK level_1a

.. BLOCK level_1b

.... v_level_1b: Value from level_1b

.... v_level_0 : Value from level_0

.. END BLOCK level_1b

END BLOCK level_0

The following example shows similar access attempts when all variables in all blocks
have the same name:

CREATE OR REPLACE PROCEDURE level_0

IS

 v_common V ARCHAR2(20) := 'Value from level_0';

 PROCEDURE level_1a

 IS

 v_common VARCHAR2(20) := 'Value from level_1a';

 PROCEDURE level_2a

 IS

 v_common VARCHAR2(20) := 'Value from level_2a';

 BEGIN

 DBMS_OUTPUT.PUT_LINE('...... BLOCK level_2a');

 DBMS_OUTPUT.PUT_LINE('........ v_common: ' || v_common);

 DBMS_OUTPUT.PUT_LINE('........ level_2a.v_common: ' || level_2a.v_common);

 DBMS_OUTPUT.PUT_LINE('........ level_1a.v_co mmon: ' || level_1a.v_common);

 DBMS_OUTPUT.PUT_LINE('........ level_0.v_common: ' || level_0.v_common);

 DBMS_OUTPUT.PUT_LINE('...... END BLOCK level_2a');

 END level_2a;

 BEGIN

 DBMS_OUTPUT.PUT_LINE('.. BLOCK level_ 1a');

 DBMS_OUTPUT.PUT_LINE('.... v_common: ' || v_common);

 DBMS_OUTPUT.PUT_LINE('.... level_0.v_common: ' || level_0.v_common);

 level_2a;

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

174

 DBMS_OUTPUT.PUT_LINE('.. END BLOCK level_1a');

 END level_1a;

 PROCEDURE level_1 b

 IS

 v_common VARCHAR2(20) := 'Value from level_1b';

 BEGIN

 DBMS_OUTPUT.PUT_LINE('.. BLOCK level_1b');

 DBMS_OUTPUT.PUT_LINE('.... v_common: ' || v_common);

 DBMS_OUTPUT.PUT_LINE('.... level_0.v_common : ' || level_0 .v_common);

 DBMS_OUTPUT.PUT_LINE('.. END BLOCK level_1b');

 END level_1b;

BEGIN

 DBMS_OUTPUT.PUT_LINE('BLOCK level_0');

 DBMS_OUTPUT.PUT_LINE('.. v_common: ' || v_common);

 level_1a;

 level_1b;

 DBMS_OUTPUT.PUT_LINE('END BLOCK lev el_0');

END level_0;

The following is the output showing the content of each variable when the procedure is
invoked:

BEGIN

 level_0;

END;

BLOCK level_0

.. v_common: Value from level_0

.. BLOCK level_1a

.... v_common: Value from level_1a

.... level_0.v_ common: Value from level_0

...... BLOCK level_2a

........ v_common: Value from level_2a

........ level_2a.v_common: Value from level_2a

........ level_1a.v_common: Value from level_1a

........ level_0.v_common: Value from level_0

...... END BLOCK level_2a

.. END BLOCK level_1a

.. BLOCK level_1b

.... v_common: Value from level_1b

.... level_0.v_common : Value from level_0

.. END BLOCK level_1b

END BLOCK level_0

As previously discussed, the labels on anonymous blocks can also be used to qualify

access to variables. The following example shows variable access within a set of nested
anonymous blocks:

DECLARE

 v_common VARCHAR2(20) := 'Value from level_0';

BEGIN

 DBMS_OUTPUT.PUT_LINE('BLOCK level_0');

 DBMS_OUTPUT.PUT_LINE('.. v_common: ' || v_com mon);

 <<level_1a>>

 DECLARE

 v_ common VARCHAR2(20) := 'Value from level_1a';

 BEGIN

 DBMS_OUTPUT.PUT_LINE('.. BLOCK level_1a');

 DBMS_OUTPUT.PUT_LINE('.... v_common: ' || v_common);

 <<level_2a>>

 DECLARE

 v_common VARCHAR2(20) := 'Value from level_2a';

 BEGIN

 DBMS_OUTPUT.PUT_LINE('...... BLOCK level_2a');

 DBMS_OUTPUT.PUT_LINE('........ v_common: ' || v_common);

 DBMS_OUTPUT.PUT_LINE('........ level_1a.v_ common: ' || level_1a.v_common);

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

175

 DBMS_OUTPUT.PUT_LINE('...... END BLOCK level_2a');

 END;

 DBMS_OUTPUT.PUT_LINE('.. END BLOCK level_1a');

 END;

 <<level_1b>>

 DECLARE

 v_common VARCHAR2(20) := 'Value from level_ 1b';

 BEGIN

 DBMS_OUTPUT.PUT_LINE('.. BLOCK level_1b');

 DBMS_OUTPUT.PUT_LINE('.... v_common: ' || v_common);

 DBMS_OUTPUT.PUT_LINE('.... level_1b.v_common: ' || level_1b.v_common);

 DBMS_OUTPUT.PUT_LINE('.. END BLOCK level_1 b');

 END;

 DBMS_OUTPUT.PUT_LINE('END BLOCK level_0');

END;

The following is the output showing the content of each variable when the anonymous
block is invoked:

BLOCK level_0

.. v_common: Value from level_0

.. BLOCK level_1a

.... v_common: Value fro m level_1a

...... BLOCK level_2a

........ v_common: Value from level_2a

........ level_1a.v_common: Value from level_1a

...... END BLOCK level_2a

.. END BLOCK level_1a

.. BLOCK level_1b

.... v_common: Value from level_1b

.... level_1b.v_common: Value from level_1b

.. END BLOCK level_1b

END BLOCK level_0

The following example is an object type whose object type method, display_emp ,

contains record type emp_typ and subprocedure emp_sal_query . Record variable

r_emp declared locally to emp_sal_query is able to access the record type emp_typ

declared in the parent block display_emp .

CREATE OR REPLACE TYPE emp_pay_obj_typ AS OBJECT

(

 empno NUMBER(4),

 MEMBER PROCEDURE display_emp(SELF IN OUT emp_pay_obj_typ)

);

CREATE OR REPLACE TYPE BODY emp_pay_obj_typ AS

 MEMBER PROCEDURE display_emp (SELF IN OUT emp_pay_obj_typ)

 IS

 TYPE emp_typ IS RECORD (

 ename emp.ename%TYPE,

 job emp.job%TYPE,

 hiredate emp.hiredate%TYPE,

 sal emp.sal%TYPE,

 deptno emp.deptno%TYPE

);

 PROCEDURE emp_sal_query (

 p_empno IN emp.empno%TYPE

)

 IS

 r_emp emp_typ;

 v_avgsal emp.sal%TYPE;

 BEGIN

 SELECT ename, job, hiredate, sal, deptno

 INTO r_emp.ename, r_emp.job, r_emp.hiredate, r_emp.sal, r_emp.deptno

 FROM emp WHERE empno = p_empno;

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

176

 DBMS_OUTPUT.PUT_LINE('Employe e # : ' || p_empno);

 DBMS_OUTPUT.PUT_LINE('Name : ' || r_emp.ename);

 DBMS_OUTPUT.PUT_LINE('Job : ' || r_emp.job);

 DBMS_OUTPUT.PUT_LINE('Hire Date : ' || r_emp.hiredate);

 DBMS_OUTPUT.PUT_LINE('Salary : ' || r_emp.sal);

 DBMS_OUTPUT.PUT_LINE('Dept # : ' || r_emp.deptno);

 SELECT AVG(sal) INTO v_avgsal

 FROM emp WHERE deptno = r_emp.deptno;

 IF r_emp.sal > v_avgsal THEN

 DBMS_OUTPUT.PUT_LINE('Employee''s salary is more than the '

 || 'department average of ' || v_avgsal);

 ELSE

 DBMS_OUTPUT.PUT_LINE('Employee''s salary does not exceed the '

 || 'department average of ' | | v_avgsal);

 END IF;

 END;

 BEGIN

 emp_sal_query(SELF.empno);

 END;

END;

The following is the output displayed when an instance of the object type is created and

procedure display_emp is invoked:

DECLARE

 v_emp E MP_PAY_OBJ_TYP;

BEGIN

 v_emp := emp_pay_obj_typ(7900);

 v_emp.display_emp;

END;

Employee # : 7900

Name : JAMES

Job : CLERK

Hire Date : 03 - DEC- 81 00:00:00

Salary : 950.00

Dept # : 30

Employee's salary does not exceed the departm ent average of 1566.67

The following example is a package with three levels of subprocedures. A record type,

collection type, and cursor type declared in the upper level procedure can be accessed by
the descendent subprocedure.

CREATE OR REPLACE PACKAGE emp_dept_pkg

IS

 PROCEDURE display_emp (

 p_deptno NUMBER

);

END;

CREATE OR REPLACE PACKAGE BODY emp_dept_pkg

IS

 PROCEDURE display_emp (

 p_deptno NUMBER

)

 IS

 TYPE emp_rec_typ IS RECORD (

 empno emp.empno%TYPE,

 ename emp.ename%TYPE

);

 TYPE emp_arr_typ IS TABLE OF emp_rec_typ INDEX BY BINARY_INTEGER;

 TYPE emp_cur_type IS REF CURSOR RETURN emp_rec_typ;

 PROCEDURE emp_by_dept (

 p_deptno emp.deptno%TYPE

)

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

177

 IS

 emp_arr emp_arr_typ;

 emp_refcur emp_cur_type;

 i BINARY_INTEGER := 0;

 PROCEDURE display_emp_arr

 IS

 BEGIN

 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');

 DBMS_OUTPUT.PUT_LINE(' ----- ------- ');

 FOR j IN emp_arr.FIRST .. emp_arr.LAST LOOP

 DBMS_OUTPUT.PUT_LINE(emp_arr(j).empno || ' ' ||

 emp_arr(j).ename);

 END LOOP;

 END display_emp_arr;

 BEGIN

 OPEN emp_refcur FOR SELECT empno, ename FROM emp WHERE deptno = p_deptno;

 LOOP

 i := i + 1;

 FETCH emp_refcur INTO emp_arr(i).empno, emp_arr(i).ename;

 EXIT WHEN emp_refcur%NOTFOUND;

 END LOOP;

 CLOSE emp_refcur;

 display_emp_arr;

 END emp_by_dept;

 BEGIN

 emp_by_dept(p_deptno);

 END;

END;

The following is the output displayed when the top level package procedure is invoked:

BEGIN

 emp_dept_pkg.display_emp(20);

END;

EMPNO ENAME

----- -------

7369 SMITH

7566 JONES

7788 SCOTT

7876 ADAMS

7902 FORD

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

178

3.2.7 Compilation Errors in Procedures and Functions

When the Advanced Server parsers compile a procedure or function, they confirm that

both the CREATE statement and the program body (that portion of the program that

follows the AS keyword) conforms to the grammar rules for SPL and SQL constructs. By
default, the server will terminate the compilation process if a parser detects an error.
Note that the parsers detect syntax errors in expressions, but not semantic errors (i.e. an
expression referencing a non-existent column, table, or function, or a value of incorrect
type).

spl. max_error _count instructs the server to stop parsing if it encounters the specified
number of errors in SPL code, or when it encounters an error in SQL code. The default

value of spl . max_error _count is 10 ; the maximum value is 1000 . Setting

spl.max_error_count to a value of 1 instructs the server to stop parsing when it
encounters the first error in either SPL or SQL code.

