

Postgres Plus� Enterprise Edition Guide

Postgres Plus Enterprise Edition v 9.5

February 16, 2016

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

2

Postgres Plus Enterprise Edition Guide, Version 2.0
by EnterpriseDB Corporation

Copyright © 2014 - 2016 EnterpriseDB Corporation

EnterpriseDB Corporation, 34 Crosby Drive, Suite 100, Bedford, MA 01730, USA
T +1 781 357 3390 F +1 978 589 5701 E info@enterprisedb.com www.enterprisedb.com

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

3

Table of Contents

1 Introduction ... 20
1.1 What‟s New .. 23
1.2 Typographical Conventions Used in this Guide ... 24
1.3 Other Conventions Used in this Guide ... 25
1.4 About the Examples Used in this Guide ... 26

1.4.1.1 Sample Database Description ... 26
2 Database Administration ... 35

2.1 Configuration Parameters ... 35
2.1.1 Setting Configuration Parameters ... 36
2.1.2 Summary of Configuration Parameters .. 38
2.1.3 Configuration Parameters by Functionality .. 56

2.1.3.1 Top Performance Related Parameters ... 57
2.1.3.2 Resource Usage / Memory .. 66
2.1.3.3 Resource Usage / EDB Resource Manager .. 70
2.1.3.4 Query Tuning .. 72
2.1.3.5 Query Tuning / Planner Method Configuration 72
2.1.3.6 Reporting and Logging / What to Log .. 75
2.1.3.7 EnterpriseDB Auditing Settings ... 76
2.1.3.8 Client Connection Defaults / Locale and Formatting 81
2.1.3.9 Client Connection Defaults / Statement Behavior 81
2.1.3.10 Client Connection Defaults / Other Defaults 82
2.1.3.11 Compatibility Options ... 84
2.1.3.12 Customized Options .. 93
2.1.3.13 Ungrouped... 102

2.2 Controlling the Audit Logs ... 105
2.2.1 Auditing Configuration Parameters .. 105

2.3 Unicode Collation Algorithm ... 109
2.3.1 Basic Unicode Collation Algorithm Concepts .. 110
2.3.2 International Components for Unicode ... 111

2.3.2.1 Locale Collations .. 111
2.3.2.2 Collation Attributes ... 112

2.3.3 Creating an ICU Collation .. 115
2.3.3.1 CREATE COLLATION ... 115
2.3.3.2 CREATE DATABASE ... 116
2.3.3.3 initdb ... 118

2.3.4 Using a Collation .. 120
2.4 Profile Management .. 124

2.4.1 Creating a New Profile.. 125
2.4.1.1 Creating a Password Function ... 128

2.4.2 Altering a Profile... 132
2.4.3 Dropping a Profile... 133
2.4.4 Associating a Profile with an Existing Role ... 134
2.4.5 Unlocking a Locked Account ... 136

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

4

2.4.6 Creating a New Role Associated with a Profile.. 138
2.4.7 Backing up Profile Management Functions .. 140

3 Enhanced SQL Features .. 141
3.1 Synonyms .. 141
3.2 Hierarchical Queries ... 145

3.2.1 Defining the Parent/Child Relationship .. 146
3.2.2 Selecting the Root Nodes .. 146
3.2.3 Organization Tree in the Sample Application .. 146
3.2.4 Node Level .. 148
3.2.5 Ordering the Siblings .. 149
3.2.6 Retrieving the Root Node with CONNECT_BY_ROOT 150
3.2.7 Retrieving a Path with SYS_CONNECT_BY_PATH 154

3.3 Extended Functions and Operators ... 156
3.3.1 Logical Operators.. 156
3.3.2 Comparison Operators .. 157
3.3.3 Mathematical Functions and Operators .. 159
3.3.4 String Functions and Operators .. 161
3.3.5 Pattern Matching String Functions ... 164

3.3.5.1 REGEXP_COUNT ... 164
3.3.5.2 REGEXP_INSTR ... 165
3.3.5.3 REGEXP_SUBSTR .. 167

3.3.6 Pattern Matching Using the LIKE Operator ... 170
3.3.7 Data Type Formatting Functions .. 171

3.3.7.1 IMMUTABLE TO_CHAR(TIMESTAMP, format) Function 175
3.3.8 Date/Time Functions and Operators ... 178

3.3.8.1 ADD_MONTHS ... 179
3.3.8.2 EXTRACT .. 180
3.3.8.3 MONTHS_BETWEEN... 181
3.3.8.4 NEXT_DAY ... 182
3.3.8.5 NEW_TIME .. 183
3.3.8.6 ROUND .. 183
3.3.8.7 TRUNC ... 188
3.3.8.8 CURRENT DATE/TIME ... 191
3.3.8.9 NUMTODSINTERVAL ... 192
3.3.8.10 NUMTOYMINTERVAL ... 192

3.3.9 Sequence Manipulation Functions .. 194
3.3.10 Conditional Expressions ... 195

3.3.10.1 CASE .. 195
3.3.10.2 COALESCE .. 196
3.3.10.3 NULLIF .. 197
3.3.10.4 NVL .. 197
3.3.10.5 NVL2 .. 197
3.3.10.6 GREATEST and LEAST .. 198

3.3.11 Aggregate Functions ... 199
3.3.12 Subquery Expressions ... 201

3.3.12.1 EXISTS ... 201

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

5

3.3.12.2 IN .. 202
3.3.12.3 NOT IN ... 202
3.3.12.4 ANY/SOME .. 202
3.3.12.5 ALL ... 203

3.3.13 Uniform Resource Locator Functions ... 204
3.3.13.1 EDB_GET_URL_AS_BYTEA .. 204
3.3.13.2 EDB_GET_URL_AS_TEXT ... 205

3.4 Table Partitioning.. 207
3.4.1 Selecting a Partition Type ... 208
3.4.2 Using Partition Pruning... 209
3.4.3 Example - Partition Pruning.. 212

3.5 Partitioning Command Syntax .. 215
3.5.1 CREATE TABLE…PARTITION BY ... 215

3.5.1.1 Example - PARTITION BY LIST .. 218
3.5.1.2 Example - PARTITION BY RANGE... 219
3.5.1.3 Example - PARTITION BY HASH ... 220
3.5.1.4 Example - PARTITION BY RANGE, SUBPARTITION BY LIST .. 221

3.5.2 ALTER TABLE...ADD PARTITION .. 224
3.5.2.1 Example - Adding a Partition to a LIST Partitioned Table 226
3.5.2.2 Example - Adding a Partition to a RANGE Partitioned Table 227

3.5.3 ALTER TABLE… ADD SUBPARTITION .. 229
3.5.3.1 Example - Adding a Subpartition to a LIST-RANGE Partitioned Table
 231
3.5.3.2 Example - Adding a Subpartition to a RANGE-LIST Partitioned Table
 232

3.5.4 ALTER TABLE...SPLIT PARTITION .. 234
3.5.4.1 Example - Splitting a LIST Partition .. 236
3.5.4.2 Example - Splitting a RANGE Partition ... 238

3.5.5 ALTER TABLE...SPLIT SUBPARTITION .. 241
3.5.5.1 Example - Splitting a LIST Subpartition .. 243
3.5.5.2 Example - Splitting a RANGE Subpartition 245

3.5.6 ALTER TABLE… EXCHANGE PARTITION ... 249
3.5.6.1 Example - Exchanging a Table for a Partition 250

3.5.7 ALTER TABLE… MOVE PARTITION ... 253
3.5.7.1 Example - Moving a Partition to a Different Tablespace 254

3.5.8 ALTER TABLE… RENAME PARTITION .. 256
3.5.8.1 Example - Renaming a Partition ... 257

3.5.9 DROP TABLE .. 258
3.5.10 ALTER TABLE… DROP PARTITION .. 259

3.5.10.1 Example - Deleting a Partition .. 259
3.5.11 ALTER TABLE… DROP SUBPARTITION .. 261

3.5.11.1 Example - Deleting a Subpartition .. 261
3.5.12 TRUNCATE TABLE ... 263

3.5.12.1 Example - Emptying a Table .. 263
3.5.13 ALTER TABLE… TRUNCATE PARTITION 266

3.5.13.1 Example - Emptying a Partition .. 266

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

6

3.5.14 ALTER TABLE… TRUNCATE SUBPARTITION 269
3.5.14.1 Example - Emptying a Subpartition .. 269

3.6 Handling Stray Values in a LIST or RANGE Partitioned Table 272
3.7 Specifying Multiple Partitioning Keys in a RANGE Partitioned Table 276
3.8 Retrieving Information about a Partitioned Table .. 278

3.8.1 Table Partitioning Views - Reference ... 279
3.8.1.1 ALL_PART_TABLES ... 279
3.8.1.2 ALL_TAB_PARTITIONS ... 280
3.8.1.3 ALL_TAB_SUBPARTITIONS .. 281
3.8.1.4 ALL_PART_KEY_COLUMNS ... 282
3.8.1.5 ALL_SUBPART_KEY_COLUMNS ... 282

4 Security ... 283
4.1 Protecting Against SQL Injection Attacks .. 283

4.1.1 SQL/Protect Overview .. 284
4.1.1.1 Types of SQL Injection Attacks ... 284
4.1.1.2 Monitoring SQL Injection Attacks ... 285

4.1.2 Configuring SQL/Protect .. 288
4.1.2.1 Selecting Roles to Protect ... 291
4.1.2.2 Monitoring Protected Roles .. 293

4.1.3 Common Maintenance Operations ... 299
4.1.3.1 Adding a Role to the Protected Roles List .. 299
4.1.3.2 Removing a Role From the Protected Roles List 299
4.1.3.3 Setting the Types of Protection for a Role .. 300
4.1.3.4 Removing a Relation From the Protected Relations List 301
4.1.3.5 Deleting Statistics ... 301
4.1.3.6 Deleting Offending Queries .. 302
4.1.3.7 Disabling and Enabling Monitoring.. 303

4.1.4 Backing Up and Restoring a SQL/Protect Database 305
4.1.4.1 Object Identification Numbers in SQL/Protect Tables 305
4.1.4.2 Backing Up the Database .. 306
4.1.4.3 Restoring From the Backup Files ... 306

4.2 EDB*Wrap .. 311
4.2.1 Using EDB*Wrap to Obfuscate Source Code .. 312

4.3 Virtual Private Database ... 316
5 EDB Resource Manager ... 317

5.1 Creating and Managing Resource Groups .. 318
5.1.1 CREATE RESOURCE GROUP... 318
5.1.2 ALTER RESOURCE GROUP ... 319
5.1.3 DROP RESOURCE GROUP ... 321
5.1.4 Assigning a Process to a Resource Group .. 321
5.1.5 Removing a Process from a Resource Group ... 322
5.1.6 Monitoring Processes in Resource Groups ... 323

5.2 CPU Usage Throttling... 325
5.2.1 Setting the CPU Rate Limit for a Resource Group 325
5.2.2 Example – Single Process in a Single Group.. 326
5.2.3 Example – Multiple Processes in a Single Group 327

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

7

5.2.4 Example – Multiple Processes in Multiple Groups 329
5.3 Dirty Buffer Throttling ... 332

5.3.1 Setting the Dirty Rate Limit for a Resource Group 332
5.3.2 Example – Single Process in a Single Group.. 334
5.3.3 Example – Multiple Processes in a Single Group 335
5.3.4 Example – Multiple Processes in Multiple Groups 337

5.4 System Catalogs .. 341
5.4.1 edb_all_resource_groups .. 341
5.4.2 edb_resource_group .. 341

6 Database Utilities .. 342
6.1 EDB*Loader ... 342

6.1.1 Data Loading Methods .. 343
6.1.2 General Usage ... 344
6.1.3 Building the EDB*Loader Control File .. 345
6.1.4 Invoking EDB*Loader .. 360

6.1.4.1 Exit Codes ... 366
6.1.5 Direct Path Load ... 367
6.1.6 Parallel Direct Path Load .. 368
6.1.7 Remote Loading .. 371
6.1.8 Updating a Table with a Conventional Path Load 372
6.1.9 Loading Empty Strings with EDB*Loader ... 374

6.2 EDB*Plus .. 375
6.2.1 Starting EDB*Plus .. 375
6.2.2 Command Summary ... 378

6.2.2.1 ACCEPT ... 378
6.2.2.2 APPEND ... 378
6.2.2.3 CHANGE .. 378
6.2.2.4 CLEAR ... 379
6.2.2.5 COLUMN ... 379
6.2.2.6 CONNECT .. 383
6.2.2.7 DEFINE .. 383
6.2.2.8 DEL ... 384
6.2.2.9 DESCRIBE ... 385
6.2.2.10 DISCONNECT ... 385
6.2.2.11 EDIT ... 386
6.2.2.12 EXECUTE .. 386
6.2.2.13 EXIT ... 386
6.2.2.14 GET ... 387
6.2.2.15 HELP... 387
6.2.2.16 HOST .. 388
6.2.2.17 INPUT ... 388
6.2.2.18 LIST .. 388
6.2.2.19 PASSWORD ... 389
6.2.2.20 PAUSE .. 390
6.2.2.21 PRINT ... 390
6.2.2.22 PROMPT... 390

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

8

6.2.2.23 QUIT ... 390
6.2.2.24 REMARK ... 390
6.2.2.25 SAVE .. 391
6.2.2.26 SET ... 392
6.2.2.27 SHOW ... 396
6.2.2.28 SPOOL .. 397
6.2.2.29 START .. 397
6.2.2.30 UNDEFINE... 397
6.2.2.31 WHENEVER SQLERROR .. 397

6.3 libpq C Library .. 399
6.3.1 Using libpq with EnterpriseDB SPL ... 399
6.3.2 REFCURSOR Support.. 399
6.3.3 Array Binding ... 406

6.3.3.1 PQBulkStart .. 406
6.3.3.2 PQexecBulk .. 406
6.3.3.3 PQBulkFinish .. 407
6.3.3.4 PQexecBulkPrepared .. 407
6.3.3.5 Example Code (Using PQBulkStart, PQexecBulk, PQBulkFinish) ... 407
6.3.3.6 Example Code (Using PQexecBulkPrepared) 408

6.4 ECPGPlus ... 410
6.4.1 C-preprocessor Directives ... 411
6.4.2 Supported C Data Types ... 413
6.4.3 Type Codes ... 415
6.4.4 The SQLDA Structure .. 416
6.4.5 ECPGPlus Statements ... 420

6.4.5.1 ALLOCATE DESCRIPTOR .. 420
6.4.5.2 CALL .. 421
6.4.5.3 CLOSE .. 421
6.4.5.4 COMMIT .. 422
6.4.5.5 CONNECT .. 423
6.4.5.6 DEALLOCATE DESCRIPTOR ... 425
6.4.5.7 DECLARE CURSOR ... 425
6.4.5.8 DECLARE DATABASE .. 426
6.4.5.9 DECLARE STATEMENT ... 427
6.4.5.10 DELETE ... 427
6.4.5.11 DESCRIBE ... 429
6.4.5.12 DESCRIBE DESCRIPTOR .. 430
6.4.5.13 DISCONNECT ... 431
6.4.5.14 EXECUTE .. 432
6.4.5.15 EXECUTE DESCRIPTOR ... 433
6.4.5.16 EXECUTE...END EXEC .. 434
6.4.5.17 EXECUTE IMMEDIATE .. 434
6.4.5.18 FETCH .. 435
6.4.5.19 FETCH DESCRIPTOR .. 436
6.4.5.20 GET DESCRIPTOR ... 436
6.4.5.21 INSERT... 438