You can use the SET command to specify a value for spl. max_error _count for your
current session. The syntax is:

SET spl.max_error_count = number_of_errors

Where number_of_errors specifies the number of SPL errors that may occur before
the server halts the compilation process. For example:

SET spl.max_error_count = 6

The example instructs the server to continue past the first five SPL errors it encounters.
When the server encounters the sixth error it will stop validating, and print six detailed
error messages, and one error summary.

To save time when developing new code, or when importing existing code from another

source, you may want to set the spl. max_error _count configuration parameter to a
relatively high number of errors.

Please note that if you instruct the server to continue parsing in spite of errors in the SPL
code in a program body, and the parser encounters an error in a segment of SQL code,

there may still be errors in any SPL or SQL code that follows the erroneous SQL code.
For example, the following function results in two errors:

CREATE FUNCTION computeBonus(baseSalary number) RETURN

number AS

BEGIN

 bonus := baseSalary * 1.10;

 total := bonus + 100;

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

179

 RETURN bonus;

END;

ERROR: "bonus" is not a known variable

LINE 4: bonus := baseSalary * 1.10;

 ^

ERROR: "total" is not a known variable

LINE 5: total := bonus + 100;

 ^

ERROR: compilation of SPL function/procedure

"computebonus" failed due to 2 errors

The following example adds a SELECT statement to the previous example. The error in
the SELECT statement masks the other errors that follow:

CREATE FUNCTION computeBonus(employeeName number) RETURN

number AS

BEGIN

 SELECT salary INTO baseSalary FROM emp

 WHERE ename = employeeName;

 bonus := baseSalary * 1.10;

 total := bonus + 100;

 RETURN bonus;

END;

ERROR: "basesalary" is not a known variable

LINE 3: SELECT salary INTO baseSalary FROM emp WHERE

ename = emp...

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

180

3.2.8 Program Security

Security over what user may execute an SPL program and what database objects an SPL
program may access for any given user executing the program is controlled by the
following:

¶ Privilege to execute a program.

¶ Privileges granted on the database objects (including other SPL programs) which
a program attempts to access.

¶ Whether the program is defined with definerôs rights or invokerôs rights.

These aspects are discussed in the following sections.

3.2.8.1 EXECUTE Privilege

An SPL program (function, procedure, or package) can begin execution only if any of the
following are true:

¶ The current user is a superuser, or

¶ The current user has been granted EXECUTE privilege on the SPL program, or

¶ The current user inherits EXECUTE privilege on the SPL program by virtue of
being a member of a group which does have such privilege, or

¶ EXECUTE privilege has been granted to the PUBLIC group.

Whenever an SPL program is created in Advanced Server, EXECUTE privilege is

automatically granted to the PUBLIC group by default, therefore, any user can
immediately execute the program.

This default privilege can be removed by using the REVOKE EXECUTE command. The
following is an example:

REVOKE EXECUTE ON PROCEDURE list_emp FROM PUBLIC;

Explicit EXECUTE privilege on the program can then be granted to individual users or
groups.

GRANT EXECUTE ON PROCEDURE list_emp TO john;

Now, user, john , can execute the list_emp program; other users who do not meet any
of the conditions listed at the beginning of this section cannot.

Once a program begins execution, the next aspect of security is what privilege checks
occur if the program attempts to perform an action on any database object including:

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

181

¶ Reading or modifying table or view data.

¶ Creating, modifying, or deleting a database object such as a table, view, index, or

sequence.

¶ Obtaining the current or next value from a sequence.
¶ Calling another program (function, procedure, or package).

Each such action can be protected by privileges on the database object either allowed or
disallowed for the user.

Note that it is possible for a database to have more than one object of the same type with

the same name, but each such object belonging to a different schema in the database. If
this is the case, which object is being referenced by an SPL program? This is the topic of
the next section.

3.2.8.2 Database Object Name Resolution

A database object inside an SPL program may either be referenced by its qualified name

or by an unqualified name. A qualified name is in the form of schema . name where

schema is the name of the schema under which the database object with identifier, name,

exists. An unqualified name does not have the ñschema. ò portion. When a reference is

made to a qualified name, there is absolutely no ambiguity as to exactly which database
object is intended ï it either does or does not exist in the specified schema.

Locating an object with an unqualified name, however, requires the use of the current
userôs search path. When a user becomes the current user of a session, a default search

path is always associated with that user. The search path consists of a list of schemas
which are searched in left-to-right order for locating an unqualified database object
reference. The object is considered non-existent if it canôt be found in any of the schemas

in the search path. The default search path can be displayed in PSQL using the SHOW

search_path command.

SHOW search_path;

 search_path

 $user,public,sys,dbo

(1 row)

$user in the above search path is a generic placeholder that refers to the current user so

if the current user of the above session is enterprisedb , an unqualified database object

would be searched for in the following schemas in this order ï first, enterprisedb ,
then public , then sys , and finally, dbo .

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

182

Once an unqualified name has been resolved in the search path, it can be determined if
the current user has the appropriate privilege to perform the desired action on that
specific object.

Note: The concept of the search path is not compatible with Oracle databases. For an
unqualified reference, Oracle simply looks in the schema of the current user for the
named database object. It also important to note that in Oracle, a user and his or her

schema is the same entity while in Advanced Server, a user and a schema are two distinct
objects.

3.2.8.3 Database Object Privileges

Once an SPL program begins execution, any attempt to access a database object from

within the program results in a check to ensure the current user has the authorization to
perform the intended action against the referenced object. Privileges on database objects

are bestowed and removed using the GRANT and REVOKE commands, respectively. If the
current user attempts unauthorized access on a database object, then the program will
throw an exception. See Section 3.5.7 for information about exception handling.

The final topic discusses exactly who is the current user.

3.2.8.4 Definerôs vs. Invokers Rights

When an SPL program is about to begin execution, a determination is made as to what

user is to be associated with this process. This user is referred to as the current user. The
current userôs database object privileges are used to determine whether or not access to

database objects referenced in the program will be permitted. The current, prevailing
search path in effect when the program is invoked will be used to resolve any unqualified
object references.

The selection of the current user is influenced by whether the SPL program was created

with definerôs right or invokerôs rights. The AUTHID clause determines that selection.

Appearance of the clause AUTHID DEFINER gives the program definerôs rights. This is

also the default if the AUTHID clause is omitted. Use of the clause AUTHID

CURRENT_USER gives the program invokerôs rights. The difference between the two is
summarized as follows:

¶ If a program has definerôs rights, then the owner of the program becomes the
current user when program execution begins. The program ownerôs database

object privileges are used to determine if access to a referenced object is
permitted. In a definerôs rights program, it is irrelevant as to which user actually
invoked the program.

¶ If a program has invokerôs rights, then the current user at the time the program is
called remains the current user while the program is executing (but not necessarily
within called subprograms ï see the following bullet points). When an invokerôs

rights program is invoked, the current user is typically the user that started the

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

183

session (i.e., made the database connection) although it is possible to change the
current user after the session has started using the SET ROLE command. In an

invokerôs rights program, it is irrelevant as to which user actually owns the
program.

From the previous definitions, the following observations can be made:

¶ If a definerôs rights program calls a definerôs rights program, the current user
changes from the owner of the calling program to the owner of the called program

during execution of the called program.

¶ If a definerôs rights program calls an invokerôs rights program, the owner of the
calling program remains the current user during execution of both the calling and

called programs.

¶ If an invokerôs rights program calls an invokerôs rights program, the current user
of the calling program remains the current user during execution of the called

program.

¶ If an invokersô rights program calls a definerôs rights program, the current user
switches to the owner of the definerôs rights program during execution of the
called program.

The same principles apply if the called program in turn calls another program in the cases
cited above.

This section on security concludes with an example using the sample application.

3.2.8.5 Security Example

In the following example, a new database will be created along with two users ï hr_mgr

who will own a copy of the entire sample application in schema, hr_mgr ; and

sales_mgr who will own a schema named, sales_mgr , that will have a copy of only
the emp table containing only the employees who work in sales.

The procedure list_emp , function hire_clerk , and package emp_admin will be used
in this example. All of the default privileges that are granted upon installation of the

sample application will be removed and then be explicitly re-granted so as to present a
more secure environment in this example.

Programs list_emp and hire_clerk will be changed from the default of definerôs

rights to invokerôs rights. It will be then illustrated that when sales_mgr runs these

programs, they act upon the emp table in sales_mgr ôs schema since sales_mgr ôs
search path and privileges will be used for name resolution and authorization checking.

Programs get_dept_name and hire_emp in the emp_admin package will then be

executed by sales_mgr . In this case, the dept table and emp table in hr_mgr ôs schema

will be accessed as hr_mgr is the owner of the emp_admin package which is using

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

184

definerôs rights. Since the default search path is in effect with the $user placeholder, the
schema matching the user (in this case, hr_mgr) is used to find the tables.

Step 1 ï Create Database and Users

As user enterprisedb , create the hr database:

CREATE DATABASE hr;

Switch to the hr database and create the users:

\ c hr ent erprisedb

CREATE USER hr_mgr IDENTIFIED BY password;

CREATE USER sales_mgr IDENTIFIED BY password;

Step 2 ï Create the Sample Application

Create the entire sample application, owned by hr_mgr , in hr_mgr ôs schema.

\ c - hr_mgr

\ i C :/Program Files/PostgresPlu s/ 9.6 AS/installer/server/edb - sample.sql

BEGIN

CREATE TABLE

CREATE TABLE

CREATE TABLE

CREATE VIEW

CREATE SEQUENCE

 .

 .

 .

CREATE PACKAGE

CREATE PACKAGE BODY

COMMIT

Step 3 ï Create the emp Table in Schema sales_mgr

Create a subset of the emp table owned by sales_mgr in sales_mgr ôs schema.

\ c ï hr_mgr

GRANT USAGE ON SCHEMA hr_mgr TO sales_mgr;

\ c ï sales_mgr

CREATE TABLE emp AS SELECT * FROM hr_mgr.emp WHERE job = 'SALESMAN';

In the above example, the GRANT USAGE ON SCHEMA command is given to allow

sales_mgr access into hr_mgr ôs schema to make a copy of hr_mgr ôs emp table. This

step is required in Advanced Server and is not compatible with Oracle databases since
Oracle does not have the concept of a schema that is distinct from its user.

Step 4 ï Remove Default Privileges

Remove all privileges to later illustrate the minimum required privileges needed.

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

185

\ c ï hr_mgr

REVOKE USAGE ON SCHEMA hr_mgr FROM sales_mgr;

REVOKE ALL ON dept FROM PUBLIC;

REVOKE ALL ON emp FROM PUBLIC;

REVOKE ALL ON next _empno FROM PUBLIC;

REVOKE EXECUTE ON FUNCTION new_empno() FROM PUBLIC;

REVOKE EXECUTE ON PROCEDURE list_emp FROM PUBLIC;

REVOKE EXECUTE ON FUNCTION hire_clerk(VARCHAR2,NUMBER) FROM PUBLIC;

REVOKE EXECUTE ON PACKAGE emp_admin FROM PUBLIC;

Step 5 ï Change list_emp to Invokerôs Rights

While connected as user, hr_mgr , add the AUTHID CURRENT_USER clause to the

list_emp program and resave it in Advanced Server. When performing this step, be

sure you are logged on as hr_mgr , otherwise the modified program may wind up in the
public schema instead of in hr_mgr ôs schema.

CREATE OR REPLACE PROCEDURE list_emp

AUTHID CURRENT_USER

IS

 v_empno NUMBER(4);

 v_ename VARCHAR2(10);

 CURSOR emp_cur IS

 SELECT empno, ename FROM emp ORDER BY empno;

BEGIN

 OPEN emp_cur;

 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');

 DBMS_OUTPUT.PUT_LINE(' ----- ------- ');

 LOOP

 FETCH emp_cur INTO v_empno, v_ename;

 EXIT WHEN emp_cur%NOTFOUND;

 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || v_ename);

 END LOOP;

 CLOSE emp_cur;

END;

Step 6 ï Change hire_clerk to Invokerôs Rights and Qualify Call to new_empno

While connected as user, hr_mgr , add the AUTHID CURRENT_USER clause to the
hire_clerk program.

Also, after the BEGIN statement, fully qualify the reference, new_empno, to

hr_mgr.new_empno in order to ensure the hire_clerk function call to the
new_empno function resolves to the hr_mgr schema.

When resaving the program, be sure you are logged on as hr_mgr , otherwise the
modified program may wind up in the public schema instead of in hr_mgr ôs schema.

CREATE OR REPLACE FUNCTION hire_clerk (

 p_ename VARCHAR2,

 p_deptno NUMBER

) RETURN NUMBER

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

186

AUTHID CURRENT_USER

IS

 v_empno NUMBER(4);

 v_ename VAR CHAR2(10);

 v_job VARCHAR2(9);

 v_mgr NUMBER(4);

 v_hiredate DATE;

 v_sal NUMBER(7,2);

 v_comm NUMBER(7,2);

 v_deptno NUMBER(2);

BEGIN

 v_empno := hr_mgr.new_empno;

 INSERT INTO emp VALUES (v_empno, p_ename, 'CLERK', 7782,

 TRUNC(SYSDATE), 950.00, NULL, p_deptno);

 SELECT empno, ename, job, mgr, hiredate, sal, comm, deptno INTO

 v_empno, v_ename, v_job, v_mgr, v_hiredate, v_sal, v_comm, v_deptno

 FROM emp WHERE empno = v_empno;

 DBMS_OUTPUT.PUT_LINE('Department : ' || v_deptno);

 DBMS_OUTPUT.PUT_LINE('Employee No: ' || v_empno);

 DBMS_OUTPUT.PUT_LINE('Name : ' || v_ename);

 DBMS_OUTPUT.PUT_LINE('Job : ' || v_job);

 DBMS_OUTPUT.PUT_LINE('Manager : ' || v_mgr);

 DBMS_OUTPUT.PUT_LINE('Hire Date : ' || v_hiredate);

 DBMS_OUTPUT.PUT_LINE('Salary : ' || v_sal);

 DBMS_OUTPUT.PUT_LINE('Commission : ' || v_comm);

 RETURN v_empno;

EXCEPTION

 WHEN OTHERS THEN

 DBMS_OUTPUT.PUT_LINE('The following is SQLERRM:');

 DBMS_OUTPUT.PUT_LINE(SQLERRM);

 DBMS_OUTPUT.PUT_LINE('The following is SQLCODE:');

 DBMS_OUTPUT.PUT_LINE(SQLCODE);

 RETURN - 1;

END;

Step 7 ï Grant Required Privileges

While connected as user, hr_mgr , grant the privileges needed so sales_mgr can

execute the list_emp procedure, hire_clerk function, and emp_admin package.

Note that the only data object sales_mgr has access to is the emp table in the
sales_mgr schema. sales_mgr has no privileges on any table in the hr_mgr schema.

GRANT USAGE ON SCHEMA hr_mgr TO sales_mgr;

GRANT EXECUTE ON PROCEDURE list_emp TO sales_mgr;

GRANT EXECUTE ON FUNCTION hire_clerk(VARCHAR2,NUMBER) TO sales_mgr;

GRANT EXECUTE ON FUNCTION new_empno() TO sales_mgr;

GRANT EXECUTE ON PACKAGE emp_admin TO sales_mgr;

Step 8 ï Run Programs list_emp and hire_clerk

Connect as user, sales_mgr , and run the following anonymous block:

\ c ï sales_mgr

DECLARE

 v_empno NUMBER(4);

BEGIN

 hr_mgr.list_emp;

 DBMS_OUTPUT.PUT_LINE('*** Adding new employee ***');

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

187

 v_empno := hr_mgr.hire_clerk('JONES',40);

 DBMS_OUTPUT.PUT_LINE('*** After new employee added ***');

 hr_mgr.list_emp;

END;

EMPNO ENAME

----- -------

7499 ALLEN

7521 WARD

7654 MARTIN

7844 TURNER

*** Adding new employee ***

Department : 40

Employee No: 8000

Name : JONES

Job : CLERK

Manager : 7782

Hire Date : 08 - NOV- 07 00:00:00

Salary : 950.00

*** After new employee added ***

EMPNO ENAME

----- -------

7499 ALLEN

7521 WARD

7654 MARTIN

7844 TURNER

8000 JONES

The table and sequence accessed by the programs of the anonymous block are illustrated

in the following diagram. The gray ovals represent the schemas of sales_mgr and

hr_mgr . The current user during each program execution is shown within parenthesis in
bold red font.

Figure 3 - Invoker's Rights Programs

Selecting from sales_mgr ôs emp table shows that the update was made in this table.

sales_mgr
hr_mgr

emp dept

lis t_emp
(sales_mgr)

hire_c lerk
(sales_mgr)

new_empno
(hr_mgr)

next_

empn

o

emp

(sales_mgr)

BEGIN

 hr_mgr.list_emp;

 hr_mgr.hire_clerk

 ...

END;

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

188

SELECT empno, ename, hi redate, sal, deptno,

hr_mgr.emp_admin.get_dept_name(deptno) FROM sales_mgr.emp;

empno | ename | hiredate | sal | deptno | get_dept_name

------- +-------- +-------------------- +--------- +-------- +---------------

 7499 | ALLEN | 20 - FEB- 81 00: 00:00 | 1600.00 | 30 | SALES

 7521 | WARD | 22 - FEB- 81 00:00:00 | 1250.00 | 30 | SALES

 7654 | MARTIN | 28 - SEP- 81 00:00:00 | 1250.00 | 30 | SALES

 7844 | TURNER | 08 - SEP- 81 00:00:00 | 1500.00 | 30 | SALES

 8000 | JONES | 08 - NOV- 07 00: 00:00 | 950.00 | 40 | OPERATIONS

(5 rows)

The following diagram shows that the SELECT command references the emp table in the

sales_mgr schema, but the dept table referenced by the get_dept_name function in

the emp_admin package is from the hr_mgr schema since the emp_admin package has

definerôs rights and is owned by hr_mgr . The default search path setting with the $user
placeholder resolves the access by user hr_mgr to the dept table in the hr_mgr schema.

Figure 4 Definer's Rights Package

Step 9 ï Run Program hire_emp in the emp_admin Package

While connected as user, sales_mgr , run the hire_emp procedure in the emp_admin
package.

EXEC hr_mgr.emp_admin.hire_emp(9001,

'ALICE','SALESMAN',8000,TRUNC(SYSDATE),1000,7369,40);

This diagram illustrates that the hire_emp procedure in the emp_admin definerôs rights

package updates the emp table belonging to hr_mgr since the object privileges of

sales_mgr
hr_mgr

emp dept
next_

empn

o

emp

emp_admin
(hr_mgr)

hire_emp

get_dept_name

(sales_mgr)

SELECT empno, ename...

hr_mgr.emp_admin.get_dept_name...

FROM sales_mgr.emp

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

189

hr_mgr are used, and the default search path setting with the $user placeholder resolves
to the schema of hr_mgr .