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

9

6.4.5.22 OPEN .. 439
6.4.5.23 OPEN DESCRIPTOR ... 440
6.4.5.24 PREPARE ... 441
6.4.5.25 ROLLBACK ... 442
6.4.5.26 SAVEPOINT .. 443
6.4.5.27 SELECT .. 443
6.4.5.28 SET CONNECTION .. 444
6.4.5.29 SET DESCRIPTOR .. 446
6.4.5.30 UPDATE ... 448
6.4.5.31 WHENEVER .. 449

7 Open Client Library .. 451
7.1 Comparison with Oracle Call Interface .. 451
7.2 Compiling and Linking a Program ... 452
7.3 Ref Cursor Support ... 454
7.4 OCL Function Reference .. 457

7.4.1 Connect, Authorize and Initialize Functions .. 457
7.4.1.1 Using the tnsnames.ora File .. 457

7.4.2 Handle and Descriptor Functions.. 458
7.4.2.1 EDB_ATTR_EMPTY_STRINGS .. 458
7.4.2.2 EDB_ATTR_HOLDABLE... 459
7.4.2.3 EDB_ATTR_STMT_LVL_TX .. 460

7.4.3 Bind, Define and Describe Functions ... 460
7.4.4 Statement Functions .. 461
7.4.5 Transaction Functions ... 461
7.4.6 XA Functions .. 461

7.4.6.1 xaoSvcCtx ... 461
7.4.7 Date and Datetime Functions .. 462
7.4.8 Interval Functions ... 463
7.4.9 Number Functions ... 463
7.4.10 String Functions .. 464
7.4.11 Cartridge Services and File I/O Interface Functions 465
7.4.12 LOB Functions .. 465
7.4.13 Miscellaneous Functions ... 465
7.4.14 Supported Data Types ... 465

7.5 Debugger ... 467
7.5.1 Configuring the Debugger .. 467
7.5.2 Starting the Debugger ... 468
7.5.3 The View Data Options Window .. 470
7.5.4 Main Debugger Window... 472

7.5.4.1 The Program Body Pane ... 473
7.5.4.2 The Stack Pane .. 474
7.5.4.3 The Output Pane ... 477
7.5.4.4 The Status Bar ... 478

7.5.5 Debugging a Program ... 479
7.5.5.1 Stepping Through the Code .. 479
7.5.5.2 Using Breakpoints ... 480

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

10

7.5.5.3 Setting a Global Breakpoint for In-Context Debugging 483
7.5.5.4 Exiting the Debugger .. 489

8 Performance Analysis and Tuning .. 490
8.1 Dynatune ... 490

8.1.1 edb_dynatune .. 490
8.1.2 edb_dynatune_profile ... 491

8.2 Infinite Cache .. 492
8.2.1 Installing Infinite Cache .. 496
8.2.2 Configuring the Infinite Cache Server .. 498

8.2.2.1 Modifying Infinite Cache Settings .. 498
8.2.2.2 Enabling Infinite Cache .. 498
8.2.2.3 Controlling the Infinite Cache Server ... 501

8.2.3 Dynamically Modifying Infinite Cache Server Nodes 502
8.2.4 Controlling the edb-icache Daemons .. 503

8.2.4.1 Command Line Options .. 503
8.2.4.2 edb-icache-tool .. 505

8.2.5 Warming the edb-icache Servers .. 507
8.2.5.1 The edb_icache_warm() Function .. 507
8.2.5.2 Using the edb_icache_warm Utility.. 508

8.2.6 Retrieving Statistics from Infinite Cache .. 509
8.2.6.1 Using edb_icache_stats() .. 509
8.2.6.2 edb_icache_server_list .. 510

8.2.7 Retrieving Table Statistics .. 512
8.2.7.1 pg_statio_all_tables... 512
8.2.7.2 pg_statio_sys_tables ... 514
8.2.7.3 pg_statio_user_tables .. 514
8.2.7.4 pg_statio_all_indexes .. 514
8.2.7.5 pg_statio_sys_indexes... 516
8.2.7.6 pg_statio_user_indexes ... 516

8.2.8 edb_icache_server_enable() .. 517
8.2.9 Infinite Cache Log Entries .. 518
8.2.10 Allocating Memory to the Cache Servers ... 518

8.3 Index Advisor.. 519
8.3.1 Index Advisor Components .. 520
8.3.2 Index Advisor Configuration .. 521
8.3.3 Using Index Advisor ... 524

8.3.3.1 Using the pg_advise_index Utility.. 524
8.3.3.2 Using Index Advisor at the psql Command Line................................ 526

8.3.4 Reviewing the Index Advisor Recommendations 528
8.3.4.1 Using the show_index_recommendations() Function 528
8.3.4.2 Querying the index_advisor_log Table ... 529
8.3.4.3 Querying the index_recommendations View 531

8.3.5 Limitations .. 532
8.4 SQL Profiler .. 534
8.5 Query Optimization Hints ... 535

8.5.1 Default Optimization Modes... 537

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

11

8.5.2 Access Method Hints .. 539
8.5.3 Specifying a Join Order .. 543
8.5.4 Joining Relations Hints ... 544
8.5.5 Global Hints .. 547
8.5.6 Using the APPEND Optimizer Hint ... 550
8.5.7 Conflicting Hints ... 551

8.6 DBMS_PROFILER .. 552
8.6.1 Querying the DBMS_PROFILER Tables and View 554
8.6.2 DBMS_PROFILER Functions and Procedures .. 561

8.6.2.1 FLUSH_DATA ... 561
8.6.2.2 GET_VERSION ... 562
8.6.2.3 INTERNAL_VERSION_CHECK .. 562
8.6.2.4 PAUSE_PROFILER ... 562
8.6.2.5 RESUME_PROFILER ... 563
8.6.2.6 START_PROFILER ... 563
8.6.2.7 STOP_PROFILER .. 564

8.6.3 DBMS_PROFILER - Reference ... 565
8.6.3.1 PLSQL_PROFILER_RUNS ... 565
8.6.3.2 PLSQL_PROFILER_UNITS .. 565
8.6.3.3 PLSQL_PROFILER_DATA .. 566
8.6.3.4 PLSQL_PROFILER_RAWDATA ... 566

8.7 Dynamic Runtime Instrumentation Tools Architecture (DRITA) 571
8.7.1 Configuring and Using DRITA .. 571

8.8 DRITA Functions.. 573
8.8.1 get_snaps() .. 573
8.8.2 sys_rpt() .. 573
8.8.3 sess_rpt() ... 574
8.8.4 sessid_rpt() .. 575
8.8.5 sesshist_rpt() ... 577
8.8.6 purgesnap() ... 578
8.8.7 truncsnap() .. 579

8.9 Simulating Statspack AWR Reports ... 580
8.9.1 edbreport()... 580
8.9.2 stat_db_rpt() .. 588
8.9.3 stat_tables_rpt()... 589
8.9.4 statio_tables_rpt() ... 591
8.9.5 stat_indexes_rpt() .. 593
8.9.6 statio_indexes_rpt()... 595

8.10 Performance Tuning Recommendations ... 597
8.11 Event Descriptions .. 598
8.12 Catalog Views ... 600

8.12.1 edb$system_waits ... 600
8.12.2 edb$session_waits ... 601
8.12.3 edb$session_wait_history ... 602

9 Built-In Utility Packages... 604
9.1 DBMS_ALERT .. 606

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

12

9.1.1 REGISTER ... 607
9.1.2 REMOVE .. 607
9.1.3 REMOVEALL .. 608
9.1.4 SIGNAL .. 608
9.1.5 WAITANY ... 608
9.1.6 WAITONE .. 610
9.1.7 Comprehensive Example .. 611

9.2 DBMS_CRYPTO ... 614
9.2.1 DECRYPT .. 615
9.2.2 ENCRYPT .. 617
9.2.3 HASH .. 619
9.2.4 MAC ... 620
9.2.5 RANDOMBYTES .. 621
9.2.6 RANDOMINTEGER .. 621
9.2.7 RANDOMNUMBER .. 622

9.3 DBMS_JOB .. 623
9.3.1 BROKEN .. 624
9.3.2 CHANGE .. 625
9.3.3 INTERVAL... 626
9.3.4 NEXT_DATE ... 626
9.3.5 REMOVE .. 627
9.3.6 RUN .. 627
9.3.7 SUBMIT ... 628
9.3.8 WHAT... 629

9.4 DBMS_LOB ... 630
9.4.1 APPEND ... 631
9.4.2 COMPARE ... 631
9.4.3 CONVERTTOBLOB .. 632
9.4.4 CONVERTTOCLOB .. 634
9.4.5 COPY .. 635
9.4.6 ERASE .. 636
9.4.7 GET_STORAGE_LIMIT ... 637
9.4.8 GETLENGTH ... 637
9.4.9 INSTR ... 638
9.4.10 READ .. 638
9.4.11 SUBSTR ... 639
9.4.12 TRIM... 640
9.4.13 WRITE .. 640
9.4.14 WRITEAPPEND .. 641

9.5 DBMS_LOCK .. 642
9.5.1 SLEEP ... 642

9.6 DBMS_MVIEW ... 643
9.6.1 GET_MV_DEPENDENCIES... 644
9.6.2 REFRESH ... 644
9.6.3 REFRESH_ALL_MVIEWS ... 646
9.6.4 REFRESH_DEPENDENT ... 648

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

13

9.7 DBMS_OUTPUT ... 650
9.7.1 CHARARR ... 650
9.7.2 DISABLE .. 651
9.7.3 ENABLE ... 651
9.7.4 GET_LINE .. 652
9.7.5 GET_LINES ... 654
9.7.6 NEW_LINE .. 655
9.7.7 PUT ... 655
9.7.8 PUT_LINE .. 657
9.7.9 SERVEROUTPUT ... 657

9.8 DBMS_PIPE ... 659
9.8.1 CREATE_PIPE ... 660
9.8.2 NEXT_ITEM_TYPE .. 661
9.8.3 PACK_MESSAGE ... 663
9.8.4 PURGE ... 663
9.8.5 RECEIVE_MESSAGE ... 665
9.8.6 REMOVE_PIPE ... 665
9.8.7 RESET_BUFFER ... 667
9.8.8 SEND_MESSAGE ... 668
9.8.9 UNIQUE_SESSION_NAME ... 669
9.8.10 UNPACK_MESSAGE ... 669
9.8.11 Comprehensive Example .. 670

9.9 DBMS_PROFILER .. 673
9.9.1 FLUSH_DATA ... 674
9.9.2 GET_VERSION ... 674
9.9.3 INTERNAL_VERSION_CHECK .. 674
9.9.4 PAUSE_PROFILER ... 675
9.9.5 RESUME_PROFILER ... 675
9.9.6 START_PROFILER ... 675
9.9.7 STOP_PROFILER .. 676

9.10 DBMS_RANDOM ... 677
9.10.1 INITIALIZE .. 677
9.10.2 NORMAL ... 678
9.10.3 RANDOM ... 678
9.10.4 SEED... 679
9.10.5 SEED... 679
9.10.6 STRING .. 680
9.10.7 TERMINATE ... 681
9.10.8 VALUE ... 681
9.10.9 VALUE ... 681

9.11 DBMS_RLS .. 683
9.11.1 ADD_POLICY ... 686
9.11.2 DROP_POLICY ... 693
9.11.3 ENABLE_POLICY .. 693

9.12 DBMS_SCHEDULER .. 695
9.12.1 Using Calendar Syntax to Specify a Repeating Interval 696

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

14

9.12.2 CREATE_JOB .. 698
9.12.3 CREATE_PROGRAM ... 700
9.12.4 CREATE_SCHEDULE .. 702
9.12.5 DEFINE_PROGRAM_ARGUMENT .. 703
9.12.6 DISABLE .. 705
9.12.7 DROP_JOB ... 706
9.12.8 DROP_PROGRAM .. 707
9.12.9 DROP_PROGRAM_ARGUMENT ... 708
9.12.10 DROP_SCHEDULE ... 709
9.12.11 ENABLE ... 709
9.12.12 EVALUATE_CALENDAR_STRING ... 710
9.12.13 RUN_JOB ... 712
9.12.14 SET_JOB_ARGUMENT_VALUE .. 712

9.13 DBMS_SESSION ... 714
9.13.1 SET_ROLE ... 714

9.14 DBMS_SQL .. 715
9.14.1 BIND_VARIABLE... 716
9.14.2 BIND_VARIABLE_CHAR ... 717
9.14.3 BIND VARIABLE RAW ... 718
9.14.4 CLOSE_CURSOR .. 718
9.14.5 COLUMN_VALUE .. 719
9.14.6 COLUMN_VALUE_CHAR... 720
9.14.7 COLUMN VALUE RAW .. 721
9.14.8 DEFINE_COLUMN ... 722
9.14.9 DEFINE_COLUMN_CHAR .. 723
9.14.10 DEFINE COLUMN RAW .. 724
9.14.11 DESCRIBE COLUMNS ... 725
9.14.12 EXECUTE .. 725
9.14.13 EXECUTE_AND_FETCH ... 726
9.14.14 FETCH_ROWS .. 728
9.14.15 IS_OPEN... 729
9.14.16 LAST_ROW_COUNT ... 730
9.14.17 OPEN_CURSOR .. 731
9.14.18 PARSE .. 732

9.15 DBMS_UTILITY ... 734
9.15.1 LNAME_ARRAY .. 735
9.15.2 UNCL_ARRAY .. 735
9.15.3 ANALYZE_DATABASE, ANALYZE SCHEMA and ANALYZE
PART_OBJECT .. 735
9.15.4 CANONICALIZE ... 738
9.15.5 COMMA_TO_TABLE ... 739
9.15.6 DB_VERSION .. 740
9.15.7 EXEC_DDL_STATEMENT .. 741
9.15.8 FORMAT_CALL_STACK .. 742
9.15.9 GET_CPU_TIME ... 742
9.15.10 GET_DEPENDENCY .. 743

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

15

9.15.11 GET_HASH_VALUE .. 744
9.15.12 GET_PARAMETER_VALUE ... 745
9.15.13 GET_TIME ... 746
9.15.14 NAME_TOKENIZE ... 746
9.15.15 TABLE_TO_COMMA ... 749

9.16 UTL_ENCODE... 751
9.16.1 BASE64_DECODE .. 751
9.16.2 BASE64_ENCODE .. 752
9.16.3 MIMEHEADER_DECODE ... 753
9.16.4 MIMEHEADER_ENCODE ... 754
9.16.5 QUOTED_PRINTABLE_DECODE .. 755
9.16.6 QUOTED_PRINTABLE_ENCODE .. 756
9.16.7 TEXT_DECODE .. 757
9.16.8 TEXT_ENCODE .. 758
9.16.9 UUDECODE... 759
9.16.10 UUENCODE... 761

9.17 UTL_FILE .. 763
9.17.1 Setting File Permissions with utl_file.umask.. 764
9.17.2 FCLOSE .. 766
9.17.3 FCLOSE_ALL .. 766
9.17.4 FCOPY .. 766
9.17.5 FFLUSH .. 768
9.17.6 FOPEN .. 769
9.17.7 FREMOVE ... 770
9.17.8 FRENAME ... 770
9.17.9 GET_LINE .. 772
9.17.10 IS_OPEN... 773
9.17.11 NEW_LINE .. 774
9.17.12 PUT ... 775
9.17.13 PUT_LINE .. 777
9.17.14 PUTF ... 778

9.18 UTL_HTTP ... 781
9.18.1 HTML_PIECES .. 784
9.18.2 REQ... 784
9.18.3 RESP ... 784
9.18.4 BEGIN_REQUEST .. 785
9.18.5 END_REQUEST .. 785
9.18.6 END_RESPONSE .. 786
9.18.7 GET_BODY_CHARSET ... 786
9.18.8 GET_FOLLOW_REDIRECT... 787
9.18.9 GET_HEADER... 787
9.18.10 GET_HEADER_BY_NAME ... 789
9.18.11 GET_HEADER_COUNT ... 790
9.18.12 GET_RESPONSE ... 790
9.18.13 GET_RESPONSE_ERROR_CHECK .. 790
9.18.14 GET_TRANSFER_TIMEOUT .. 791