Figure 5 Definer's Rights Package

Now connect as user, hr_mgr . The following SELECT command verifies that the new

employee was added to hr_mgr ôs emp table since the emp_admin package has definerôs
rights and hr_mgr is emp_adminôs owner.

\ c ï hr_mgr

SELECT empno, ename, hiredate, sal, deptno,

hr_mgr.emp_admin.get_dept_name(deptno) FROM hr_mgr.emp;

empno | ename | hiredate | sal | deptno | get_dept_name

------- +-------- +-------------------- +--------- +-------- +---------------

 7369 | SMITH | 17 - DEC- 80 00:00:00 | 800.00 | 20 | RESEARCH

 7499 | ALLEN | 20 - FEB- 81 00:00:00 | 1600.00 | 30 | SALES

 7521 | WARD | 22 - FEB- 81 00:00:00 | 1250.00 | 30 | SALES

 7566 | JONES | 02 - APR- 81 00:00:00 | 2975.00 | 20 | RESEARCH

 7654 | MARTIN | 28 - SEP- 81 00:00:00 | 1250.00 | 30 | SALES

 7698 | BLAKE | 01 - MAY- 81 00:00:00 | 2850.00 | 30 | SALES

 7782 | CLARK | 09 - JUN- 81 00:00:00 | 2450.00 | 10 | ACCOUNTING

 7788 | SCOTT | 19 - APR- 87 00:00:00 | 3000.00 | 20 | RESEARCH

 7839 | KING | 17 - NOV- 81 00:00:00 | 5000.00 | 10 | ACCOUNTING

 7844 | TURNER | 08 - SEP- 81 00:00:00 | 1500.00 | 30 | SALES

 7876 | ADAMS | 23 - MAY- 87 00:00:00 | 1100.00 | 20 | RESEARCH

 7900 | JAMES | 03 - DEC- 81 00:00:00 | 950.00 | 30 | SALES

 7902 | FORD | 03 - DEC- 81 00:00:00 | 3000.00 | 20 | RESEARCH

 7934 | MILLER | 23 - JAN- 82 00:00:00 | 1300.00 | 10 | ACCOUNTING

 9001 | ALICE | 08 - NOV- 07 00:00:00 | 8000.00 | 40 | OPERA TIONS

(15 rows)

sales_mgr
hr_mgr

emp dept
next_

empn

o

emp

emp_admin
(hr_mgr)

hire_emp

get_dept_name

(sales_mgr)

EXEC hr_mgr.emp_admin.hire_emp...

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

190

3.3 Variable Declarations

SPL is a block-structured language. The first section that can appear in a block is the

declaration. The declaration contains the definition of variables, cursors, and other types
that can be used in SPL statements contained in the block.

3.3.1 Declaring a Variable

Generally, all variables used in a block must be declared in the declaration section of the

block. A variable declaration consists of a name that is assigned to the variable and its
data type. Optionally, the variable can be initialized to a default value in the variable
declaration.

The general syntax of a variable declaration is:

name type [{ := | DEFAULT } { expression | NULL }];

name is an identifier assigned to the variable.

type is the data type assigned to the variable.

[:= expression], if given, specifies the initial value assigned to the variable when the

block is entered. If the clause is not given then the variable is initialized to the SQL NULL
value.

The default value is evaluated every time the block is entered. So, for example, assigning

SYSDATE to a variable of type DATE causes the variable to have the time of the current
invocation, not the time when the procedure or function was precompiled.

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

191

The following procedure illustrates some variable declarations that utilize defaults
consisting of string and numeric expressions.

CREATE OR REPLACE PROCEDURE dept_salary_rpt (

 p_deptno NUMBER

)

IS

 todays_date DATE := SYSDATE;

 rpt_title VARCHAR2(60) := 'Rep ort For Department # ' || p_deptno

 || ' on ' || todays_date;

 base_sal INTEGER := 35525;

 base_comm_rate NUMBER := 1.33333;

 base_annual NUMBER := ROUND(base_sal * base_comm_rate, 2);

BEGIN

 DBMS_OUTPUT.PUT_LINE(rpt_ti tle);

 DBMS_OUTPUT.PUT_LINE('Base Annual Salary: ' || base_annual);

END;

The following output of the above procedure shows that default values in the variable
declarations are indeed assigned to the variables.

EXEC dept_salary_rpt(20);

Report For Depar tment # 20 on 10 - JUL- 07 16:44:45

Base Annual Salary: 47366.55

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

192

3.3.2 Using %TYPE in Variable Declarations

Often, variables will be declared in SPL programs that will be used to hold values from

tables in the database. In order to ensure compatibility between the table columns and the
SPL variables, the data types of the two should be the same.

However, as quite often happens, a change might be made to the table definition. If the
data type of the column is changed, the corresponding change may be required to the
variable in the SPL program.

Instead of coding the specific column data type into the variable declaration the column

attribute, %TYPE, can be used instead. A qualified column name in dot notation or the

name of a previously declared variable must be specified as a prefix to %TYPE. The data

type of the column or variable prefixed to %TYPE is assigned to the variable being
declared. If the data type of the given column or variable changes, the new data type will
be associated with the variable without the need to modify the declaration code.

Note: The %TYPE attribute can be used with formal parameter declarations as well.

name { { table | view }. column | variable }%TYPE;

name is the identifier assigned to the variable or formal parameter that is being declared.

column is the name of a column in table or view . variable is the name of a variable
that was declared prior to the variable identified by name.

Note: The variable does not inherit any of the columnôs other attributes such as might be
specified on the column with the NOT NULL clause or the DEFAULT clause.

In the following example a procedure queries the emp table using an employee number,
displays the employeeôs data, finds the average salary of all employees in the department
to which the employee belongs, and then compares the chosen employeeôs salary with the
department average.

CREATE OR REPLACE PROCEDURE emp_sal_query (

 p_empno IN NUMBER

)

IS

 v_ename VARCHAR2(10);

 v_job VARCHAR2(9);

 v_hiredate DATE;

 v _sal NUMBER(7,2);

 v_deptno NUMBER(2);

 v_avgsal NUMBER(7,2);

BEGIN

 SELECT ename, job, hiredate, sal, deptno

 INTO v_ename, v_job, v_hiredate, v_sal, v_deptno

 FROM emp WHERE empno = p_empno;

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

193

 DBMS_OUTPUT.PUT_LINE('Employee # : ' || p_empno);

 DBMS_OUTPUT.PUT_LINE('Name : ' || v_ename);

 DBMS_OUTPUT.PUT_LINE('Job : ' || v_job);

 DBMS_OUTPUT.PUT_LINE('Hire Date : ' || v_hiredate);

 DBMS_OUTPUT.PUT_LINE('Salary : ' || v_sal);

 DBMS_OUTPUT.PUT_LINE('Dept # : ' || v_deptno);

 SELECT AVG(sal) INTO v_avgsal

 FROM emp WHERE deptno = v_deptno;

 IF v_sal > v_avgsal THEN

 DBMS_OUTPUT.PUT_LINE('Employee''s salary is more than the '

 || 'department ave rage of ' || v_avgsal);

 ELSE

 DBMS_OUTPUT.PUT_LINE('Employee''s salary does not exceed the '

 || 'department average of ' || v_avgsal);

 END IF;

END;

Instead of the above, the procedure could be written as follows without explicitly coding
the emp table data types into the declaration section of the procedure.

CREATE OR REPLACE PROCEDURE emp_sal_query (

 p_empno IN emp.empno%TYPE

)

IS

 v_ename emp.ename%TYPE;

 v_job emp.job%TYPE;

 v_hiredate emp.hiredate%TYPE;

 v_sal emp.sal%TYPE;

 v_deptno emp.deptno%TYPE;

 v_avgsal v_sal%TYPE;

BEGIN

 SELECT ename, job, hiredate, sal, deptno

 INTO v_ename, v_job, v_hiredate, v_sal, v_deptno

 FROM emp WHERE empno = p_empno;

 DBMS_OUTPUT.PUT_LINE('Employee # : ' || p_empno);

 DBMS_OUTPUT.PUT_LINE('Name : ' || v_ename);

 DBMS_OUTPUT.PUT_LINE('Job : ' || v_job);

 DBMS_OUTPUT.PUT_LINE('Hire Date : ' || v_hiredate);

 DBMS_OUTPUT.PUT_LINE('Salary : ' || v_sal);

 DBMS_OUTPUT.PUT_LINE('Dept # : ' || v_deptno);

 SELECT AVG(sal) INTO v_avgsal

 FROM emp WHERE deptno = v_deptno;

 IF v_sal > v_avgsal THEN

 DBMS_OUTPUT.PUT_LINE('Employee''s salary is more than the '

 || 'department average of ' || v_avgsal);

 ELSE

 DBMS_OUTPUT.PUT_LINE('Employee''s salary does not exceed the '

 || 'department average of ' || v_avgsal);

 END IF;

END;

Note: p_empno shows an example of a formal parameter defined using %TYPE.

v_avgsal illustrates the usage of %TYPE referring to another variable instead of a table
column.

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

194

The following is sample output from executing this procedure.

EXEC emp_sal_query(7698);

Employee # : 7698

Name : BLAKE

Job : MANAGER

Hire Date : 01 - MAY- 81 00:00:00

Salary : 2850.00

Dept # : 30

Employee's salary is more than the department average of 1566.67

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

195

3.3.3 Using %ROWTYPE in Record Declarations

The %TYPE attribute provides an easy way to create a variable dependent upon a

columnôs data type. Using the %ROWTYPE attribute, you can define a record that contains
fields that correspond to all columns of a given table. Each field takes on the data type of

its corresponding column. The fields in the record do not inherit any of the columnsô

other attributes such as might be specified with the NOT NULL clause or the DEFAULT
clause.

A record is a named, ordered collection of fields. A field is similar to a variable; it has an
identifier and data type, but has the additional property of belonging to a record, and must
be referenced using dot notation with the record name as its qualifier.

You can use the %ROWTYPE attribute to declare a record. The %ROWTYPE attribute is
prefixed by a table name. Each column in the named table defines an identically named
field in the record with the same data type as the column.

record table %ROWTYPE;

record is an identifier assigned to the record. table is the name of a table (or view)

whose columns are to define the fields in the record. The following example shows how

the emp_sal_query procedure from the prior section can be modified to use

emp%ROWTYPE to create a record named r_emp instead of declaring individual variables
for the columns in emp.