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

16

9.18.15 READ_LINE... 791
9.18.16 READ_RAW .. 793
9.18.17 READ_TEXT ... 794
9.18.18 REQUEST... 795
9.18.19 REQUEST_PIECES ... 795
9.18.20 SET_BODY_CHARSET .. 796
9.18.21 SET_FOLLOW_REDIRECT ... 796
9.18.22 SET_HEADER ... 797
9.18.23 SET_RESPONSE_ERROR_CHECK... 797
9.18.24 SET_TRANSFER_TIMEOUT ... 798
9.18.25 WRITE_LINE ... 799
9.18.26 WRITE_RAW... 800
9.18.27 WRITE_TEXT .. 801

9.19 UTL_MAIL... 802
9.19.1 SEND .. 802
9.19.2 SEND_ATTACH_RAW... 803
9.19.3 SEND_ATTACH_VARCHAR2 .. 805

9.20 UTL_RAW ... 807
9.20.1 CAST_TO_RAW .. 807
9.20.2 CAST_TO_VARCHAR2 ... 808
9.20.3 CONCAT .. 809
9.20.4 CONVERT .. 810
9.20.5 LENGTH... 811
9.20.6 SUBSTR ... 812

9.21 UTL_SMTP .. 813
9.21.1 CONNECTION... 814
9.21.2 REPLY/REPLIES ... 814
9.21.3 CLOSE_DATA ... 814
9.21.4 COMMAND ... 814
9.21.5 COMMAND_REPLIES ... 815
9.21.6 DATA ... 816
9.21.7 EHLO .. 816
9.21.8 HELO .. 817
9.21.9 HELP... 817
9.21.10 MAIL .. 818
9.21.11 NOOP .. 818
9.21.12 OPEN_CONNECTION .. 819
9.21.13 OPEN_DATA ... 819
9.21.14 QUIT ... 820
9.21.15 RCPT... 820
9.21.16 RSET ... 820
9.21.17 VRFY .. 821
9.21.18 WRITE_DATA ... 821
9.21.19 Comprehensive Example .. 822

9.22 UTL_URL ... 824
9.22.1 ESCAPE .. 824

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

17

9.22.2 UNESCAPE .. 826
10 Expanded Catalog Views .. 828

10.1 ALL_ALL_TABLES .. 828
10.2 ALL_CONS_COLUMNS .. 828
10.3 ALL_CONSTRAINTS ... 829
10.4 ALL_DB_LINKS ... 829
10.5 ALL_IND_COLUMNS .. 830
10.6 ALL_INDEXES .. 830
10.7 ALL_JOBS ... 831
10.8 ALL_OBJECTS .. 831
10.9 ALL_PART_KEY_COLUMNS ... 832
10.10 ALL_PART_TABLES ... 833
10.11 ALL_POLICIES ... 834
10.12 ALL_SEQUENCES .. 835
10.13 ALL_SOURCE ... 835
10.14 ALL_SUBPART_KEY_COLUMNS ... 836
10.15 ALL_SYNONYMS .. 836
10.16 ALL_TAB_COLUMNS ... 837
10.17 ALL_TAB_PARTITIONS ... 838
10.18 ALL_TAB_SUBPARTITIONS .. 839
10.19 ALL_TABLES .. 840
10.20 ALL_TRIGGERS ... 840
10.21 ALL_TYPES... 841
10.22 ALL_USERS .. 841
10.23 ALL_VIEW_COLUMNS ... 842
10.24 ALL_VIEWS .. 842
10.25 DBA_ALL_TABLES ... 843
10.26 DBA_CONS_COLUMNS .. 843
10.27 DBA_CONSTRAINTS... 844
10.28 DBA_DB_LINKS ... 844
10.29 DBA_IND_COLUMNS ... 845
10.30 DBA_INDEXES ... 845
10.31 DBA_JOBS ... 846
10.32 DBA_OBJECTS ... 846
10.33 DBA_PART_KEY_COLUMNS .. 847
10.34 DBA_PART_TABLES ... 848
10.35 DBA_POLICIES... 849
10.36 DBA_PROFILES .. 850
10.37 DBA_ROLE_PRIVS .. 850
10.38 DBA_ROLES ... 850
10.39 DBA_SEQUENCES ... 851
10.40 DBA_SOURCE .. 851
10.41 DBA_SUBPART_KEY_COLUMNS .. 851
10.42 DBA_SYNONYMS .. 852
10.43 DBA_TAB_COLUMNS... 852
10.44 DBA_TAB_PARTITIONS ... 853

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

18

10.45 DBA_TAB_SUBPARTITIONS ... 854
10.46 DBA_TABLES ... 855
10.47 DBA_TRIGGERS... 855
10.48 DBA_TYPES .. 856
10.49 DBA_USERS .. 857
10.50 DBA_VIEW_COLUMNS .. 858
10.51 DBA_VIEWS ... 858
10.52 USER_ALL_TABLES ... 859
10.53 USER_CONS_COLUMNS .. 859
10.54 USER_CONSTRAINTS ... 860
10.55 USER_DB_LINKS ... 860
10.56 USER_IND_COLUMNS .. 861
10.57 USER_INDEXES ... 861
10.58 USER_JOBS ... 862
10.59 USER_OBJECTS ... 862
10.60 USER_PART_KEY_COLUMNS .. 863
10.61 USER_PART_TABLES ... 864
10.62 USER_POLICIES ... 865
10.63 USER_ROLE_PRIVS... 866
10.64 USER_SEQUENCES ... 866
10.65 USER_SOURCE... 867
10.66 USER_SUBPART_KEY_COLUMNS... 867
10.67 USER_SYNONYMS .. 867
10.68 USER_TAB_COLUMNS ... 868
10.69 USER_TAB_PARTITIONS ... 869
10.70 USER_TAB_SUBPARTITIONS ... 870
10.71 USER_TABLES ... 871
10.72 USER_TRIGGERS ... 871
10.73 USER_TYPES .. 872
10.74 USER_USERS .. 872
10.75 USER_VIEW_COLUMNS .. 873
10.76 USER_VIEWS .. 873
10.77 V$VERSION .. 873
10.78 PRODUCT_COMPONENT_VERSION .. 874

11 System Catalog Tables .. 875
11.1 dual .. 875
11.2 edb_dir .. 875
11.3 edb_all_resource_groups .. 876
11.4 edb_partdef ... 876
11.5 edb_partition ... 877
11.6 edb_password_history... 877
11.7 edb_policy ... 878
11.8 edb_profile .. 879
11.9 edb_resource_group .. 880
11.10 edb_variable .. 880
11.11 pg_synonym .. 881

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

19

11.12 product_component_version ... 881
12 Appendix ... 882

12.1 Advanced Server Database Limits .. 882
12.2 Advanced Server Keywords ... 882

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

20

1 Introduction
This guide describes the features of EnterpriseDB‟s Postgres Plus Enterprise Edition
product. The core of Postgres Plus Enterprise Edition is EnterpriseDB‟s database server,
Postgres Plus Advanced Server.

Enterprise Edition provides a wide range of additional functionality in various areas
including database administration, enhanced SQL capabilities, database and application
security, performance monitoring and analysis, and application development utilities.

This guide is arranged as follows:

x Database Administration. Chapter 2 contains the features related to database
administration.

Configuration parameters described in Section 2.1 control the basic
characteristics and performance of an Advanced Server instance.

Audit logging described in Section 2.2 provides enhanced database auditing
capabilities.

Unicode Collation Algorithm described in Section 2.3 provides the capability to
create a collation specific to your particular needs on a UTF-8 encoded database.

x Enhanced SQL Features. Chapter 3 contains the SQL enhancements provided
for an Advanced Server database.

Synonyms described in Section 3.1 provide for easy-to-use abbreviations for the
fully qualified path names of tables and views.

Hierarchical queries described in Section 3.2 provide for a logical display of
tables related by foreign key constraints.

Extended functions and operators described in Section 3.3 provides for additional
functionality of SQL.

Partitioned tables described in Section 3.4 provide for the implementation of
table partitioning using the SQL CREATE TABLE statement.

x Security. Chapter 4 contains various security features.

SQL/Protect described in Section 4.1 provides protection against SQL injection
attacks.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

21

EDB*Wrap described in Section 4.2 provides obfuscation of program source code
to prevent unwanted scrutiny.

Virtual Private Database described in Section 4.3 provides fine-grained, row
level access.

x EDB Resource Manager. Chapter 5 contains information on the EDB Resource
Manager feature, which provides the capability to control system resource usage
by Advanced Server processes.

Resource Groups described in Section 5.1 shows how to create and maintain the
groups on which resource limits can be defined and to which Advanced Server
processes can be assigned.

CPU Usage Throttling described in Section 5.2 provides a method to control CPU
usage by Advanced Server processes.

Dirty Buffer Throttling described in Section 5.3 provides a method to control the
dirty rate of shared buffers by Advanced Server processes.

x Database Utilities. Chapter 6 contains database utility programs and interfaces.

EDB*Loader described in Section 6.1 provides a quick and easy method for
loading Advanced Server tables.

EDB*Plus described in Section 6.2 is a command line utility program for running
SQL statements.

The libpq C library described in Section 6.3 is the C application programming
interface (API) language for Advanced Server.

ECPGPlus described in Section 6.4 is a C precompiler for Advanced Server.

x Open Client Library. Chapter 7 provides information about the Open Client
Library, an application programming interface for Advanced Server.

The PL Debugger described in Section 7.5 is a graphically oriented debugging
tool for PL/pgSQL.

x Performance Analysis and Tuning. Chapter 8 contains the various tools for
analyzing and improving application and database server performance.

Dynatune described in Section 8.1 provides a quick and easy means for
configuring Advanced Server depending upon the type of application usage.

Infinite Cache described in Section 8.2 provides for performance improvement

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

22

using memory caching. Note: Infinite Cache has been deprecated and may be
removed in a future release. Please contact your EnterpriseDB Account Manager
or mailto:sales@enterprisedb.com for more information.

Index Advisor described in Section 8.3 helps to determine the additional indexes
needed on tables to improve application performance.

SQL Profiler described in Section 8.4 locates and diagnoses poorly running SQL
queries in applications.

Query optimization hints described in Section 8.5 allows you to influence the
manner in which the query planner processes SQL statements.

DBMS_PROFILER described in Section 8.6 is a built-in package that can be used
to gather performance statistics for PL/pgSQL programs.

Dynamic Runtime Instrumentation Tools Architecture (DRITA) described in
Section 8.7 provides the capability to capture and view statistics pertaining to wait
events that affect system performance.

x Built-In Utility Packages. Chapter 9 contains an extensive set of built-in
packages that provide functions to quicken and ease development of PL/pgSQL
applications.

x Expanded Catalog Views. Chapter 10 contains additional catalog views added to
Advanced Server to simplify the querying of database object information.

x System Catalog Tables. Chapter 11 contains additional system catalog tables
added for Advanced Server specific database objects.

x Appendix. Chapter 12 contains various miscellaneous topics such as Advanced
Server database limits and keywords.

mailto:sales@enterprisedb.com

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

23

1.1 What’s New

The following features have been added to Postgres Plus Advanced Server 9.4 to create
Postgres Plus Advanced Server 9.5:

x Advanced Server now provides support for Profile Management. For more
information, see Section 2.4.

x Advanced Server now includes support for DBMS_SESSION.SET_ROLE. For more
information, see Section 9.13.1.

x Advanced Server now includes support for the UTL_RAW package. For more
information, see Section 9.20.

x Advanced Server now includes the edb_audit_tag parameter; the parameter
can be used to add a tag to an audit log. For more information, see sections
2.1.3.7.10 and 2.2.1.

x Advanced Server supports the use of EDBLDR_ENV_STYLE to specify the style of
environment variables recognized by EDB*Loader. For more information, see
Section 6.1.3.

x EDB*Loader now accepts the ZONED [(precision[,scale])] field type
specification. For more information, see Section 6.1.3.

x Advanced Server now supports the UTL_HTTP.WRITE_LINE and
UTL_HTTP.WRITE_TEXT procedures. For more information, see sections 9.18.25
and 9.18.27, respectively.

x Advanced Server now supports the DBA_PROFILES view. For more information,
see Section 10.36.

x Advanced Server now supports the FREEZE keyword in the EDB*Loader control
file and on the command line. For more information, see sections 6.1.3 and 6.1.4,
respectively.

x Advanced Server now supports XA functions xaoEnv and xaoSvcCtx in the
Open Client Library. For more information, See Section 7.4.6.

x Advanced Server now supports the EDB_ATTR_EMPTY_STRINGS environment
attribute in the Open Client Library. For more information, See Section 7.4.2.1.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

24

1.2 Typographical Conventions Used in this Guide

Certain typographical conventions are used in this manual to clarify the meaning and
usage of various commands, statements, programs, examples, etc. This section provides a
summary of these conventions.

In the following descriptions a term refers to any word or group of words that may be
language keywords, user-supplied values, literals, etc. A term‟s exact meaning depends
upon the context in which it is used.

x Italic font introduces a new term, typically, in the sentence that defines it for the
first time.

x Fixed-width (mono-spaced) font is used for terms that must be given
literally such as SQL commands, specific table and column names used in the
examples, programming language keywords, directory paths and file names,
parameter values, etc. For example postgresql.conf, SELECT * FROM emp;

x Italic fixed-width font is used for terms for which the user must
substitute values in actual usage. For example, DELETE FROM table_name;

x A vertical pipe | denotes a choice between the terms on either side of the pipe. A
vertical pipe is used to separate two or more alternative terms within square
brackets (optional choices) or braces (one mandatory choice).

x Square brackets [] denote that one or none of the enclosed term(s) may be
substituted. For example, [a | b], means choose one of “a” or “b” or neither
of the two.

x Braces {} denote that exactly one of the enclosed alternatives must be specified.
For example, { a | b }, means exactly one of “a” or “b” must be specified.

x Ellipses ... denote that the proceeding term may be repeated. For example, [a |
b] ... means that you may have the sequence, “b a a b a”.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

25

1.3 Other Conventions Used in this Guide

This guide applies to both Linux and Windows systems. Directory paths are presented in
the Linux format with forward slashes. When working on Windows systems, start the
directory path with the drive letter followed by a colon and substitute back slashes for
forward slashes.

Throughout this guide, the directory path of Postgres Plus Advanced Server is referred to
as POSTGRES_PLUS_HOME.

For Linux installations, the default directory path is

/opt/PostgresPlus/version_no

For Windows installations, the default directory path is

C:\Program Files\PostgresPlus\version_no

The product version number is represented by version_no.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

26

1.4 About the Examples Used in this Guide

The examples in this guide are shown in the type and background illustrated below.

Examples and output from examples are shown in fixed-width, blue font on a
light blue background.

The examples use the sample tables, dept, emp, and jobhist, created and loaded when
Postgres Plus Advanced Server is installed.

The tables and programs in the sample database can be re-created at any time by
executing the following script:

POSTGRES_PLUS_HOME/installer/server/pg-sample.sql.

The script:

x Creates the sample tables and programs in the currently connected database.
x Grants all permissions on the tables to the PUBLIC group.

The tables and programs will be created in the first schema of the search path in which
the current user has permission to create tables and procedures. You can display the
search path by issuing the command:

SHOW SEARCH_PATH;

You can use PSQL commands to modify the search path.

1.4.1.1 Sample Database Description

The sample database represents employees in an organization. It contains three types of
records: employees, departments, and historical records of employees.

Each employee has an identification number, name, hire date, salary, and manager. Some
employees earn a commission in addition to their salary. All employee-related
information is stored in the emp table.

The sample company is regionally diverse, so it tracks the locations of its departments.
Each company employee is assigned to a department. Each department is identified by a
unique department number and a short name. Each department is associated with one
location. All department-related information is stored in the dept table.

The company also tracks information about jobs held by the employees. Some employees
have been with the company for a long time and have held different positions, received
raises, switched departments, etc. When a change in employee status occurs, the company
records the end date of the former position. A new job record is added with the start date

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

27

and the new job title, department, salary, and the reason for the status change. All
employee history is maintained in the jobhist table.

The following is the pg-sample.sql script:

SET datestyle TO 'iso, dmy';

--
-- Script that creates the 'sample' tables, views
-- functions, triggers, etc.
--
-- Start new transaction - commit all or nothing
--
BEGIN;
--
-- Create and load tables used in the documentation examples.
--
-- Create the 'dept' table
--
CREATE TABLE dept (
 deptno NUMERIC(2) NOT NULL CONSTRAINT dept_pk PRIMARY KEY,
 dname VARCHAR(14) CONSTRAINT dept_dname_uq UNIQUE,
 loc VARCHAR(13)
);
--
-- Create the 'emp' table
--
CREATE TABLE emp (
 empno NUMERIC(4) NOT NULL CONSTRAINT emp_pk PRIMARY KEY,
 ename VARCHAR(10),
 job VARCHAR(9),
 mgr NUMERIC(4),
 hiredate DATE,
 sal NUMERIC(7,2) CONSTRAINT emp_sal_ck CHECK (sal > 0),
 comm NUMERIC(7,2),
 deptno NUMERIC(2) CONSTRAINT emp_ref_dept_fk
 REFERENCES dept(deptno)
);
--
-- Create the 'jobhist' table
--
CREATE TABLE jobhist (
 empno NUMERIC(4) NOT NULL,
 startdate TIMESTAMP(0) NOT NULL,
 enddate TIMESTAMP(0),
 job VARCHAR(9),
 sal NUMERIC(7,2),
 comm NUMERIC(7,2),
 deptno NUMERIC(2),
 chgdesc VARCHAR(80),
 CONSTRAINT jobhist_pk PRIMARY KEY (empno, startdate),
 CONSTRAINT jobhist_ref_emp_fk FOREIGN KEY (empno)
 REFERENCES emp(empno) ON DELETE CASCADE,
 CONSTRAINT jobhist_ref_dept_fk FOREIGN KEY (deptno)
 REFERENCES dept (deptno) ON DELETE SET NULL,
 CONSTRAINT jobhist_date_chk CHECK (startdate <= enddate)
);
--
-- Create the 'salesemp' view
--
CREATE OR REPLACE VIEW salesemp AS

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

28

 SELECT empno, ename, hiredate, sal, comm FROM emp WHERE job = 'SALESMAN';
--
-- Sequence to generate values for function 'new_empno'.
--
CREATE SEQUENCE next_empno START WITH 8000 INCREMENT BY 1;
--
-- Issue PUBLIC grants
--
--GRANT ALL ON emp TO PUBLIC;
--GRANT ALL ON dept TO PUBLIC;
--GRANT ALL ON jobhist TO PUBLIC;
--GRANT ALL ON salesemp TO PUBLIC;
--GRANT ALL ON next_empno TO PUBLIC;
--
-- Load the 'dept' table
--
INSERT INTO dept VALUES (10,'ACCOUNTING','NEW YORK');
INSERT INTO dept VALUES (20,'RESEARCH','DALLAS');
INSERT INTO dept VALUES (30,'SALES','CHICAGO');
INSERT INTO dept VALUES (40,'OPERATIONS','BOSTON');
--
-- Load the 'emp' table
--
INSERT INTO emp VALUES (7369,'SMITH','CLERK',7902,'17-DEC-80',800,NULL,20);
INSERT INTO emp VALUES (7499,'ALLEN','SALESMAN',7698,'20-FEB-
81',1600,300,30);
INSERT INTO emp VALUES (7521,'WARD','SALESMAN',7698,'22-FEB-81',1250,500,30);
INSERT INTO emp VALUES (7566,'JONES','MANAGER',7839,'02-APR-
81',2975,NULL,20);
INSERT INTO emp VALUES (7654,'MARTIN','SALESMAN',7698,'28-SEP-
81',1250,1400,30);
INSERT INTO emp VALUES (7698,'BLAKE','MANAGER',7839,'01-MAY-
81',2850,NULL,30);
INSERT INTO emp VALUES (7782,'CLARK','MANAGER',7839,'09-JUN-
81',2450,NULL,10);
INSERT INTO emp VALUES (7788,'SCOTT','ANALYST',7566,'19-APR-
87',3000,NULL,20);
INSERT INTO emp VALUES (7839,'KING','PRESIDENT',NULL,'17-NOV-
81',5000,NULL,10);
INSERT INTO emp VALUES (7844,'TURNER','SALESMAN',7698,'08-SEP-81',1500,0,30);
INSERT INTO emp VALUES (7876,'ADAMS','CLERK',7788,'23-MAY-87',1100,NULL,20);
INSERT INTO emp VALUES (7900,'JAMES','CLERK',7698,'03-DEC-81',950,NULL,30);
INSERT INTO emp VALUES (7902,'FORD','ANALYST',7566,'03-DEC-81',3000,NULL,20);
INSERT INTO emp VALUES (7934,'MILLER','CLERK',7782,'23-JAN-82',1300,NULL,10);
--
-- Load the 'jobhist' table
--
INSERT INTO jobhist VALUES (7369,'17-DEC-80',NULL,'CLERK',800,NULL,20,'New
Hire');
INSERT INTO jobhist VALUES (7499,'20-FEB-81',NULL,'SALESMAN',1600,300,30,'New
Hire');
INSERT INTO jobhist VALUES (7521,'22-FEB-81',NULL,'SALESMAN',1250,500,30,'New
Hire');
INSERT INTO jobhist VALUES (7566,'02-APR-81',NULL,'MANAGER',2975,NULL,20,'New
Hire');
INSERT INTO jobhist VALUES (7654,'28-SEP-
81',NULL,'SALESMAN',1250,1400,30,'New Hire');
INSERT INTO jobhist VALUES (7698,'01-MAY-81',NULL,'MANAGER',2850,NULL,30,'New
Hire');
INSERT INTO jobhist VALUES (7782,'09-JUN-81',NULL,'MANAGER',2450,NULL,10,'New
Hire');
INSERT INTO jobhist VALUES (7788,'19-APR-87','12-APR-
88','CLERK',1000,NULL,20,'New Hire');

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

29

INSERT INTO jobhist VALUES (7788,'13-APR-88','04-MAY-
89','CLERK',1040,NULL,20,'Raise');
INSERT INTO jobhist VALUES (7788,'05-MAY-
90',NULL,'ANALYST',3000,NULL,20,'Promoted to Analyst');
INSERT INTO jobhist VALUES (7839,'17-NOV-
81',NULL,'PRESIDENT',5000,NULL,10,'New Hire');
INSERT INTO jobhist VALUES (7844,'08-SEP-81',NULL,'SALESMAN',1500,0,30,'New
Hire');
INSERT INTO jobhist VALUES (7876,'23-MAY-87',NULL,'CLERK',1100,NULL,20,'New
Hire');
INSERT INTO jobhist VALUES (7900,'03-DEC-81','14-JAN-
83','CLERK',950,NULL,10,'New Hire');
INSERT INTO jobhist VALUES (7900,'15-JAN-
83',NULL,'CLERK',950,NULL,30,'Changed to Dept 30');
INSERT INTO jobhist VALUES (7902,'03-DEC-81',NULL,'ANALYST',3000,NULL,20,'New
Hire');
INSERT INTO jobhist VALUES (7934,'23-JAN-82',NULL,'CLERK',1300,NULL,10,'New
Hire');
--
-- Populate statistics table and view (pg_statistic/pg_stats)
--
ANALYZE dept;
ANALYZE emp;
ANALYZE jobhist;
--
-- Function that lists all employees' numbers and names
-- from the 'emp' table using a cursor.
--
CREATE OR REPLACE FUNCTION list_emp() RETURNS VOID
AS $$
DECLARE
 v_empno NUMERIC(4);
 v_ename VARCHAR(10);
 emp_cur CURSOR FOR
 SELECT empno, ename FROM emp ORDER BY empno;
BEGIN
 OPEN emp_cur;
 RAISE INFO 'EMPNO ENAME';
 RAISE INFO '----- -------';
 LOOP
 FETCH emp_cur INTO v_empno, v_ename;
 EXIT WHEN NOT FOUND;
 RAISE INFO '% %', v_empno, v_ename;
 END LOOP;
 CLOSE emp_cur;
 RETURN;
END;
$$ LANGUAGE 'plpgsql';
--
-- Function that selects an employee row given the employee
-- number and displays certain columns.
--
CREATE OR REPLACE FUNCTION select_emp (
 p_empno NUMERIC
) RETURNS VOID
AS $$
DECLARE
 v_ename emp.ename%TYPE;
 v_hiredate emp.hiredate%TYPE;
 v_sal emp.sal%TYPE;
 v_comm emp.comm%TYPE;
 v_dname dept.dname%TYPE;
 v_disp_date VARCHAR(10);

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

30

BEGIN
 SELECT INTO
 v_ename, v_hiredate, v_sal, v_comm, v_dname
 ename, hiredate, sal, COALESCE(comm, 0), dname
 FROM emp e, dept d
 WHERE empno = p_empno
 AND e.deptno = d.deptno;
 IF NOT FOUND THEN
 RAISE INFO 'Employee % not found', p_empno;
 RETURN;
 END IF;
 v_disp_date := TO_CHAR(v_hiredate, 'MM/DD/YYYY');
 RAISE INFO 'Number : %', p_empno;
 RAISE INFO 'Name : %', v_ename;
 RAISE INFO 'Hire Date : %', v_disp_date;
 RAISE INFO 'Salary : %', v_sal;
 RAISE INFO 'Commission: %', v_comm;
 RAISE INFO 'Department: %', v_dname;
 RETURN;
EXCEPTION
 WHEN OTHERS THEN
 RAISE INFO 'The following is SQLERRM : %', SQLERRM;
 RAISE INFO 'The following is SQLSTATE: %', SQLSTATE;
 RETURN;
END;
$$ LANGUAGE 'plpgsql';
--
-- A RECORD type used to format the return value of
-- function, 'emp_query'.
--
CREATE TYPE emp_query_type AS (
 empno NUMERIC,
 ename VARCHAR(10),
 job VARCHAR(9),
 hiredate DATE,
 sal NUMERIC
);
--
-- Function that queries the 'emp' table based on
-- department number and employee number or name. Returns
-- employee number and name as INOUT parameters and job,
-- hire date, and salary as OUT parameters. These are
-- returned in the form of a record defined by
-- RECORD type, 'emp_query_type'.
--
CREATE OR REPLACE FUNCTION emp_query (
 IN p_deptno NUMERIC,
 INOUT p_empno NUMERIC,
 INOUT p_ename VARCHAR,
 OUT p_job VARCHAR,
 OUT p_hiredate DATE,
 OUT p_sal NUMERIC
)
AS $$
BEGIN
 SELECT INTO
 p_empno, p_ename, p_job, p_hiredate, p_sal
 empno, ename, job, hiredate, sal
 FROM emp
 WHERE deptno = p_deptno
 AND (empno = p_empno
 OR ename = UPPER(p_ename));
END;

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

31

$$ LANGUAGE 'plpgsql';
--
-- Function to call 'emp_query_caller' with IN and INOUT
-- parameters. Displays the results received from INOUT and
-- OUT parameters.
--
CREATE OR REPLACE FUNCTION emp_query_caller() RETURNS VOID
AS $$
DECLARE
 v_deptno NUMERIC;
 v_empno NUMERIC;
 v_ename VARCHAR;
 v_rows INTEGER;
 r_emp_query EMP_QUERY_TYPE;
BEGIN
 v_deptno := 30;
 v_empno := 0;
 v_ename := 'Martin';
 r_emp_query := emp_query(v_deptno, v_empno, v_ename);
 RAISE INFO 'Department : %', v_deptno;
 RAISE INFO 'Employee No: %', (r_emp_query).empno;
 RAISE INFO 'Name : %', (r_emp_query).ename;
 RAISE INFO 'Job : %', (r_emp_query).job;
 RAISE INFO 'Hire Date : %', (r_emp_query).hiredate;
 RAISE INFO 'Salary : %', (r_emp_query).sal;
 RETURN;
EXCEPTION
 WHEN OTHERS THEN
 RAISE INFO 'The following is SQLERRM : %', SQLERRM;
 RAISE INFO 'The following is SQLSTATE: %', SQLSTATE;
 RETURN;
END;
$$ LANGUAGE 'plpgsql';
--
-- Function to compute yearly compensation based on semimonthly
-- salary.
--
CREATE OR REPLACE FUNCTION emp_comp (
 p_sal NUMERIC,
 p_comm NUMERIC
) RETURNS NUMERIC
AS $$
BEGIN
 RETURN (p_sal + COALESCE(p_comm, 0)) * 24;
END;
$$ LANGUAGE 'plpgsql';
--
-- Function that gets the next number from sequence, 'next_empno',
-- and ensures it is not already in use as an employee number.
--
CREATE OR REPLACE FUNCTION new_empno() RETURNS INTEGER
AS $$
DECLARE
 v_cnt INTEGER := 1;
 v_new_empno INTEGER;
BEGIN
 WHILE v_cnt > 0 LOOP
 SELECT INTO v_new_empno nextval('next_empno');
 SELECT INTO v_cnt COUNT(*) FROM emp WHERE empno = v_new_empno;
 END LOOP;
 RETURN v_new_empno;
END;
$$ LANGUAGE 'plpgsql';

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

32

--
-- Function that adds a new clerk to table 'emp'.
--
CREATE OR REPLACE FUNCTION hire_clerk (
 p_ename VARCHAR,
 p_deptno NUMERIC
) RETURNS NUMERIC
AS $$
DECLARE
 v_empno NUMERIC(4);
 v_ename VARCHAR(10);
 v_job VARCHAR(9);
 v_mgr NUMERIC(4);
 v_hiredate DATE;
 v_sal NUMERIC(7,2);
 v_comm NUMERIC(7,2);
 v_deptno NUMERIC(2);
BEGIN
 v_empno := new_empno();
 INSERT INTO emp VALUES (v_empno, p_ename, 'CLERK', 7782,
 CURRENT_DATE, 950.00, NULL, p_deptno);
 SELECT INTO
 v_empno, v_ename, v_job, v_mgr, v_hiredate, v_sal, v_comm, v_deptno
 empno, ename, job, mgr, hiredate, sal, comm, deptno
 FROM emp WHERE empno = v_empno;
 RAISE INFO 'Department : %', v_deptno;
 RAISE INFO 'Employee No: %', v_empno;
 RAISE INFO 'Name : %', v_ename;
 RAISE INFO 'Job : %', v_job;
 RAISE INFO 'Manager : %', v_mgr;
 RAISE INFO 'Hire Date : %', v_hiredate;
 RAISE INFO 'Salary : %', v_sal;
 RAISE INFO 'Commission : %', v_comm;
 RETURN v_empno;
EXCEPTION
 WHEN OTHERS THEN
 RAISE INFO 'The following is SQLERRM : %', SQLERRM;
 RAISE INFO 'The following is SQLSTATE: %', SQLSTATE;
 RETURN -1;
END;
$$ LANGUAGE 'plpgsql';
--
-- Function that adds a new salesman to table 'emp'.
--
CREATE OR REPLACE FUNCTION hire_salesman (
 p_ename VARCHAR,
 p_sal NUMERIC,
 p_comm NUMERIC
) RETURNS NUMERIC
AS $$
DECLARE
 v_empno NUMERIC(4);
 v_ename VARCHAR(10);
 v_job VARCHAR(9);
 v_mgr NUMERIC(4);
 v_hiredate DATE;
 v_sal NUMERIC(7,2);
 v_comm NUMERIC(7,2);
 v_deptno NUMERIC(2);
BEGIN
 v_empno := new_empno();
 INSERT INTO emp VALUES (v_empno, p_ename, 'SALESMAN', 7698,
 CURRENT_DATE, p_sal, p_comm, 30);