CREATE OR REPLACE PROCEDURE emp_sal_query (

 p_empno IN emp.empno%TYPE

)

IS

 r_emp emp%ROWTYPE;

 v_avgsal emp.sal%TYPE;

BEGIN

 SELECT ename, job, hiredate, sal, deptno

 INTO r_emp.ename, r_emp.job, r_emp.hiredate, r_emp.sal, r_emp.deptno

 FROM emp WHERE empno = p_empno;

 DBMS_OUTPUT.PUT_LINE('Employee # : ' || p_empno);

 DBMS_OUTPUT.PUT_LINE('Name : ' || r_emp.ename);

 DBMS_OUTPUT.PUT_LINE('Job : ' || r_emp.job);

 DBMS_OUTPUT.PUT_LINE('Hire Date : ' || r_emp.hiredate);

 DBMS_OUTPUT.PUT_LINE('Salary : ' || r_emp.sal);

 DBMS_OUTPUT.PUT_LINE('Dept # : ' || r_emp.deptno);

 SELECT AVG(sal) INTO v_avgsal

 FROM emp WHERE deptno = r_emp.deptno;

 IF r_emp.sal > v_avgsal THEN

 DBMS_OUTPUT.PUT_LINE('Empl oyee''s salary is more than the '

 || 'department average of ' || v_avgsal);

 ELSE

 DBMS_OUTPUT.PUT_LINE('Employee''s salary does not exceed the '

 || 'department average of ' || v_avgsal);

 END IF;

END;

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

196

3.3.4 User -Defined Rec ord Types and Record Variables

Records can be declared based upon a table definition using the %ROWTYPE attribute as
shown in Section 3.3.3. This section describes how a new record structure can be defined
that is not tied to any particular table definition.

The TYPE IS RECORD statement is used to create the definition of a record type. A
record type is a definition of a record comprised of one or more identifiers and their
corresponding data types. A record type cannot, by itself, be used to manipulate data.

The syntax for a TYPE IS RECORD statement is:

TYPE rec _type IS RECORD (fields)

Where fields is a comma-separated list of one or more field definitions of the

following form:

field _name data _type [NOT NULL][{:= | DEFAULT} default _value]

Where:

rec_type

rec_type is an identifier assigned to the record type.

field_name

field_name is the identifier assigned to the field of the record type.

data_type

data_type specifies the data type of field_name .

DEFAULT default _value

The DEFAULT clause assigns a default data value for the corresponding field. The
data type of the default expression must match the data type of the column. If no

default is specified, then the default is NULL.

A record variable or simply put, a record, is an instance of a record type. A record is
declared from a record type. The properties of the record such as its field names and
types are inherited from the record type.

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

197

The following is the syntax for a record declaration.

record rectype

record is an identifier assigned to the record variable. rectype is the identifier of a

previously defined record type. Once declared, a record can then be used to hold data.

Dot notation is used to make reference to the fields in the record.

record.field

record is a previously declared record variable and field is the identifier of a field
belonging to the record type from which record is defined.

The emp_sal_query is again modified ï this time using a user-defined record type and
record variable.

CREATE OR REPLACE PROCEDURE emp_sal_query (

 p_empno IN emp.empno%TYPE

)

IS

 TYPE emp_typ IS RECORD (

 ename emp.ename%TYPE,

 job emp.job%TYPE,

 hiredate emp.hiredate%TYPE,

 sal emp.sal%TYPE,

 deptno emp.deptno%TYPE

);

 r_emp emp_typ;

 v_avgsal emp.sal%TYPE;

BEGIN

 SELECT ename, job, hiredate, sal, deptno

 INTO r_emp.ename, r_emp.job, r_emp.hiredate, r_emp.sal, r_emp.deptno

 FROM emp WHERE empno = p_empno;

 DBMS_OUTPUT.PUT_LINE('Employee # : ' || p_empno);

 DBMS_OUTPUT.PUT_LINE('Name : ' || r_emp.ename);

 DBMS_OUTPUT.PUT_LINE('Job : ' || r_emp.job);

 DBMS_OUTPUT.PUT_LINE('Hire Date : ' || r_emp.hiredate);

 DBMS_OUTPUT.PUT_LINE('Sal ary : ' || r_emp.sal);

 DBMS_OUTPUT.PUT_LINE('Dept # : ' || r_emp.deptno);

 SELECT AVG(sal) INTO v_avgsal

 FROM emp WHERE deptno = r_emp.deptno;

 IF r_emp.sal > v_avgsal THEN

 DBMS_OUTPUT.PUT_LINE('Employee''s salary is more than the '

 || 'department average of ' || v_avgsal);

 ELSE

 DBMS_OUTPUT.PUT_LINE('Employee''s salary does not exceed the '

 || 'department average of ' || v_avgsal);

 END IF;

END;

Note that instead of specifying data type names, the %TYPE attribute can be used for the
field data types in the record type definition.

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

198

The following is the output from executing this stored procedure.

EXEC emp_sal_query(7698);

Employee # : 7698

Name : BLAKE

Job : MANAGER

Hire Da te : 01 - MAY- 81 00:00:00

Salary : 2850.00

Dept # : 30

Employee's salary is more than the department average of 1566.67

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

199

3.4 Basic Statements

This section begins the discussion of the programming statements that can be used in an
SPL program.

3.4.1 NULL

The simplest statement is the NULL statement. This statement is an executable statement
that does nothing.

NULL;

The following is the simplest, possible valid SPL program.

BEGIN

 NULL;

END;

The NULL statement can act as a placeholder where an executable statement is required

such as in a branch of an IF - THEN- ELSE statement.

For example:

CREATE OR REPLACE PROCEDURE divide_it (

 p_numerator IN NUMBER,

 p_denominator IN NUMBER,

 p_result OUT NUMBER

)

IS

BEGIN

 IF p_de nominator = 0 THEN

 NULL;

 ELSE

 p_result := p_numerator / p_denominator;

 END IF;

END;

3.4.2 Assignment

The assignment statement sets a variable or a formal parameter of mode OUT or IN OUT

specified on the left side of the assignment, := , to the evaluated expression specified on
the right side of the assignment.

variable := expression ;

variable is an identifier for a previously declared variable, OUT formal parameter, or

IN OUT formal parameter.

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

200

expression is an expression that produces a single value. The value produced by the
expression must have a compatible data type with that of variable .

The following example shows the typical use of assignment statements in the executable
section of the procedure.

CREATE OR REPLACE PROCEDURE dept_sala ry_rpt (

 p_deptno NUMBER

)

IS

 todays_date DATE;

 rpt_title VARCHAR2(60);

 base_sal INTEGER;

 base_comm_rate NUMBER;

 base_annual NUMBER;

BEGIN

 todays_date := SYSDATE;

 rpt_title := 'Report For Departm ent # ' || p_deptno || ' on '

 || todays_date;

 base_sal := 35525;

 base_comm_rate := 1.33333;

 base_annual := ROUND(base_sal * base_comm_rate, 2);

 DBMS_OUTPUT.PUT_LINE(rpt_title);

 DBMS_OUTPUT.PUT_LINE('Base Annual Salary: ' || bas e_annual);

END;

3.4.3 SELECT INTO

The SELECT INTO statement is an SPL variation of the SQL SELECT command, the
differences being:

¶ That SELECT INTO is designed to assign the results to variables or records where
they can then be used in SPL program statements.

¶ The accessible result set of SELECT INTO is at most one row.

Other than the above, all of the clauses of the SELECT command such as WHERE, ORDER

BY, GROUP BY, HAVING, etc. are valid for SELECT INTO. The following are the two
variations of SELECT INTO.

SELECT select_expressions INTO target FROM ...;

target is a comma-separated list of simple variables. select_expressions and the

remainder of the statement are the same as for the SELECT command. The selected values
must exactly match in data type, number, and order the structure of the target or a runtime
error occurs.

SELECT * INTO record FROM table ...;

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

201

record is a record variable that has previously been declared.

If the query returns zero rows, null values are assigned to the target(s). If the query
returns multiple rows, the first row is assigned to the target(s) and the rest are discarded.
(Note that "the first row" is not well-defined unless youôve used ORDER BY.)

Note: In either cases, where no row is returned or more than one row is returned, SPL
throws an exception.

Note: There is a variation of SELECT INTO using the BULK COLLECT clause that allows

a result set of more than one row that is returned into a collection. See Section 3.12.4.1

for more information on using the BULK COLLECT clause with the SELECT INTO
statement.

You can use the WHEN NO_DATA_FOUND clause in an EXCEPTION block to determine
whether the assignment was successful (that is, at least one row was returned by the
query).

This version of the emp_sal_query procedure uses the variation of SELECT INTO that

returns the result set into a record. Also note the addition of the EXCEPTION block
containing the WHEN NO_DATA_FOUND conditional expression.

CREATE OR REPLACE PROCEDURE emp_sal_query (

 p_empno IN e mp.empno%TYPE

)

IS

 r_emp emp%ROWTYPE;

 v_avgsal emp.sal%TYPE;

BEGIN

 SELECT * INTO r_emp

 FROM emp WHERE empno = p_empno;

 DBMS_OUTPUT.PUT_LINE('Employee # : ' || p_empno);

 DBMS_OUTPUT.PUT_LINE('Name : ' || r_ emp.ename);

 DBMS_OUTPUT.PUT_LINE('Job : ' || r_emp.job);

 DBMS_OUTPUT.PUT_LINE('Hire Date : ' || r_emp.hiredate);

 DBMS_OUTPUT.PUT_LINE('Salary : ' || r_emp.sal);

 DBMS_OUTPUT.PUT_LINE('Dept # : ' || r_emp.deptno);

 SELECT AVG(sal) INTO v_avgsal

 FROM emp WHERE deptno = r_emp.deptno;

 IF r_emp.sal > v_avgsal THEN

 DBMS_OUTPUT.PUT_LINE('Employee''s salary is more than the '

 || 'department average of ' || v_avgsal);

 ELSE

 DBMS_OUTPUT.PUT_LINE('Employee''s salary does not exceed the '

 || 'department average of ' || v_avgsal);

 END IF;

EXCEPTION

 WHEN NO_DATA_FOUND THEN

 DBMS_OUTPUT.PUT_LINE('Employee # ' || p_empno || ' not found');

END;

If the query is executed with a non-existent employee number the results appear as
follows.