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

33

 SELECT INTO
 v_empno, v_ename, v_job, v_mgr, v_hiredate, v_sal, v_comm, v_deptno
 empno, ename, job, mgr, hiredate, sal, comm, deptno
 FROM emp WHERE empno = v_empno;
 RAISE INFO 'Department : %', v_deptno;
 RAISE INFO 'Employee No: %', v_empno;
 RAISE INFO 'Name : %', v_ename;
 RAISE INFO 'Job : %', v_job;
 RAISE INFO 'Manager : %', v_mgr;
 RAISE INFO 'Hire Date : %', v_hiredate;
 RAISE INFO 'Salary : %', v_sal;
 RAISE INFO 'Commission : %', v_comm;
 RETURN v_empno;
EXCEPTION
 WHEN OTHERS THEN
 RAISE INFO 'The following is SQLERRM : %', SQLERRM;
 RAISE INFO 'The following is SQLSTATE: %', SQLSTATE;
 RETURN -1;
END;
$$ LANGUAGE 'plpgsql';
--
-- Rule to INSERT into view 'salesemp'
--
CREATE OR REPLACE RULE salesemp_i AS ON INSERT TO salesemp
DO INSTEAD
 INSERT INTO emp VALUES (NEW.empno, NEW.ename, 'SALESMAN', 7698,
 NEW.hiredate, NEW.sal, NEW.comm, 30);
--
-- Rule to UPDATE view 'salesemp'
--
CREATE OR REPLACE RULE salesemp_u AS ON UPDATE TO salesemp
DO INSTEAD
 UPDATE emp SET empno = NEW.empno,
 ename = NEW.ename,
 hiredate = NEW.hiredate,
 sal = NEW.sal,
 comm = NEW.comm
 WHERE empno = OLD.empno;
--
-- Rule to DELETE from view 'salesemp'
--
CREATE OR REPLACE RULE salesemp_d AS ON DELETE TO salesemp
DO INSTEAD
 DELETE FROM emp WHERE empno = OLD.empno;
--
-- After statement-level trigger that displays a message after
-- an insert, update, or deletion to the 'emp' table. One message
-- per SQL command is displayed.
--
CREATE OR REPLACE FUNCTION user_audit_trig() RETURNS TRIGGER
AS $$
DECLARE
 v_action VARCHAR(24);
 v_text TEXT;
BEGIN
 IF TG_OP = 'INSERT' THEN
 v_action := ' added employee(s) on ';
 ELSIF TG_OP = 'UPDATE' THEN
 v_action := ' updated employee(s) on ';
 ELSIF TG_OP = 'DELETE' THEN
 v_action := ' deleted employee(s) on ';
 END IF;
 v_text := 'User ' || USER || v_action || CURRENT_DATE;

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

34

 RAISE INFO ' %', v_text;
 RETURN NULL;
END;
$$ LANGUAGE 'plpgsql';
CREATE TRIGGER user_audit_trig
 AFTER INSERT OR UPDATE OR DELETE ON emp
 FOR EACH STATEMENT EXECUTE PROCEDURE user_audit_trig();
--
-- Before row-level trigger that displays employee number and
-- salary of an employee that is about to be added, updated,
-- or deleted in the 'emp' table.
--
CREATE OR REPLACE FUNCTION emp_sal_trig() RETURNS TRIGGER
AS $$
DECLARE
 sal_diff NUMERIC(7,2);
BEGIN
 IF TG_OP = 'INSERT' THEN
 RAISE INFO 'Inserting employee %', NEW.empno;
 RAISE INFO '..New salary: %', NEW.sal;
 RETURN NEW;
 END IF;
 IF TG_OP = 'UPDATE' THEN
 sal_diff := NEW.sal - OLD.sal;
 RAISE INFO 'Updating employee %', OLD.empno;
 RAISE INFO '..Old salary: %', OLD.sal;
 RAISE INFO '..New salary: %', NEW.sal;
 RAISE INFO '..Raise : %', sal_diff;
 RETURN NEW;
 END IF;
 IF TG_OP = 'DELETE' THEN
 RAISE INFO 'Deleting employee %', OLD.empno;
 RAISE INFO '..Old salary: %', OLD.sal;
 RETURN OLD;
 END IF;
END;
$$ LANGUAGE 'plpgsql';
CREATE TRIGGER emp_sal_trig
 BEFORE DELETE OR INSERT OR UPDATE ON emp
 FOR EACH ROW EXECUTE PROCEDURE emp_sal_trig();
COMMIT;

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

35

2 Database Administration
This chapter describes the features that aid in the management and administration of
Postgres Plus Advanced Server databases.

2.1 Configuration Parameters

This section describes the database server configuration parameters of Postgres Plus
Advanced Server. These parameters control various aspects of the database server‟s
behavior and environment such as data file and log file locations, connection,
authentication, and security settings, resource allocation and consumption, archiving and
replication settings, error logging and statistics gathering, optimization and performance
tuning, locale and formatting settings, and so on.

Most of these configuration parameters apply to PostgreSQL as well. Configuration
parameters that apply only to Advanced Server are noted in Section 2.1.2.

Additional information about configuration parameters can be found in the PostgreSQL
Core Documentation, available at the EnterpriseDB website at:

http://www.enterprisedb.com/docs/en/9.4/pg/index.html

http://www.enterprisedb.com/docs/en/9.4/pg/index.html

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

36

2.1.1 Setting Configuration Parameters

This section provides an overview of how configuration parameters are specified and set.

Each configuration parameter is set using a name/value pair. Parameter names are case-
insensitive. The parameter name is typically separated from its value by an optional
equals sign (=).

The following is an example of some configuration parameter settings in the
postgresql.conf file:

This is a comment
log_connections = yes
log_destination = 'syslog'
search_path = '"$user", public'
shared_buffers = 128MB

Parameter values are specified as one of five types:

x Boolean. Acceptable values can be written as on, off, true, false, yes, no, 1,
0, or any unambiguous prefix of these.

x Integer. Number without a fractional part.
x Floating Point. Number with an optional fractional part separated by a decimal

point.
x String. Text value. Enclose in single quotes if the value is not a simple identifier

or number (that is, the value contains special characters such as spaces or other
punctuation marks).

x Enum. Specific set of string values. The allowed values can be found in the
system view pg_settings.enumvals. Enum values are case-insensitive.

Some settings specify a memory or time value. Each of these has an implicit unit, which
is kilobytes, blocks (typically 8 kilobytes), milliseconds, seconds, or minutes. Default
units can be found by referencing the system view pg_settings.unit. A different unit
can be specified explicitly.

Valid memory units are kB (kilobytes), MB (megabytes), and GB (gigabytes). Valid time
units are ms (milliseconds), s (seconds), min (minutes), h (hours), and d (days). The
multiplier for memory units is 1024.

The configuration parameter settings can be established in a number of different ways:

x There is a number of parameter settings that are established when the Advanced
Server database product is built. These are read-only parameters, and their values
cannot be changed. There are also a couple of parameters that are permanently set

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

37

for each database when the database is created. These parameters are read-only as
well and cannot be subsequently changed for the database.

x The initial settings for almost all configurable parameters across the entire
database cluster are listed in the configuration file, postgresql.conf. These
settings are put into effect upon database server start or restart. Some of these
initial parameter settings can be overridden as discussed in the following bullet
points. All configuration parameters have built-in default settings that are in effect
if not explicitly overridden.

x Parameter settings can be modified in the configuration file while the database
server is running. If the configuration file is then reloaded (meaning a SIGHUP
signal is issued), for certain parameter types, the changed parameters settings
immediately take effect. For some of these parameter types, the new settings are
available in a currently running session immediately after the reload. For other of
these parameter types, a new session must be started to use the new settings. And
yet for other parameter types, modified settings do not take effect until the
database server is stopped and restarted. See Section 18.1, “Setting Parameters” in
the PostgreSQL Core Documentation for information on how to reload the
configuration file.

x The SQL commands ALTER DATABASE, ALTER ROLE, or ALTER ROLE IN
DATABASE can be used to modify certain parameter settings. The modified
parameter settings take effect for new sessions after the command is executed.
ALTER DATABASE affects new sessions connecting to the specified database.
ALTER ROLE affects new sessions started by the specified role. ALTER ROLE IN
DATABASE affects new sessions started by the specified role connecting to the
specified database. Parameter settings established by these SQL commands
remain in effect indefinitely, across database server restarts, overriding settings
established by the methods discussed in the second and third bullet points.
Parameter settings established using the ALTER DATABASE, ALTER ROLE, or
ALTER ROLE IN DATABASE commands can only be changed by: a) re-issuing
these commands with a different parameter value, or b) issuing these commands
using either of the SET parameter TO DEFAULT clause or the RESET
parameter clause. These clauses change the parameter back to using the setting
established by the methods set forth in the prior bullet points. See Section I, “SQL
Commands” of Chapter VI “Reference” in the PostgreSQL Core Documentation
for the exact syntax of these SQL commands.

x Changes can be made for certain parameter settings for the duration of individual
sessions using the PGOPTIONS environment variable or by using the SET
command within the EDB-PSQL or PSQL command line terminal programs.
Parameter settings made in this manner override settings established using any of
the methods described by the second, third, and fourth bullet points, but only for
the duration of the session.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

38

2.1.2 Summary of Configuration Parameters

This section contains a summary table listing all Advanced Server configuration
parameters along with a number of key attributes of the parameters.

These attributes are described by the following columns of the summary table:

x Parameter. Configuration parameter name.
x Scope of Effect. Scope of effect of the configuration parameter setting. „Cluster‟

– Setting affects the entire database cluster (that is, all databases managed by the
database server instance). „Database‟ – Setting can vary by database and is
established when the database is created. Applies to a small number of parameters
related to locale settings. „Session‟ – Setting can vary down to the granularity of
individual sessions. In other words, different settings can be made for the
following entities whereby the latter settings in this list override prior ones: a) the
entire database cluster, b) specific databases in the database cluster, c) specific
roles, d) specific roles when connected to specific databases, e) a specific session.

x When Takes Effect. When a changed parameter setting takes effect. „Preset‟ –
Established when the Advanced Server product is built or a particular database is
created. This is a read-only parameter and cannot be changed. „Restart‟ –
Database server must be restarted. „Reload‟ – Configuration file must be reloaded
(or the database server can be restarted). „Immediate‟ – Immediately effective in a
session if the PGOPTIONS environment variable or the SET command is used to
change the setting in the current session. Effective in new sessions if ALTER
DATABASE, ALTER ROLE, or ALTER ROLE IN DATABASE commands are used
to change the setting.

x Authorized User. Type of operating system account or database role that must be
used to put the parameter setting into effect. „PPAS service account‟ – Postgres
Plus Advanced Server service account (enterprisedb for an Oracle compatible
mode installation, postgres for a PostgreSQL compatible mode installation).
„Superuser‟ – Database role with superuser privileges. „User‟ – Any database role
with permissions on the affected database object (the database or role to be altered
with the ALTER command). „n/a‟ – Parameter setting cannot be changed by any
user.

x Description. Brief description of the configuration parameter.
x PPAS Only. „X‟ – Configuration parameter is applicable to Postgres Plus

Advanced Server only. No entry in this column indicates the configuration
parameter applies to PostgreSQL as well.

Note: There are a number of parameters that should never be altered. These are
designated as “Note: For internal use only” in the Description column.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

39

Table 2-1 - Summary of Configuration Parameters

Parameter Scope of
Effect

When
Takes
Effect

Authorized
User Description PPAS

Only

allow_system_table_mods Cluster Restart PPAS
service
account

Allows modifications of the
structure of system tables.

application_name Session Immediate User Sets the application name to be
reported in statistics and logs.

archive_command Cluster Reload PPAS
service
account

Sets the shell command that
will be called to archive a WAL
file.

archive_mode Cluster Restart PPAS
service
account

Allows archiving of WAL files
using archive_command.

archive_timeout Cluster Reload PPAS
service
account

Forces a switch to the next xlog
file if a new file has not been
started within N seconds.

array_nulls Session Immediate User Enable input of NULL elements
in arrays.

authentication_timeout Cluster Reload PPAS
service
account

Sets the maximum allowed time
to complete client
authentication.

autovacuum Cluster Reload PPAS
service
account

Starts the autovacuum
subprocess.

autovacuum_analyze_scale
_factor

Cluster Reload PPAS
service
account

Number of tuple inserts,
updates or deletes prior to
analyze as a fraction of
reltuples.

autovacuum_analyze_thres
hold

Cluster Reload PPAS
service
account

Minimum number of tuple
inserts, updates or deletes prior
to analyze.

autovacuum_freeze_max_ag
e

Cluster Restart PPAS
service
account

Age at which to autovacuum a
table to prevent transaction ID
wraparound.

autovacuum_max_workers Cluster Restart PPAS
service
account

Sets the maximum number of
simultaneously running
autovacuum worker processes.

autovacuum_multixact_fre
eze_max_age

Cluster Restart PPAS
service
account

Multixact age at which to
autovacuum a table to prevent
multixact wraparound.

autovacuum_naptime Cluster Reload PPAS
service
account

Time to sleep between
autovacuum runs.

autovacuum_vacuum_cost_d
elay

Cluster Reload PPAS
service
account

Vacuum cost delay in
milliseconds, for autovacuum.

autovacuum_vacuum_cost_l
imit

Cluster Reload PPAS
service
account

Vacuum cost amount available
before napping, for
autovacuum.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

40

Parameter Scope of
Effect

When
Takes
Effect

Authorized
User Description PPAS

Only

autovacuum_vacuum_scale_
factor

Cluster Reload PPAS
service
account

Number of tuple updates or
deletes prior to vacuum as a
fraction of reltuples.

autovacuum_vacuum_thresh
old

Cluster Reload PPAS
service
account

Minimum number of tuple
updates or deletes prior to
vacuum.

autovacuum_work_mem Cluster Reload PPAS
service
account

Sets the maximum memory to
be used by each autovacuum
worker process.

backslash_quote Session Immediate User Sets whether "\'" is allowed in
string literals.

bgwriter_delay Cluster Reload PPAS
service
account

Background writer sleep time
between rounds.

bgwriter_lru_maxpages Cluster Reload PPAS
service
account

Background writer maximum
number of LRU pages to flush
per round.

bgwriter_lru_multiplier Cluster Reload PPAS
service
account

Multiple of the average buffer
usage to free per round.

block_size Cluster Preset n/a Shows the size of a disk block.
bonjour Cluster Restart PPAS

service
account

Enables advertising the server
via Bonjour.

bonjour_name Cluster Restart PPAS
service
account

Sets the Bonjour service name.

bytea_output Session Immediate User Sets the output format for
bytea.

check_function_bodies Session Immediate User Check function bodies during
CREATE FUNCTION.

checkpoint_completion_ta
rget

Cluster Reload PPAS
service
account

Time spent flushing dirty
buffers during checkpoint, as
fraction of checkpoint interval.

checkpoint_segments Deprecated in
9.5

Deprecated
in 9.5

Deprecated
in 9.5

This parameter is not supported
by server version 9.5 or later.
Specifying a value for the
parameter will prevent the
server from starting.

checkpoint_timeout Cluster Reload PPAS
service
account

Sets the maximum time
between automatic WAL
checkpoints.

checkpoint_warning Cluster Reload PPAS
service
account

Enables warnings if checkpoint
segments are filled more
frequently than this.

client_encoding Session Immediate User Sets the client's character set
encoding.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

41

Parameter Scope of
Effect

When
Takes
Effect

Authorized
User Description PPAS

Only

client_min_messages Session Immediate User Sets the message levels that are
sent to the client.

commit_delay Session Immediate Superuser Sets the delay in microseconds
between transaction commit
and flushing WAL to disk.

commit_siblings Session Immediate User Sets the minimum concurrent
open transactions before
performing commit_delay.

config_file Cluster Restart PPAS
service
account

Sets the server's main
configuration file.

constraint_exclusion Session Immediate User Enables the planner to use
constraints to optimize queries.

cpu_index_tuple_cost Session Immediate User Sets the planner's estimate of
the cost of processing each
index entry during an index
scan.

cpu_operator_cost Session Immediate User Sets the planner's estimate of
the cost of processing each
operator or function call.

cpu_tuple_cost Session Immediate User Sets the planner's estimate of
the cost of processing each
tuple (row).

cursor_tuple_fraction Session Immediate User Sets the planner's estimate of
the fraction of a cursor's rows
that will be retrieved.

custom_variable_classes Cluster Reload PPAS
service
account

Deprecated in Advanced Server
9.2.