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

202

EXEC emp_sal_query(0);

Employee # 0 not found

Another conditional clause of use in the EXCEPTION section with SELECT INTO is the

TOO_MANY_ROWS exception. If more than one row is selected by the SELECT INTO
statement an exception is thrown by SPL.

When the following block is executed, the TOO_MANY_ROWS exception is thrown since
there are many employees in the specified department.

DECLARE

 v_ename emp.ename%TYPE;

BEGIN

 SELECT en ame INTO v_ename FROM emp WHERE deptno = 20 ORDER BY ename;

EXCEPTION

 WHEN TOO_MANY_ROWS THEN

 DBMS_OUTPUT.PUT_LINE('More than one employee found');

 DBMS_OUTPUT.PUT_LINE('First employee returned is ' || v_ename);

END;

More than one empl oyee found

First employee returned is ADAMS

Note: See Section 3.5.7 or more information on exception handling.

3.4.4 INSERT

The INSERT command available in the SQL language can also be used in SPL programs.

An expression in the SPL language can be used wherever an expression is allowed in the

SQL INSERT command. Thus, SPL variables and parameters can be used to supply
values to the insert operation.

The following is an example of a procedure that performs an insert of a new employee
using data passed from a calling program.

CREATE OR REPLACE PROCEDURE emp_insert (

 p_empno IN emp.empno%TYPE,

 p_ename IN emp.ename%TYPE,

 p_job IN emp.job%TYPE,

 p_mgr IN emp.mgr%TYPE,

 p_hiredate IN emp.hiredate%TYPE,

 p_sal IN emp.sal%TYPE,

 p_comm IN emp.comm%TYPE,

 p_deptno IN emp.deptno%TYPE

)

IS

BEGIN

 INSERT INTO emp VALUES (

 p_empno,

 p_ename,

 p_job,

 p_mgr,

 p_hiredat e,

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

203

 p_sal,

 p_comm,

 p_deptno);

 DBMS_OUTPUT.PUT_LINE('Added employee...');

 DBMS_OUTPUT.PUT_LINE('Employee # : ' || p_empno);

 DBMS_OUTPUT.PUT_LINE('Name : ' || p_ename);

 DBMS_OUTPUT.PUT_LINE('Job : ' || p_j ob);

 DBMS_OUTPUT.PUT_LINE('Manager : ' || p_mgr);

 DBMS_OUTPUT.PUT_LINE('Hire Date : ' || p_hiredate);

 DBMS_OUTPUT.PUT_LINE('Salary : ' || p_sal);

 DBMS_OUTPUT.PUT_LINE('Commission : ' || p_comm);

 DBMS_OUTPUT.PUT_LINE('Dept # : ' || p_deptno);

 DBMS_OUTPUT.PUT_LINE(' ---------------------- ');

EXCEPTION

 WHEN OTHERS THEN

 DBMS_OUTPUT.PUT_LINE('OTHERS exception on INSERT of employee # '

 || p_empno);

 DBMS_OUTPUT.PUT_LINE('SQLCODE : ' || SQLCODE);

 DBMS_OUTPUT.PUT_LINE('SQLERRM : ' || SQLERRM);

END;

If an exception occurs all database changes made in the procedure are automatically

rolled back. In this example the EXCEPTION section with the WHEN OTHERS clause

catches all exceptions. Two variables are displayed. SQLCODE is a number that identifies

the specific exception that occurred. SQLERRM is a text message explaining the error. See
Section 3.5.7 for more information on exception handling.

The following shows the output when this procedure is executed.

EXEC emp_insert(9503,'PETERSON','ANALYST',7902,'31 - MAR- 05',5000,NULL,40);

Added employee...

Employee # : 9503

Name : PETERSON

Job : ANALYST

Manager : 7902

Hire Date : 31 - MAR- 05 00:00:00

Salary : 5000

Dept # : 40

SELECT * FROM emp WHERE empno = 9503;

 empno | ename | job | mgr | hiredate | sal | comm | deptno

------- +---------- +--------- +------ +-------------------- +--------- +------ +--------

 9503 | PETERSON | ANALYST | 7902 | 31 - MAR- 05 00:00:00 | 5000.00 | | 40

(1 row)

Note: The INSERT command can be included in a FORALL statement. A FORALL

statement allows a single INSERT command to insert multiple rows from values supplied
in one or more collections. See 3.12.3 for more information on the FORALL statement.

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

204

3.4.5 UPDATE

The UPDATE command available in the SQL language can also be used in SPL programs.

An expression in the SPL language can be used wherever an expression is allowed in the

SQL UPDATE command. Thus, SPL variables and parameters can be used to supply
values to the update operation.

CREATE OR REPLACE PROCEDURE emp_comp_update (

 p_empno IN emp.empno%TYPE,

 p_sal IN emp.sal%TYPE,

 p_comm IN emp.comm%TYPE

)

IS

BEGIN

 UPDATE emp SET sal = p_sal, comm = p_comm WHERE empno = p_empno;

 IF SQL%FOUND THEN

 DBMS_OUTPUT.PUT_LINE('Updated Employee # : ' || p_empno);

 DBMS_OUTPUT.PUT_LINE('New Salary : ' || p_sal);

 DBMS_OUTPUT.PUT_LINE('New Commission : ' || p_comm);

 ELSE

 DBMS_OUTPUT.PUT_LINE('Employee # ' || p_empno || ' not found');

 END IF;

END;

The SQL%FOUND conditional expression returns TRUE if a row is updated, FALSE

otherwise. See Section 3.4.8 for a discussion of SQL%FOUND and other similar
expressions.

The following shows the update on the employee using this procedure.

EXEC emp_comp_update(9503, 6540, 1200);

Updated Employee # : 9503

New Salary : 6540

New Commission : 1200

SELECT * FROM emp WHERE empno = 9503;

 empno | ename | job | mgr | hiredate | sal | comm | deptno

------- +---------- +--------- +------ +-------------------- +--------- +--------- +------- -

 9503 | PETERSON | ANALYST | 7902 | 31 - MAR- 05 00:00:00 | 6540.00 | 1200.00 | 40

(1 row)

Note: The UPDATE command can be included in a FORALL statement. A FORALL

statement allows a single UPDATE command to update multiple rows from values
supplied in one or more collections. See Section 3.12.3 for more information on the
FORALL statement.

3.4.6 DELETE

The DELETE command (available in the SQL language) can also be used in SPL
programs.

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

205

An expression in the SPL language can be used wherever an expression is allowed in the

SQL DELETE command. Thus, SPL variables and parameters can be used to supply
values to the delete operation.

CREATE OR REPLACE PROCEDURE emp_delete (

 p_empno IN emp.empno%TYPE

)

IS

BEGIN

 DELETE FROM emp WHERE empno = p_empno;

 IF SQL%FOUND THEN

 DBMS_OUTPUT.PUT_LINE('Deleted Employee # : ' || p_empno);

 ELSE

 DBMS_OUTPUT.PUT_LINE('Employee # ' || p_empno || ' not found');

 END IF;

END;

The SQL%FOUND conditional expression returns TRUE if a row is deleted, FALSE

otherwise. See Section 3.4.8 for a discussion of SQL%FOUND and other similar
expressions.

The following shows the deletion of an employee using this procedure.

EXEC emp_delete(9503);

Delete d Employee # : 9503

SELECT * FROM emp WHERE empno = 9503;

 empno | ename | job | mgr | hiredate | sal | comm | deptno

------- +------- +----- +----- +---------- +----- +------ +--------

(0 rows)

Note: The DELETE command can be included in a FORALL statement. A FORALL

statement allows a single DELETE command to delete multiple rows from values supplied

in one or more collections. See Section 3.12.3 for more information on the FORALL
statement.

3.4.7 Using the RETURNING INTO Clause

The INSERT, UPDATE, and DELETE commands may be appended by the optional

RETURNING INTO clause. This clause allows the SPL program to capture the newly

added, modified, or deleted values from the results of an INSERT, UPDATE, or DELETE
command, respectively.

The following is the syntax.

{ insert | update | delete }

 RETURNING { * | expr_1 [, expr_2] ...}

 INTO { record | field_1 [, field_2] ...};

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

206

insert is a valid INSERT command. update is a valid UPDATE command. delete is a

valid DELETE command. If * is specified, then the values from the row affected by the

INSERT, UPDATE, or DELETE command are made available for assignment to the

record or fields to the right of the INTO keyword. (Note that the use of * is an Advanced
Server extension and is not compatible with Oracle databases.) expr_1 , expr_2 ... are

expressions evaluated upon the row affected by the INSERT, UPDATE, or DELETE
command. The evaluated results are assigned to the record or fields to the right of the
INTO keyword. record is the identifier of a record that must contain fields that match in

number and order, and are data type compatible with the values in the RETURNING
clause. field_1 , field_2 ,... are variables that must match in number and order, and are

data type compatible with the set of values in the RETURNING clause.

If the INSERT, UPDATE, or DELETE command returns a result set with more than one

row, then an exception is thrown with SQLCODE 01422 , query returned more than

one row . If no rows are in the result set, then the variables following the INTO keyword
are set to null.

Note: There is a variation of RETURNING INTO using the BULK COLLECT clause that
allows a result set of more than one row that is returned into a collection. See Section

3.12.4 for more information on the BULK COLLECT clause.

The following example is a modification of the emp_comp_update procedure
introduced in Section 3.4.5, with the addition of the RETURNING INTO clause.