X

data_checksums Cluster Preset n/a Shows whether data checksums
are turned on for this cluster.

data_directory Cluster Restart PPAS
service
account

Sets the server's data directory.

DateStyle Session Immediate User Sets the display format for date
and time values.

db_dialect Session Immediate User Sets the precedence of built-in
namespaces.

X

dbms_alert.max_alerts Cluster Restart PPAS
service
account

Sets maximum number of
alerts.

X

dbms_pipe.total_message_
buffer

Cluster Restart PPAS
service
account

Specifies the total size of the
buffer used for the
DBMS_PIPE package.

X

db_user_namespace Cluster Reload PPAS
service
account

Enables per-database user
names.

deadlock_timeout Session Immediate Superuser Sets the time to wait on a lock

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

42

Parameter Scope of
Effect

When
Takes
Effect

Authorized
User Description PPAS

Only

before checking for deadlock.
debug_assertions Cluster Preset n/a Turns on various assertion

checks. (Not supported in
PPAS builds.)

debug_pretty_print Session Immediate User Indents parse and plan tree
displays.

debug_print_parse Session Immediate User Logs each query's parse tree.
debug_print_plan Session Immediate User Logs each query's execution

plan.

debug_print_rewritten Session Immediate User Logs each query's rewritten
parse tree.

default_heap_fillfactor Session Immediate User Create new tables with this
heap fillfactor by default.

X

default_statistics_targe
t

Session Immediate User Sets the default statistics target.

default_tablespace Session Immediate User Sets the default tablespace to
create tables and indexes in.

default_text_search_conf
ig

Session Immediate User Sets default text search
configuration.

default_transaction_defe
rrable

Session Immediate User Sets the default deferrable
status of new transactions.

default_transaction_isol
ation

Session Immediate User Sets the transaction isolation
level of each new transaction.

default_transaction_read
_only

Session Immediate User Sets the default read-only status
of new transactions.

default_with_oids Session Immediate User Create new tables with OIDs by
default.

default_with_rowids Session Immediate User Create new tables with ROWID
support (OIDs with indexes) by
default.

X

dynamic_library_path Session Immediate Superuser Sets the path for dynamically
loadable modules.

dynamic_shared_memory_ty
pe

Cluster Restart PPAS
service
account

Selects the dynamic shared
memory implementation used.

edb_audit Cluster Reload PPAS
service
account

Enable EDB Auditing to create
audit reports in XML or CSV
format.

X

edb_audit_connect Cluster Reload PPAS
service
account

Audits each successful
connection.

X

edb_audit_directory Cluster Reload PPAS
service
account

Sets the destination directory
for audit files.

X

edb_audit_disconnect Cluster Reload PPAS
service
account

Audits end of a session. X

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

43

Parameter Scope of
Effect

When
Takes
Effect

Authorized
User Description PPAS

Only

edb_audit_filename Cluster Reload PPAS
service
account

Sets the file name pattern for
audit files.

X

edb_audit_rotation_day Cluster Reload PPAS
service
account

Automatic rotation of logfiles
based on day of week.

X

edb_audit_rotation_secon
ds

Cluster Reload PPAS
service
account

Automatic log file rotation will
occur after N seconds.

X

edb_audit_rotation_size Cluster Reload PPAS
service
account

Automatic log file rotation will
occur after N Megabytes.

X

edb_audit_statement Cluster Reload PPAS
service
account

Sets the type of statements to
audit.

X

edb_audit_tag Session Immediate User Specify a tag to be included in
the audit log.

X

edb_connectby_order Session Immediate User Sort results of CONNECT BY
queries with no ORDER BY to
depth-first order. Note: For
internal use only.

X

edb_custom_plan_tries Session Immediate User Specifies the number of custom
execution plans considered by
the planner before the planner
selects a generic execution
plan.

X

edb_dynatune Cluster Restart PPAS
service
account

Sets the edb utilization
percentage.

X

edb_dynatune_profile Cluster Restart PPAS
service
account

Sets the workload profile for
dynatune.

X

edb_enable_icache Cluster Restart PPAS
service
account

Enable external shared buffer
infinitecache mechanism.

X

edb_enable_pruning Session Immediate User Enables the planner to early-
prune partitioned tables.

X

edb_icache_compression_l
evel

Session Immediate Superuser Sets compression level of
infinitecache buffers.

X

edb_icache_servers Cluster Reload PPAS
service
account

A list of comma separated
hostname:portnumber
icache servers.

X

edb_max_resource_groups Cluster Restart PPAS
service
account

Specifies the maximum number
of resource groups for
simultaneous use.

X

edb_max_spins_per_delay Cluster Restart PPAS
service
account

Specifies the number of times a
session will spin while waiting
for a lock.

X

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

44

Parameter Scope of
Effect

When
Takes
Effect

Authorized
User Description PPAS

Only

edb_redwood_date Session Immediate User Determines whether DATE
should behave like a
TIMESTAMP or not.

X

edb_redwood_greatest_lea
st

Session Immediate User Determines how GREATEST and
LEAST functions should handle
NULL parameters.

X

edb_redwood_raw_names Session Immediate User Return the unmodified name
stored in the PostgreSQL
system catalogs from Redwood
interfaces.

X

edb_redwood_strings Session Immediate User Treat NULL as an empty string
when concatenated with a text
value.

X

edb_resource_group Session Immediate User Specifies the resource group to
be used by the current process.

X

edb_sql_protect.enabled Cluster Reload PPAS
service
account

Defines whether SQL/Protect
should track queries or not.

X

edb_sql_protect.level Cluster Reload PPAS
service
account

Defines the behavior of
SQL/Protect when an event is
found.

X

edb_sql_protect.max_prot
ected_relations

Cluster Restart PPAS
service
account

Sets the maximum number of
relations protected by
SQL/Protect per role.

X

edb_sql_protect.max_prot
ected_roles

Cluster Restart PPAS
service
account

Sets the maximum number of
roles protected by SQL/Protect.

X

edb_sql_protect.max_quer
ies_to_save

Cluster Restart PPAS
service
account

Sets the maximum number of
offending queries to save by
SQL/Protect.

X

edb_stmt_level_tx Session Immediate User Allows continuing on errors
instead of requiring a
transaction abort.

X

edbldr.empty_csv_field Session Immediate Superuser Specifies how EDB*Loader
handles empty strings.

X

effective_cache_size Session Immediate User Sets the planner's assumption
about the size of the disk cache.

effective_io_concurrency Session Immediate User Number of simultaneous
requests that can be handled
efficiently by the disk
subsystem.

enable_bitmapscan Session Immediate User Enables the planner's use of
bitmap-scan plans.

enable_hashagg Session Immediate User Enables the planner's use of
hashed aggregation plans.

enable_hashjoin Session Immediate User Enables the planner's use of
hash join plans.

enable_hints Session Immediate User Enable optimizer hints in SQL X

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

45

Parameter Scope of
Effect

When
Takes
Effect

Authorized
User Description PPAS

Only

statements.
enable_indexonlyscan Session Immediate User Enables the planner‟s use of

index-only-scan plans.

enable_indexscan Session Immediate User Enables the planner's use of
index-scan plans.

enable_material Session Immediate User Enables the planner's use of
materialization.

enable_mergejoin Session Immediate User Enables the planner's use of
merge join plans.

enable_nestloop Session Immediate User Enables the planner's use of
nested-loop join plans.

enable_seqscan Session Immediate User Enables the planner's use of
sequential-scan plans.

enable_sort Session Immediate User Enables the planner's use of
explicit sort steps.

enable_tidscan Session Immediate User Enables the planner's use of
TID scan plans.

escape_string_warning Session Immediate User Warn about backslash escapes
in ordinary string literals.

event_source Cluster Restart PPAS
service
account

Sets the application name used
to identify PostgreSQL
messages in the event log.

exit_on_error Session Immediate User Terminate session on any error.
external_pid_file Cluster Restart PPAS

service
account

Writes the postmaster PID to
the specified file.

extra_float_digits Session Immediate User Sets the number of digits
displayed for floating-point
values.

from_collapse_limit Session Immediate User Sets the FROM-list size beyond
which subqueries are not
collapsed.

fsync Cluster Reload PPAS
service
account

Forces synchronization of
updates to disk.

full_page_writes Cluster Reload PPAS
service
account

Writes full pages to WAL when
first modified after a
checkpoint.

geqo Session Immediate User Enables genetic query
optimization.

geqo_effort Session Immediate User GEQO: effort is used to set the
default for other GEQO
parameters.

geqo_generations Session Immediate User GEQO: number of iterations of
the algorithm.

geqo_pool_size Session Immediate User GEQO: number of individuals
in the population.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

46

Parameter Scope of
Effect

When
Takes
Effect

Authorized
User Description PPAS

Only

geqo_seed Session Immediate User GEQO: seed for random path
selection.

geqo_selection_bias Session Immediate User GEQO: selective pressure
within the population.

geqo_threshold Session Immediate User Sets the threshold of FROM
items beyond which GEQO is
used.

gin_fuzzy_search_limit Session Immediate User Sets the maximum allowed
result for exact search by GIN.

hba_file Cluster Restart PPAS
service
account

Sets the server's "hba"
configuration file.

hot_standby Cluster Restart PPAS
service
account

Allows connections and queries
during recovery.

hot_standby_feedback Cluster Reload PPAS
service
account

Allows feedback from a hot
standby to the primary that will
avoid query conflicts.

huge_pages Cluster Restart PPAS
service
account

Use of huge pages on Linux.

icu_short_form Database Preset n/a Shows the ICU collation order
configuration.

X

ident_file Cluster Restart PPAS
service
account

Sets the server's "ident"
configuration file.

ignore_checksum_failure Session Immediate Superuser Continues processing after a
checksum failure.

ignore_system_indexes Cluster/
Session

Reload/
Immediate

PPAS
service

account/
User

Disables reading from system
indexes. (Can also be set with
PGOPTIONS at session start.)

index_advisor.enabled Session Immediate User Enable Index Advisor plugin. X
integer_datetimes Cluster Preset n/a Datetimes are integer based.
IntervalStyle Session Immediate User Sets the display format for

interval values.

join_collapse_limit Session Immediate User Sets the FROM-list size beyond
which JOIN constructs are not
flattened.

krb_caseins_users Cluster Reload PPAS
service
account

Sets whether Kerberos and
GSSAPI user names should be
treated as case-insensitive.

krb_server_keyfile Cluster Reload PPAS
service
account

Sets the location of the
Kerberos server key file.

lc_collate Database Preset n/a Shows the collation order
locale.

lc_ctype Database Preset n/a Shows the character

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

47

Parameter Scope of
Effect

When
Takes
Effect

Authorized
User Description PPAS

Only

classification and case
conversion locale.

lc_messages Session Immediate Superuser Sets the language in which
messages are displayed.

lc_monetary Session Immediate User Sets the locale for formatting
monetary amounts.

lc_numeric Session Immediate User Sets the locale for formatting
numbers.

lc_time Session Immediate User Sets the locale for formatting
date and time values.

listen_addresses Cluster Restart PPAS
service
account

Sets the host name or IP
address(es) to listen to.

local_preload_libraries Cluster/
Session

Reload/
Immediate

PPAS
service

account/
User

Lists shared libraries to preload
into each backend. (Can also be
set with PGOPTIONS at session
start.)

lock_timeout Session Immediate User Sets the maximum time allowed
that a statement may wait for a
lock.

lo_compat_privileges Session Immediate Superuser Enables backward compatibility
mode for privilege checks on
large objects.

log_autovacuum_min_durat
ion

Cluster Reload PPAS
service
account

Sets the minimum execution
time above which autovacuum
actions will be logged.

log_checkpoints Cluster Reload PPAS
service
account

Logs each checkpoint.

log_connections Cluster/
Session

Reload/
Immediate

PPAS
service

account/
User

Logs each successful
connection. (Can also be set
with PGOPTIONS at session
start.)

log_destination Cluster Reload PPAS
service
account

Sets the destination for server
log output.

log_directory Cluster Reload PPAS
service
account

Sets the destination directory
for log files.

log_disconnections Cluster/
Session

Reload/
Immediate

PPAS
service

account/
User

Logs end of a session, including
duration. (Can also be set with
PGOPTIONS at session start.)

log_duration Session Immediate Superuser Logs the duration of each
completed SQL statement.

log_error_verbosity Session Immediate Superuser Sets the verbosity of logged
messages.

log_executor_stats Session Immediate Superuser Writes executor performance

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

48

Parameter Scope of
Effect

When
Takes
Effect

Authorized
User Description PPAS

Only

statistics to the server log.
log_file_mode Cluster Reload PPAS

service
account

Sets the file permissions for log
files.

log_filename Cluster Reload PPAS
service
account

Sets the file name pattern for
log files.

log_hostname Cluster Reload PPAS
service
account

Logs the host name in the
connection logs.

log_line_prefix Cluster Reload PPAS
service
account

Controls information prefixed
to each log line.

log_lock_waits Session Immediate Superuser Logs long lock waits.
log_min_duration_stateme
nt

Session Immediate Superuser Sets the minimum execution
time above which statements
will be logged.

log_min_error_statement Session Immediate Superuser Causes all statements
generating error at or above this
level to be logged.

log_min_messages Session Immediate Superuser Sets the message levels that are
logged.

log_parser_stats Session Immediate Superuser Writes parser performance
statistics to the server log.

log_planner_stats Session Immediate Superuser Writes planner performance
statistics to the server log.

log_rotation_age Cluster Reload PPAS
service
account

Automatic log file rotation will
occur after N minutes.

log_rotation_size Cluster Reload PPAS
service
account

Automatic log file rotation will
occur after N kilobytes.

log_statement Session Immediate Superuser Sets the type of statements
logged.

log_statement_stats Session Immediate Superuser Writes cumulative performance
statistics to the server log.

log_temp_files Session Immediate Superuser Log the use of temporary files
larger than this number of
kilobytes.

log_timezone Cluster Reload PPAS
service
account

Sets the time zone to use in log
messages.

log_truncate_on_rotation Cluster Reload PPAS
service
account

Truncate existing log files of
same name during log rotation.

logging_collector Cluster Restart PPAS
service
account

Start a subprocess to capture
stderr output and/or csvlogs
into log files.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

49

Parameter Scope of
Effect

When
Takes
Effect

Authorized
User Description PPAS

Only

maintenance_work_mem Session Immediate User Sets the maximum memory to
be used for maintenance
operations.

max_connections Cluster Restart PPAS
service
account

Sets the maximum number of
concurrent connections.

max_files_per_process Cluster Restart PPAS
service
account

Sets the maximum number of
simultaneously open files for
each server process.

max_function_args Cluster Preset n/a Shows the maximum number of
function arguments.

max_identifier_length Cluster Preset n/a Shows the maximum identifier
length.

max_index_keys Cluster Preset n/a Shows the maximum number of
index keys.

max_locks_per_transactio
n

Cluster Restart PPAS
service
account

Sets the maximum number of
locks per transaction.

max_pred_locks_per_trans
action

Cluster Restart PPAS
service
account

Sets the maximum number of
predicate locks per transaction.

max_prepared_transaction
s

Cluster Restart PPAS
service
account

Sets the maximum number of
simultaneously prepared
transactions.

max_replication_slots Cluster Restart PPAS
service
account

Sets the maximum number of
simultaneously defined
replication slots.

max_stack_depth Session Immediate Superuser Sets the maximum stack depth,
in kilobytes.

max_standby_archive_dela
y

Cluster Reload PPAS
service
account

Sets the maximum delay before
canceling queries when a hot
standby server is processing
archived WAL data.

max_standby_streaming_de
lay

Cluster Reload PPAS
service
account

Sets the maximum delay before
canceling queries when a hot
standby server is processing
streamed WAL data.

max_wal_senders Cluster Restart PPAS
service
account

Sets the maximum number of
simultaneously running WAL
sender processes.

max_wal_size Cluster Reload PPAS
service
account

Sets the maximum size to
which the WAL will grow
between automatic WAL
checkpoints. The default is
1GB.

max_worker_processes Cluster Restart PPAS
service
account

Maximum number of
concurrent worker processes.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

50

Parameter Scope of
Effect

When
Takes
Effect

Authorized
User Description PPAS

Only

min_wal_size Cluster Reload PPAS
service
account

Sets thethreshold at which
WAL logs will be recycled
rather than removed. The
default is 80 MB.

nls_length_semantics Session Immediate Superuser Sets the semantics to use for
char, varchar, varchar2 and
long columns.