CREATE OR REPLACE PROCEDURE emp_comp_update (

 p_empno IN emp.empno%TYPE,

 p_sal IN emp.sal%TYPE,

 p_comm IN emp.comm%TYPE

)

IS

 v_empno emp.empno%TYPE;

 v_ename emp.ename%TYPE;

 v_job emp.job%TYPE;

 v_sal emp.sal%TYP E;

 v_comm emp.comm%TYPE;

 v_deptno emp.deptno%TYPE;

BEGIN

 UPDATE emp SET sal = p_sal, comm = p_comm WHERE empno = p_empno

 RETURNING

 empno,

 ename,

 job,

 sal,

 comm,

 deptno

 INTO

 v_empno,

 v_ename,

 v_job,

 v_sal,

 v_comm,

 v_deptno;

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

207

 IF SQL%FOUND THEN

 DBMS_OUTPUT.PUT_LINE('Updated Employee # : ' || v_empno);

 DBMS_OUTPUT.PUT_LINE('Name : ' || v_ename);

 DBMS_OUTPUT.PUT_LINE('Job : ' || v_job);

 DBMS_OUTPUT.PUT_LINE('Department : ' || v_deptno);

 DBMS_OUTPUT.PUT_LINE('New Salary : ' || v_sal);

 DBMS_OUTPUT.PUT_LINE('New Commission : ' || v_comm) ;

 ELSE

 DBMS_OUTPUT.PUT_LINE('Employee # ' || p_empno || ' not found');

 END IF;

END;

The following is the output from this procedure (assuming employee 9503 created by the

emp_insert procedure still exists within the table).

EXEC emp_comp_update(9503, 6540, 1200);

Updated Employee # : 9503

Name : PETERSON

Job : ANALYST

Department : 40

New Salary : 6540.00

New Commission : 1200.00

The following example is a modification of the emp_delete procedure, with the

addition of the RETURNING INTO clause using record types.

CREATE OR REPLACE PROCEDURE emp_delete (

 p_empno IN emp.empno%TYPE

)

IS

 r_emp emp%ROWTYPE;

BEGIN

 DELETE FROM emp WHERE empno = p_empno

 RETURNING

 *

 INTO

 r_emp;

 IF SQL%FOUND THEN

 DBMS_OUTPUT.PUT_LINE('Deleted Employee # : ' || r_emp.empno);

 DBMS_OUTPUT.PUT_LINE('Name : ' || r_emp.ename);

 DBMS_OUTPUT.PUT_LINE('Job : ' || r_emp.jo b);

 DBMS_OUTPUT.PUT_LINE('Manager : ' || r_emp.mgr);

 DBMS_OUTPUT.PUT_LINE('Hire Date : ' || r_emp.hiredate);

 DBMS_OUTPUT.PUT_LINE('Salary : ' || r_emp.sal);

 DBMS_OUTPUT.PUT_LINE('Commission : ' || r_emp.comm);

 DBMS_OUTPUT.PUT_LINE('Department : ' || r_emp.deptno);

 ELSE

 DBMS_OUTPUT.PUT_LINE('Employee # ' || p_empno || ' not found');

 END IF;

END;

The following is the output from this procedure.

EXEC emp_del ete(9503);

Deleted Employee # : 9503

Name : PETERSON

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

208

Job : ANALYST

Manager : 7902

Hire Date : 31 - MAR- 05 00:00:00

Salary : 6540.00

Commission : 1200.00

Department : 40

3.4.8 Obtaining t he Result Status

There are several attributes that can be used to determine the effect of a command.

SQL%FOUND is a Boolean that returns TRUE if at least one row was affected by an

INSERT, UPDATE or DELETE command or a SELECT INTO command retrieved one or
more rows.

The following anonymous block inserts a row and then displays the fact that the row has
been inserted.

BEGIN

 INSERT INTO emp (empno,ename,job,sal,deptno) VALUES (

 9001, 'JONES', 'CLERK', 850.00, 40);

 IF SQL%FOUND THEN

 DBMS_OUTPUT.PUT_LINE('Row has been inserted');

 END IF;

END;

Row has been inserted

SQL%ROWCOUNT provides the number of rows affected by an INSERT, UPDATE or

DELETE command. The following example updates the row that was just inserted and
displays SQL%ROWCOUNT.

BEGIN

 UPDATE emp SET hiredate = '03 - JUN- 07' WHERE empno = 9001;

 DBMS_OUTPUT.PUT_LINE('# rows updated: ' || SQL%ROWCOUNT);

END;

rows updated: 1

SQL%NOTFOUND is the opposite of SQL%FOUND. SQL%NOTFOUND returns TRUE if no rows

were affected by an INSERT, UPDATE or DELETE command or a SELECT INTO
command retrieved no rows.

BEGIN

 UPDATE emp SET hiredate = '03 - JUN- 07' WHERE empno = 9000;

 IF SQL%NOTFOUND THEN

 DBMS_OUTPUT.PUT_LINE('No rows were updated');

 END IF;

END;

No rows we re updated

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

209

3.5 Control Structures

The programming statements in SPL that make it a full procedural complement to SQL
are described in this section.

3.5.1 IF Statement

IF statements let you execute commands based on certain conditions. SPL has four forms

of IF :

¶ IF ... THEN

¶ IF ... THEN ... ELSE

¶ IF ... THEN ... ELSE IF

¶ IF ... THEN ... ELSIF ... THEN ... ELSE

3.5.1.1 IF-THEN
IF boolean - expression THEN

 statements

END IF;

IF - THEN statements are the simplest form of IF . The statements between THEN and END

IF will be executed if the condition is TRUE. Otherwise, they are skipped.

In the following example an IF - THEN statement is used to test and display employees
who have a commission.

DECLARE

 v_empno emp.empno%TYPE;

 v_comm emp.comm%TYPE;

 CURSOR emp_cursor IS SELECT empno, comm FROM emp;

BEGIN

 OPEN emp_cursor;

 DBMS_OUTPUT.PUT_LINE('EMPNO COMM');

 DBMS_OUTPUT.PUT_LINE(' ----- ------- ');

 LOOP

 FETCH emp_cursor INTO v_empno, v_comm;

 EXIT WHEN emp_cursor%NOTFOUND;

--

-- Test whether or not the employee gets a commission

--

 IF v_comm IS NOT NULL AND v_comm > 0 THEN

 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' ||

 TO_CHAR(v_comm,'$99999.99'));

 END IF;

 END LOOP;

 CLOSE emp_cursor;

END;

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

210

The following is the output from this program.

EMPNO COMM

----- -------

7499 $300.00

7521 $500.00

7654 $1400.00

3.5.1.2 IF-THEN-ELSE
IF boolean - expression THEN

 statements

ELSE

 statements

END IF;

IF - THEN- ELSE statements add to IF - THEN by letting you specify an alternative set of
statements that should be executed if the condition evaluates to false.

The previous example is modified so an IF - THEN- ELSE statement is used to display the
text Non- commission if the employee does not get a commission.

DECLARE

 v_empno emp.empno%TYPE;

 v_comm emp.comm%TYPE;

 CURSOR emp_cursor IS SELECT empno, comm FROM emp;

BEGIN

 OPEN emp_cursor;

 DBMS_OUTPUT.PUT_LINE('EMPNO COMM');

 DBMS_OUTPUT.PUT_LINE(' ----- ------- ');

 LOOP

 FETCH emp_cursor INTO v_empno, v_comm;

 EXIT WHEN emp_cursor%NOTFOUND;

--

-- Test whether or not the employee gets a commission

--

 IF v_comm IS NOT NULL AND v_comm > 0 THEN

 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' ||

 TO_CHAR(v_comm,'$99999.99'));

 ELSE

 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || 'Non - commission');

 END IF;

 END LOOP;

 CLOSE emp_cursor;

END;

The following is the output from this program.

EMPNO COMM

----- --- ----

7369 Non - commission

7499 $ 300.00

7521 $ 500.00

7566 Non - commission

7654 $ 1400.00

7698 Non - commission

7782 Non - commission

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

211

7788 Non - commission

7839 Non - commission

7844 Non - commission

7876 Non - commission

7900 Non- commission

7902 Non - commission

7934 Non - commission

3.5.1.3 IF-THEN-ELSE IF

IF statements can be nested so that alternative IF statements can be invoked once it is
determined whether or not the conditional of an outer IF statement is TRUE or FALSE.

In the following example the outer IF - THEN- ELSE statement tests whether or not an

employee has a commission. The inner IF - THEN- ELSE statements then test whether the
employeeôs total compensation exceeds or is less than the company average.

DECLARE

 v_empno emp.empno%TYPE;

 v_sal emp.sal%TYPE;

 v_comm emp.comm%TYPE;

 v_avg NUMBER(7,2);

 CURSOR emp_cursor IS SELECT empno, sal, comm FROM emp;

BEGIN

--

-- Calculate the average yearly compensation in the company

--

 SELECT AVG((sal + NVL(comm,0)) * 24) INTO v_avg FROM emp;

 DBMS_OUTPUT.PUT_LINE('Average Yearly Compensation: ' ||

 TO_CHAR(v_avg,'$999,999.99'));

 OPEN emp_cursor;

 DBMS_OUTPUT.PUT_LINE('EMPNO YEARLY COMP');

 DBMS_OUTPUT.PUT_LINE(' ----- ----------- ');

 LOOP

 FETCH emp_cursor INTO v_empno, v_sal, v_comm;

 EXIT WHEN emp_cursor%NOTFOUND;

--

-- Test whether or not the employee gets a commission

--

 IF v_comm IS NOT NULL AND v_comm > 0 THEN

--

-- Test i f the employee's compensation with commission exceeds the average

--

 IF (v_sal + v_comm) * 24 > v_avg THEN

 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' ||

 TO_CHAR((v_sal + v_comm) * 24,'$999,999.99') ||

 ' Exceeds Average');

 ELSE

 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' ||

 TO_CHAR((v_sal + v_comm) * 24,'$999,999.99') ||

 ' Below Average');

 END IF;

 ELSE

--

-- Test if the employee's compensation without commission exceeds the

average

--

 IF v_sal * 24 > v_avg THEN

 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' ||

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

212

 TO_CHAR(v_sal * 24,'$999,999.99') || ' Exceeds Average');

 ELSE

 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' ||

 TO_CHAR(v_sal * 24,'$999,999.99') || ' Below Average');

 END IF;

 END IF;

 END LOOP;

 CLOSE emp_cursor;

END;

Note: The logic in this program can be simplified considerably by calculating the

employeeôs yearly compensation using the NVL function within the SELECT command of

the cursor declaration, however, the purpose of this example is to demonstrate how IF
statements can be used.