X

odbc_lib_path Cluster Restart PPAS
service
account

Sets the path for ODBC library. X

optimizer_mode Session Immediate User Default optimizer mode. X
oracle_home Cluster Restart PPAS

service
account

Sets the path for the Oracle
home directory.

X

password_encryption Session Immediate User Encrypt passwords.
port Cluster Restart PPAS

service
account

Sets the TCP port on which the
server listens.

post_auth_delay Cluster/
Session

Reload/
Immediate

PPAS
service

account/
User

Waits N seconds on connection
startup after authentication.
(Can also be set with
PGOPTIONS at session start.)

pre_auth_delay Cluster Reload PPAS
service
account

Waits N seconds on connection
startup before authentication.

qreplace_function Session Immediate Superuser The function to be used by
Query Replace feature. Note:
For internal use only.

X

query_rewrite_enabled Session Immediate User Child table scans will be
skipped if their constraints
guarantee that no rows match
the query.

X

query_rewrite_integrity Session Immediate Superuser Sets the degree to which query
rewriting must be enforced.

X

quote_all_identifiers Session Immediate User When generating SQL
fragments, quote all identifiers.

random_page_cost Session Immediate User Sets the planner's estimate of
the cost of a nonsequentially
fetched disk page.

restart_after_crash Cluster Reload PPAS
service
account

Reinitialize server after
backend crash.

search_path Session Immediate User Sets the schema search order
for names that are not schema-
qualified.

segment_size Cluster Preset n/a Shows the number of pages per
disk file.

seq_page_cost Session Immediate User Sets the planner's estimate of

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

51

Parameter Scope of
Effect

When
Takes
Effect

Authorized
User Description PPAS

Only

the cost of a sequentially
fetched disk page.

server_encoding Database Preset n/a Sets the server (database)
character set encoding.

server_version Cluster Preset n/a Shows the server version.
server_version_num Cluster Preset n/a Shows the server version as an

integer.

session_preload_librarie
s

Session Immediate
but only at
connection

start

Superuser Lists shared libraries to preload
into each backend.

session_replication_role Session Immediate Superuser Sets the session's behavior for
triggers and rewrite rules.

shared_buffers Cluster Restart PPAS
service
account

Sets the number of shared
memory buffers used by the
server.

shared_preload_libraries Cluster Restart PPAS
service
account

Lists shared libraries to preload
into server.

sql_inheritance Session Immediate User Causes subtables to be included
by default in various
commands.

ssl Cluster Restart PPAS
service
account

Enables SSL connections.

ssl_ca_file Cluster Restart PPAS
service
account

Location of the SSL certificate
authority file.

ssl_cert_file Cluster Restart PPAS
service
account

Location of the SSL server
certificate file.

ssl_ciphers Cluster Restart PPAS
service
account

Sets the list of allowed SSL
ciphers.

ssl_crl_file Cluster Restart PPAS
service
account

Location of the SSL certificate
revocation list file.

ssl_ecdh_curve Cluster Restart PPAS
service
account

Sets the curve to use for ECDH.

ssl_key_file Cluster Restart PPAS
service
account

Location of the SSL server
private key file.

ssl_prefer_server_cipher
s

Cluster Restart PPAS
service
account

Give priority to server
ciphersuite order.

ssl_renegotiation_limit Session Immediate User Set the amount of traffic to send
and receive before

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

52

Parameter Scope of
Effect

When
Takes
Effect

Authorized
User Description PPAS

Only

renegotiating the encryption
keys.

standard_conforming_stri
ngs

Session Immediate User Causes '...' strings to treat
backslashes literally.

statement_timeout Session Immediate User Sets the maximum allowed
duration of any statement.

stats_temp_directory Cluster Reload PPAS
service
account

Writes temporary statistics files
to the specified directory.

superuser_reserved_conne
ctions

Cluster Restart PPAS
service
account

Sets the number of connection
slots reserved for superusers.

synchronize_seqscans Session Immediate User Enable synchronized sequential
scans.

synchronous_commit Session Immediate User Sets immediate fsync at
commit.

synchronous_standby_name
s

Cluster Reload PPAS
service
account

List of names of potential
synchronous standbys.

syslog_facility Cluster Reload PPAS
service
account

Sets the syslog "facility" to be
used when syslog enabled.

syslog_ident Cluster Reload PPAS
service
account

Sets the program name used to
identify PostgreSQL messages
in syslog.

tcp_keepalives_count Session Immediate User Maximum number of TCP
keepalive retransmits.

tcp_keepalives_idle Session Immediate User Time between issuing TCP
keepalives.

tcp_keepalives_interval Session Immediate User Time between TCP keepalive
retransmits.

temp_buffers Session Immediate User Sets the maximum number of
temporary buffers used by each
session.

temp_file_limit Session Immediate Superuser Limits the total size of all
temporary files used by each
session.

temp_tablespaces Session Immediate User Sets the tablespace(s) to use for
temporary tables and sort files.

timed_statistics Session Immediate User Enables the recording of timed
statistics.

X

timezone Session Immediate User Sets the time zone for
displaying and interpreting time
stamps.

timezone_abbreviations Session Immediate User Selects a file of time zone
abbreviations.

trace_hints Session Immediate User Emit debug info about hints
being honored.

X

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

53

Parameter Scope of
Effect

When
Takes
Effect

Authorized
User Description PPAS

Only

trace_notify Session Immediate User Generates debugging output for
LISTEN and NOTIFY.

trace_recovery_messages Cluster Reload PPAS
service
account

Enables logging of recovery-
related debugging information.

trace_sort Session Immediate User Emit information about
resource usage in sorting.

track_activities Session Immediate Superuser Collects information about
executing commands.

track_activity_query_siz
e

Cluster Restart PPAS
service
account

Sets the size reserved for
pg_stat_activity.curren
t_query, in bytes.

track_counts Session Immediate Superuser Collects statistics on database
activity.

track_functions Session Immediate Superuser Collects function-level statistics
on database activity.

track_io_timing Session Immediate Superuser Collects timing statistics for
database I/O activity.

transaction_deferrable Session Immediate User Whether to defer a read-only
serializable transaction until it
can be executed with no
possible serialization failures.

transaction_isolation Session Immediate User Sets the current transaction's
isolation level.

transaction_read_only Session Immediate User Sets the current transaction's
read-only status.

transform_null_equals Session Immediate User Treats "expr=NULL" as "expr
IS NULL".

unix_socket_directories Cluster Restart PPAS
service
account

Sets the directory where the
Unix-domain socket will be
created.

unix_socket_group Cluster Restart PPAS
service
account

Sets the owning group of the
Unix-domain socket.

unix_socket_permissions Cluster Restart PPAS
service
account

Sets the access permissions of
the Unix-domain socket.

update_process_title Session Immediate Superuser Updates the process title to
show the active SQL command.

utl_encode.uudecode_redw
ood

Session Immediate User Allows decoding of Oracle-
created uuencoded data.

X

utl_file.umask Session Immediate User Umask used for files created
through the UTL_FILE
package.

X

vacuum_cost_delay Session Immediate User Vacuum cost delay in
milliseconds.

vacuum_cost_limit Session Immediate User Vacuum cost amount available
before napping.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

54

Parameter Scope of
Effect

When
Takes
Effect

Authorized
User Description PPAS

Only

vacuum_cost_page_dirty Session Immediate User Vacuum cost for a page dirtied
by vacuum.

vacuum_cost_page_hit Session Immediate User Vacuum cost for a page found
in the buffer cache.

vacuum_cost_page_miss Session Immediate User Vacuum cost for a page not
found in the buffer cache.

vacuum_defer_cleanup_age Cluster Reload PPAS
service
account

Number of transactions by
which VACUUM and HOT
cleanup should be deferred, if
any.

vacuum_freeze_min_age Session Immediate User Minimum age at which
VACUUM should freeze a
table row.

vacuum_freeze_table_age Session Immediate User Age at which VACUUM
should scan whole table to
freeze tuples.

vacuum_multixact_freeze_
min_age

Session Immediate User Minimum age at which
VACUUM should freeze a
MultiXactId in a table row.

vacuum_multixact_freeze_
table_age

Session Immediate User Multixact age at which
VACUUM should scan whole
table to freeze tuples.

wal_block_size Cluster Preset n/a Shows the block size in the
write ahead log.

wal_buffers Cluster Restart PPAS
service
account

Sets the number of disk-page
buffers in shared memory for
WAL.

wal_keep_segments Cluster Reload PPAS
service
account

Sets the number of WAL files
held for standby servers.

wal_level Cluster Restart PPAS
service
account

Set the level of information
written to the WAL.

wal_log_hints Cluster Restart PPAS
service
account

Writes full pages to WAL when
first modified after a
checkpoint, even for non-
critical modifications.

wal_receiver_status_inte
rval

Cluster Reload PPAS
service
account

Sets the maximum interval
between WAL receiver status
reports to the primary.

wal_receiver_timeout Cluster Reload PPAS
service
account

Sets the maximum wait time to
receive data from the primary.

wal_segment_size Cluster Preset n/a Shows the number of pages per
write ahead log segment.

wal_sender_timeout Cluster Reload PPAS
service
account

Sets the maximum time to wait
for WAL replication.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

55

Parameter Scope of
Effect

When
Takes
Effect

Authorized
User Description PPAS

Only

wal_sync_method Cluster Reload PPAS
service
account

Selects the method used for
forcing WAL updates to disk.

wal_writer_delay Cluster Reload PPAS
service
account

WAL writer sleep time between
WAL flushes.

work_mem Session Immediate User Sets the maximum memory to
be used for query workspaces.

xloginsert_locks Cluster Restart PPAS
service
account

Sets the number of locks used
for concurrent xlog insertions.

xmlbinary Session Immediate User Sets how binary values are to
be encoded in XML.

Xmloption Session Immediate User Sets whether XML data in
implicit parsing and
serialization operations is to be
considered as documents or
content fragments.

zero_damaged_pages Session Immediate Superuser Continues processing past
damaged page headers.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

56

2.1.3 Configuration Parameters by Functionality

This section provides more detail for certain groups of configuration parameters.

The section heading for each parameter is followed by a list of attributes:

x Parameter Type. Type of values the parameter can accept. See Section 2.1.1 for
a discussion of parameter type values.

x Default Value. Default setting if a value is not explicitly set in the configuration
file.

x Range. Permitted range of values.
x Minimum Scope of Effect. Smallest scope for which a distinct setting can be

made. Generally, the minimal scope of a distinct setting is either the entire cluster
(the setting is the same for all databases and sessions thereof, in the cluster), or
per session (the setting may vary by role, database, or individual session). (This
attribute has the same meaning as the “Scope of Effect” column in the table of
Section 2.1.2.)

x When Value Changes Take Effect. Least invasive action required to activate a
change to a parameter‟s value. All parameter setting changes made in the
configuration file can be put into effect with a restart of the database server;
however certain parameters require a database server restart. Some parameter
setting changes can be put into effect with a reload of the configuration file
without stopping the database server. Finally, other parameter setting changes can
be put into effect with some client side action whose result is immediate. (This
attribute has the same meaning as the “When Takes Effect” column in the table of
Section 2.1.2.)

x Required Authorization to Activate. The type of user authorization to activate a
change to a parameter‟s setting. If a database server restart or a configuration file
reload is required, then the user must be a PPAS service account (enterprisedb
or postgres depending upon the Advanced Server compatibility installation
mode). This attribute has the same meaning as the “Authorized User” column in
the table of Section 2.1.2.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

57

2.1.3.1 Top Performance Related Parameters

This section discusses the configuration parameters that have the most immediate impact
on performance.

2.1.3.1.1 shared_buffers

Parameter Type: Integer

Default Value: 32MB

Range: 128kB to system dependent

Minimum Scope of Effect: Cluster

When Value Changes Take Effect: Restart

Required Authorization to Activate: PPAS service account

Sets the amount of memory the database server uses for shared memory buffers. The
default is typically 32 megabytes (32MB), but might be less if your kernel settings will not
support it (as determined during initdb). This setting must be at least 128 kilobytes.
(Non-default values of BLCKSZ change the minimum.) However, settings significantly
higher than the minimum are usually needed for good performance.

If you have a dedicated database server with 1GB or more of RAM, a reasonable starting
value for shared_buffers is 25% of the memory in your system. There are some
workloads where even large settings for shared_buffers are effective, but because
Postgres Plus also relies on the operating system cache, it is unlikely that an allocation of
more than 40% of RAM to shared_buffers will work better than a smaller amount.

On systems with less than 1GB of RAM, a smaller percentage of RAM is appropriate, so
as to leave adequate space for the operating system (15% of memory is more typical in
these situations). Also, on Windows, large values for shared_buffers aren't as
effective. You may find better results keeping the setting relatively low and using the
operating system cache more instead. The useful range for shared_buffers on
Windows systems is generally from 64MB to 512MB.

Increasing this parameter might cause Postgres Plus to request more System V shared
memory than your operating system's default configuration allows. See Section 17.4.1,
“Shared Memory and Semaphores” in the PostgreSQL Core Documentation for
information on how to adjust those parameters, if necessary.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

58

2.1.3.1.2 work_mem

Parameter Type: Integer

Default Value: 1MB

Range: 64kB to 2097151kB

Minimum Scope of Effect: Per session

When Value Changes Take Effect: Immediate

Required Authorization to Activate: Session user

Specifies the amount of memory to be used by internal sort operations and hash tables
before writing to temporary disk files. The value defaults to one megabyte (1MB). Note
that for a complex query, several sort or hash operations might be running in parallel;
each operation will be allowed to use as much memory as this value specifies before it
starts to write data into temporary files. Also, several running sessions could be doing
such operations concurrently. Therefore, the total memory used could be many times the
value of work_mem; it is necessary to keep this fact in mind when choosing the value.
Sort operations are used for ORDER BY, DISTINCT, and merge joins. Hash tables are
used in hash joins, hash-based aggregation, and hash-based processing of IN subqueries.