The following is the output from this program.

Average Yearly Compensation: $ 53,528.57

EMPNO YEARLY COMP

----- -----------

7369 $ 19,200.00 Below Average

7499 $ 45,600.00 Below Average

7521 $ 42,000.00 Below Average

7566 $ 71,400.00 Exceeds Average

7654 $ 63,600 .00 Exceeds Average

7698 $ 68,400.00 Exceeds Average

7782 $ 58,800.00 Exceeds Average

7788 $ 72,000.00 Exceeds Average

7839 $ 120,000.00 Exceeds Average

7844 $ 36,000.00 Below Average

7876 $ 26,400.00 Below Average

7900 $ 22,800.00 Below Avera ge

7902 $ 72,000.00 Exceeds Average

7934 $ 31,200.00 Below Average

When you use this form, you are actually nesting an IF statement inside the ELSE part of

an outer IF statement. Thus you need one END IF statement for each nested IF and one
for the parent IF - ELSE.

3.5.1.4 IF-THEN-ELSIF-ELSE
 IF boolean - expression THEN

 statements

[ELSIF boolean - expression THEN

 statements

[ELSIF boolean - expression THEN

 statements] ...]

[ELSE

 statements]

 END IF;

IF - THEN- ELSIF - ELSE provides a method of checking many alternatives in one

statement. Formally it is equivalent to nested IF - THEN- ELSE- IF - THEN commands, but
only one END IF is needed.

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

213

The following example uses an IF - THEN- ELSIF - ELSE statement to count the number
of employees by compensation ranges of $25,000.

DECLARE

 v_empno emp.empno%TYPE;

 v_comp NUMBER(8,2);

 v_lt_25K SMALLINT := 0;

 v_25K_50K SMALLINT := 0;

 v_50K_75K SMALLINT := 0;

 v_75K_100K SMALLINT := 0;

 v_ge_100K SMALLINT : = 0;

 CURSOR emp_cursor IS SELECT empno, (sal + NVL(comm,0)) * 24 FROM emp;

BEGIN

 OPEN emp_cursor;

 LOOP

 FETCH emp_cursor INTO v_empno, v_comp;

 EXIT WHEN emp_cursor%NOTFOUND;

 IF v_comp < 25000 THEN

 v_lt_25K := v_lt_25K + 1;

 ELSIF v_comp < 50000 THEN

 v_25K_50K := v_25K_50K + 1;

 ELSIF v_comp < 75000 THEN

 v_50K_75K := v_50K_75K + 1;

 ELSIF v_comp < 100000 THEN

 v_75K_100K := v_75K_100K + 1;

 ELSE

 v_ge_100K := v_ge_100K + 1;

 END IF;

 END LOOP;

 CLOSE emp_cursor;

 DBMS_OUTPUT.PUT_LINE('Number of employees by yearly compensation');

 DBMS_OUTPUT.PUT_LINE('Less than 25,000 : ' || v_lt_25K);

 DBMS_OUTPUT.PUT_LINE('25,000 - 49,9999 : ' || v_25K_50K);

 DBMS_OUTPUT.PUT_LINE('50,000 - 74,9999 : ' || v_50K_75K);

 DBMS_OUTPUT.PUT_LINE('75,000 - 99,9999 : ' || v_75K_100K);

 DBMS_OUTPUT.PUT_LINE('100,000 and over : ' || v_ge_100K);

END;

The following is the output from this program.

Number of employees by yearly compensation

Less than 25,000 : 2

25,000 - 49,9999 : 5

50,000 - 74,9999 : 6

75,000 - 99,9999 : 0

100,000 and over : 1

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

214

3.5.2 RETURN Statement

The RETURN statement terminates the current function, procedure or anonymous block
and returns control to the caller.

There are two forms of the RETURN Statement. The first form of the RETURN statement is

used to terminate a procedure or function that returns void . The syntax of the first form
is:

RETURN;

The second form of RETURN returns a value to the caller. The syntax of the second form
of the RETURN statement is:

RETURN expression ;

expression must evaluate to the same data type as the return type of the function.

The following example uses the RETURN statement returns a value to the caller:

CREATE OR REPLACE FUNCTION emp_comp (

 p_sal NUMBER,

 p_comm NUMBER

) RETURN NUMBER

IS

BEGIN

 RETURN (p_sal + NVL(p_comm, 0)) * 24;

END emp_comp;

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

215

3.5.3 GOTO Statement

The GOTO statement causes the point of execution to jump to the statement with the
specified label. The syntax of a GOTO statement is:

GOTO label

label is a name assigned to an executable statement. label must be unique within the
scope of the function, procedure or anonymous block.

To label a statement, use the syntax:

<< label >> statement

statement is the point of execution that the program jumps to.

You can label assignment statements, any SQL statement (like INSERT, UPDATE,

CREATE, etc.) and selected procedural language statements. The procedural language
statements that can be labeled are:

¶ IF

¶ EXIT

¶ RETURN

¶ RAISE

¶ EXECUTE

¶ PERFORM

¶ GET DIAGNOSTICS

¶ OPEN

¶ FETCH

¶ MOVE

¶ CLOSE

¶ NULL

¶ COMMIT

¶ ROLLBACK

¶ GOTO

¶ CASE

¶ LOOP

¶ WHILE

¶ FOR

Please note that exit is considered a keyword, and cannot be used as the name of a label.

GOTO statements cannot transfer control into a conditional block or sub-block, but can
transfer control from a conditional block or sub-block.

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

216

The following example verifies that an employee record contains a name, job description,

and employee hire date; if any piece of information is missing, a GOTO statement transfers
the point of execution to a statement that prints a message that the employee is not valid.

CREATE OR REPLACE PROCEDURE verify_emp (

 p_empno NUMBER

)

IS

 v_ename emp.ename%TYPE;

 v_job emp.job%TYPE;

 v_hiredate emp.hiredate%TYPE;

BEGIN

 SELECT ename, job, hiredate

 INTO v_ename, v_job, v_hiredate FROM emp

 WHERE empno = p_empno;

 IF v_ename IS NULL THEN

 GOTO inval id_emp;

 END IF;

 IF v_job IS NULL THEN

 GOTO invalid_emp;

 END IF;

 IF v_hiredate IS NULL THEN

 GOTO invalid_emp;

 END IF;

 DBMS_OUTPUT.PUT_LINE('Employee ' || p_empno ||

 ' validated without errors.');

 RETURN;

 <<invalid_emp>> DBMS_OUTPUT.PUT_LINE('Employee ' || p_empno ||

 ' is not a valid employee.');

END;

GOTO statements have the following restrictions:

¶ A GOTO statement cannot jump to a declaration.

¶ A GOTO statement cannot transfer control to another function or procedure.

¶ A label should not be placed at the end of a block, function or procedure.

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

217

3.5.4 CASE Expression

The CASE expression returns a value that is substituted where the CASE expression is
located within an expression.

There are two formats of the CASE expression - one that is called a searched CASE and
the other that uses a selector.

3.5.4.1 Selector CASE Expression

The selector CASE expression attempts to match an expression called the selector to the

expression specified in one or more WHEN clauses. result is an expression that is type-

compatible in the context where the CASE expression is used. If a match is found, the

value given in the corresponding THEN clause is returned by the CASE expression. If there

are no matches, the value following ELSE is returned. If ELSE is omitted, the CASE
expression returns null.

CASE selector - expression

 WHEN match - expression THEN

 result

[WHEN match - expression THEN

 result

[WHEN match - expression THEN

 result] ...]

[ELSE

 result]

END;

match - express ion is evaluated in the order in which it appears within the CASE

expression. result is an expression that is type-compatible in the context where the

CASE expression is used. When the first match - expression is encountered that equals

selector - expression , result in the corresponding THEN clause is returned as the

value of the CASE expression. If none of match - expression equals selector -

expression then result following ELSE is returned. If no ELSE is specified, the CASE
expression returns null.

The following example uses a selector CASE expression to assign the department name to
a variable based upon the department number.

DECLARE

 v_empno emp.empno%TYPE;

 v_ename emp.ename%TYPE;

 v_deptno emp.deptno%TYPE;

 v_dname dept.dname%TYPE;

 CURSOR emp_cursor IS SELECT empno, ename, deptno FROM emp;

BEGIN

 OPEN emp_cursor;

Database Compatibility for Oracle® Developers Guide

Copy right © 2007 - 2017 EnterpriseDB Corporation. All rights reserv ed.

218

 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME DEPTNO DNAME');

 DBMS_OUTPUT.PUT_LINE(' ----- ------- ------ ---------- ');

 LOOP

 FETCH emp_cursor INTO v_empno, v_ename, v_deptno;

 EXIT WHEN emp_cursor%NOTFOUND;

 v_dname :=

 CASE v_deptno

 WHEN 10 THEN 'Accounting'

 WHEN 20 THEN 'Research'

 WHEN 30 THEN 'Sales'

 WHEN 40 THEN 'Operations'

 ELSE 'unknown'

 END;

 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || RPAD(v_ename, 10) ||

 ' ' || v_deptno || ' ' || v_dname);

 END LOOP;

 CLOSE emp_cursor;

END;

The following is the output from this program.

EMPNO ENAME DEPTNO DNAME

----- ------- ------ ----------

7369 SMITH 20 Research

7499 ALLEN 30 Sales

7521 WARD 30 Sales

7566 JONES 20 Research

7654 MARTIN 30 Sales

7698 BLAKE 30 Sales

7782 CLARK 10 Accounting

7788 SCOTT 20 Research

7839 KING 10 Accounting

7844 TURNER 30 Sales

7876 ADAMS 20 Research

7900 JAMES 30 Sales

7902 FORD 20 Research

7934 MILLER 10 Accounting

3.5.4.2 Searched CASE Expression

A searched CASE expression uses one or more Boolean expressions to determine the
resulting value to return.

CASE WHEN boolean - expression THEN

 result

[WHEN boolean - expression THEN

 result

 [WHEN boolean - expression THEN

 result] ...]

[ELSE

 result]

END;

boolean - expression is evaluated in the order in which it appears within the CASE

expression. result is an expression that is type-compatible in the context where the

CASE expression is used. When the first boolean - expression is encountered that