Reasonable values are typically between 4MB and 64MB, depending on the size of your
machine, how many concurrent connections you expect (determined by
max_connections), and the complexity of your queries.

2.1.3.1.3 maintenance_work_mem

Parameter Type: Integer

Default Value: 16MB

Range: 1024kB to 2097151kB

Minimum Scope of Effect: Per session

When Value Changes Take Effect: Immediate

Required Authorization to Activate: Session user

Specifies the maximum amount of memory to be used by maintenance operations, such
as VACUUM, CREATE INDEX, and ALTER TABLE ADD FOREIGN KEY. It defaults to 16
megabytes (16MB). Since only one of these operations can be executed at a time by a

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

59

database session, and an installation normally doesn't have many of them running
concurrently, it's safe to set this value significantly larger than work_mem. Larger settings
might improve performance for vacuuming and for restoring database dumps.

Note that when autovacuum runs, up to autovacuum_max_workers times this memory
may be allocated, so be careful not to set the default value too high.

A good rule of thumb is to set this to about 5% of system memory, but not more than
about 512MB. Larger values won't necessarily improve performance.

2.1.3.1.4 wal_buffers

Parameter Type: Integer

Default Value: 64kB

Range: 32kB to system dependent

Minimum Scope of Effect: Cluster

When Value Changes Take Effect: Restart

Required Authorization to Activate: PPAS service account

The amount of memory used in shared memory for WAL data. The default is 64
kilobytes (64kB). The setting need only be large enough to hold the amount of WAL data
generated by one typical transaction, since the data is written out to disk at every
transaction commit.

Increasing this parameter might cause Postgres Plus to request more System V shared
memory than your operating system's default configuration allows. See Section 17.4.1,
“Shared Memory and Semaphores” in the PostgreSQL Core Documentation for
information on how to adjust those parameters, if necessary.

Although even this very small setting does not always cause a problem, there are
situations where it can result in extra fsync calls, and degrade overall system
throughput. Increasing this value to 1MB or so can alleviate this problem. On very busy
systems, an even higher value may be needed, up to a maximum of about 16MB. Like
shared_buffers, this parameter increases Postgres Plus‟s initial shared memory
allocation, so if increasing it causes a Postgres Plus start failure, you will need to increase
the operating system limit.

2.1.3.1.5 checkpoint_segments

Now deprecated; this parameter is not supported by server versions 9.5 or later.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

60

2.1.3.1.6 checkpoint_completion_target

Parameter Type: Floating point

Default Value: 0.5

Range: 0 to 1

Minimum Scope of Effect: Cluster

When Value Changes Take Effect: Reload

Required Authorization to Activate: PPAS service account

Specifies the target of checkpoint completion as a fraction of total time between
checkpoints. This spreads out the checkpoint writes while the system starts working
towards the next checkpoint.

The default of 0.5 means aim to finish the checkpoint writes when 50% of the next
checkpoint is ready. A value of 0.9 means aim to finish the checkpoint writes when 90%
of the next checkpoint is done, thus throttling the checkpoint writes over a larger amount
of time and avoiding spikes of performance bottlenecking.

2.1.3.1.7 checkpoint_timeout

Parameter Type: Integer

Default Value: 5min

Range: 30s to 3600s

Minimum Scope of Effect: Cluster

When Value Changes Take Effect: Reload

Required Authorization to Activate: PPAS service account

Maximum time between automatic WAL checkpoints, in seconds. The default is five
minutes (5min). Increasing this parameter can increase the amount of time needed for
crash recovery.

Increasing checkpoint_timeout to a larger value, such as 15 minutes, can reduce the
I/O load on your system, especially when using large values for shared_buffers.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

61

The downside of making the aforementioned adjustments to the checkpoint parameters is
that your system will use a modest amount of additional disk space, and will take longer
to recover in the event of a crash. However, for most users, this is a small price to pay for
a significant performance improvement.

2.1.3.1.8 max_wal_size

Parameter Type: Integer

Default Value: 1 GB

Range: 2 to 2147483647

Minimum Scope of Effect: Cluster

When Value Changes Take Effect: Reload

Required Authorization to Activate: PPAS service account

max_wal_size specifies the maximum size that the WAL will reach between automatic
WAL checkpoints. This is a soft limit; WAL size can exceed max_wal_size under
special circumstances (when under a heavy load, a failing archive_command, or a high
wal_keep_segments setting).

Increasing this parameter can increase the amount of time needed for crash recovery. This
parameter can only be set in the postgresql.conf file or on the server command line.

2.1.3.1.9 min_wal_size

Parameter Type: Integer

Default Value: 80 MB

Range: 2 to 2147483647

Minimum Scope of Effect: Cluster

When Value Changes Take Effect: Reload

Required Authorization to Activate: PPAS service account

If WAL disk usage stays below the value specified by min_wal_size, old WAL files
are recycled for future use at a checkpoint, rather than removed. This ensures that
enough WAL space is reserved to handle spikes in WAL usage (like when running large

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

62

batch jobs). This parameter can only be set in the postgresql.conf file or on the server
command line.

2.1.3.1.10 bgwriter_delay

Parameter Type: Integer

Default Value: 200ms

Range: 10ms to 10000ms

Minimum Scope of Effect: Cluster

When Value Changes Take Effect: Reload

Required Authorization to Activate: PPAS service account

Specifies the delay between activity rounds for the background writer. In each round the
writer issues writes for some number of dirty buffers (controllable by the
bgwriter_lru_maxpages and bgwriter_lru_multiplier parameters). It then
sleeps for bgwriter_delay milliseconds, and repeats.

The default value is 200 milliseconds (200ms). Note that on many systems, the effective
resolution of sleep delays is 10 milliseconds; setting bgwriter_delay to a value that is
not a multiple of 10 might have the same results as setting it to the next higher multiple of
10.

Typically, when tuning bgwriter_delay, it should be reduced from its default value.
This parameter is rarely increased, except perhaps to save on power consumption on a
system with very low utilization.

2.1.3.1.11 seq_page_cost

Parameter Type: Floating point

Default Value: 1

Range: 0 to 1.79769e+308

Minimum Scope of Effect: Per session

When Value Changes Take Effect: Immediate

Required Authorization to Activate: Session user

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

63

Sets the planner's estimate of the cost of a disk page fetch that is part of a series of
sequential fetches. The default is 1.0. This value can be overridden for a particular
tablespace by setting the tablespace parameter of the same name. (Refer to the ALTER
TABLESPACE command in the PostgreSQL Core Documentation.)

The default value assumes very little caching, so it's frequently a good idea to reduce it.
Even if your database is significantly larger than physical memory, you might want to try
setting this parameter to less than 1 (rather than its default value of 1) to see whether you
get better query plans that way. If your database fits entirely within memory, you can
lower this value much more, perhaps to 0.1.

2.1.3.1.12 random_page_cost

Parameter Type: Floating point

Default Value: 4

Range: 0 to 1.79769e+308

Minimum Scope of Effect: Per session

When Value Changes Take Effect: Immediate

Required Authorization to Activate: Session user

Sets the planner's estimate of the cost of a non-sequentially-fetched disk page. The
default is 4.0. This value can be overridden for a particular tablespace by setting the
tablespace parameter of the same name. (Refer to the ALTER TABLESPACE command in
the PostgreSQL Core Documentation.)

Reducing this value relative to seq_page_cost will cause the system to prefer index
scans; raising it will make index scans look relatively more expensive. You can raise or
lower both values together to change the importance of disk I/O costs relative to CPU
costs, which are described by the cpu_tuple_cost and cpu_index_tuple_cost
parameters.

The default value assumes very little caching, so it's frequently a good idea to reduce it.
Even if your database is significantly larger than physical memory, you might want to try
setting this parameter to 2 (rather than its default of 4) to see whether you get better query
plans that way. If your database fits entirely within memory, you can lower this value
much more, perhaps to 0.1.

Although the system will let you do so, never set random_page_cost less than
seq_page_cost. However, setting them equal (or very close to equal) makes sense if
the database fits mostly or entirely within memory, since in that case there is no penalty

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

64

for touching pages out of sequence. Also, in a heavily-cached database you should lower
both values relative to the CPU parameters, since the cost of fetching a page already in
RAM is much smaller than it would normally be.

2.1.3.1.13 effective_cache_size

Parameter Type: Integer

Default Value: 128MB

Range: 8kB to 17179869176kB

Minimum Scope of Effect: Per session

When Value Changes Take Effect: Immediate

Required Authorization to Activate: Session user

Sets the planner's assumption about the effective size of the disk cache that is available to
a single query. This is factored into estimates of the cost of using an index; a higher value
makes it more likely index scans will be used, a lower value makes it more likely
sequential scans will be used. When setting this parameter you should consider both
Postgres Plus‟s shared buffers and the portion of the kernel's disk cache that will be used
for Postgres Plus data files. Also, take into account the expected number of concurrent
queries on different tables, since they will have to share the available space. This
parameter has no effect on the size of shared memory allocated by Postgres Plus, nor
does it reserve kernel disk cache; it is used only for estimation purposes. The default is
128 megabytes (128MB).

If this parameter is set too low, the planner may decide not to use an index even when it
would be beneficial to do so. Setting effective_cache_size to 50% of physical
memory is a normal, conservative setting. A more aggressive setting would be
approximately 75% of physical memory.

2.1.3.1.14 synchronous_commit

Parameter Type: Boolean

Default Value: true

Range: {true | false}

Minimum Scope of Effect: Per session

When Value Changes Take Effect: Immediate

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

65

Required Authorization to Activate: Session user

Specifies whether transaction commit will wait for WAL records to be written to disk
before the command returns a "success" indication to the client. The default, and safe,
setting is on. When off, there can be a delay between when success is reported to the
client and when the transaction is really guaranteed to be safe against a server crash. (The
maximum delay is three times wal_writer_delay.)

Unlike fsync, setting this parameter to off does not create any risk of database
inconsistency: an operating system or database crash might result in some recent
allegedly-committed transactions being lost, but the database state will be just the same
as if those transactions had been aborted cleanly.

So, turning synchronous_commit off can be a useful alternative when performance is
more important than exact certainty about the durability of a transaction. See Section
29.3, Asynchronous Commit in the PostgreSQL Core Documentation for information.

This parameter can be changed at any time; the behavior for any one transaction is
determined by the setting in effect when it commits. It is therefore possible, and useful, to
have some transactions commit synchronously and others asynchronously. For example,
to make a single multistatement transaction commit asynchronously when the default is
the opposite, issue SET LOCAL synchronous_commit TO OFF within the
transaction.

2.1.3.1.15 edb_max_spins_per_delay

Parameter Type: Integer

Default Value: 1000

Range: {10 | 1000}

Minimum Scope of Effect: Per cluster

When Value Changes Take Effect: Restart

Required Authorization to Activate: PPAS service account

Use edb_max_spins_per_delay to specify the maximum number of times that a
session will 'spin' while waiting for a spin-lock. If a lock is not acquired, the session will
sleep. If you do not specify an alternative value for edb_max_spins_per_delay, the
server will enforce the default value of 1000.

This may be useful for sytems that use NUMA (non-uniform memory access)
architecture.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

66

2.1.3.2 Resource Usage / Memory

The configuration parameters in this section control resource usage pertaining to
memory.

2.1.3.2.1 edb_dynatune

Parameter Type: Integer

Default Value: 0

Range: 0 to 100

Minimum Scope of Effect: Cluster

When Value Changes Take Effect: Restart

Required Authorization to Activate: PPAS service account

Determines how much of the host system‟s resources are to be used by the database
server based upon the host machine‟s total available resources and the intended usage of
the host machine.

When Postgres Plus Advanced Server is initially installed, the edb_dynatune parameter
is set in accordance with the selected usage of the host machine on which it was installed
(i.e., development machine, mixed use machine, or dedicated server). For most purposes,
there is no need for the database administrator to adjust the various configuration
parameters in the postgresql.conf file in order to improve performance.

The edb_dynatune parameter can be set to any integer value between 0 and 100,
inclusive. A value of 0, turns off the dynamic tuning feature thereby leaving the database
server resource usage totally under the control of the other configuration parameters in
the postgresql.conf file.

A low non-zero, value (e.g., 1 - 33) dedicates the least amount of the host machine‟s
resources to the database server. This setting would be used for a development machine
where many other applications are being used.

A value in the range of 34 - 66 dedicates a moderate amount of resources to the database
server. This setting might be used for a dedicated application server that may have a fixed
number of other applications running on the same machine as Postgres Plus Advanced
Server.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

67

The highest values (e.g., 67 - 100) dedicate most of the server‟s resources to the database
server. This setting would be used for a host machine that is totally dedicated to running
Postgres Plus Advanced Server.

Once a value of edb_dynatune is selected, database server performance can be further
fine-tuned by adjusting the other configuration parameters in the postgresql.conf
file. Any adjusted setting overrides the corresponding value chosen by edb_dynatune.
You can change the value of a parameter by un-commenting the configuration parameter,
specifying the desired value, and restarting the database server.

2.1.3.2.2 edb_dynatune_profile

Parameter Type: Enum

Default Value: oltp

Range: {oltp | reporting | mixed}

Minimum Scope of Effect: Cluster

When Value Changes Take Effect: Restart

Required Authorization to Activate: PPAS service account

This parameter is used to control tuning aspects based upon the expected workload
profile on the database server.

The following are the possible values:

x oltp. Recommended when the database server is processing heavy online
transaction processing workloads.

x reporting. Recommended for database servers used for heavy data reporting.
x mixed. Recommended for servers that provide a mix of transaction processing

and data reporting.

2.1.3.2.3 edb_enable_icache

Parameter Type: Boolean

Default Value: false

Range: {true | false}

Minimum Scope of Effect: Cluster

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

68

When Value Changes Take Effect: Restart

Required Authorization to Activate: PPAS service account

Enables or disables Infinite Cache. If edb_enable_icache is set to on, Infinite Cache
is enabled; if the parameter is set to off, Infinite Cache is disabled.

If you set edb_enable_icache to on, you must also specify a list of cache servers by
setting the edb_icache_servers parameter.

2.1.3.2.4 edb_icache_servers

Parameter Type: String

Default Value: none

Range: n/a

Minimum Scope of Effect: Cluster

When Value Changes Take Effect: Reload

Required Authorization to Activate: PPAS service account

The edb_icache_servers parameter specifies a list of one or more servers with active
edb-icache daemons. edb_icache_servers is a string value that takes the form of a
comma-separated list of hostname:port pairs. You can specify each pair in any of the
following forms:

x hostname
x IP_address
x hostname:portnumber
x IP_address:portnumber

If you do not specify a port number, Infinite Cache assumes that the cache server is
listening at port 11211. This configuration parameter will take effect only if
edb_enable_icache is set to on. Use the edb_icache_servers parameter to specify
a maximum of 128 cache nodes.

You can dynamically modify the Infinite Cache server nodes. To change the Infinite
Cache server configuration, use the edb_icache_servers parameter in the
postgresql.conf file to perform the following:

x Specify additional cache information to add server(s).
x Delete server information to remove server(s).

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

69

x Specify additional server information and delete existing server information to
both add and delete servers during the same reload operation.

After updating the edb_icache_servers parameter in the postgresql.conf file,
you must reload the configuration parameters for the changes to take effect.

2.1.3.2.5 edb_icache_compression_level

Parameter Type: Integer

Default Value: 6

Range: 0 to 9

Minimum Scope of Effect: Per session

When Value Changes Take Effect: Immediate

Required Authorization to Activate: Superuser

The edb_icache_compression_level parameter controls the compression level that
is applied to each page before storing it in the distributed Infinite Cache.

When Advanced Server reads data from disk, it typically reads the data in 8kB
increments. If edb_icache_compression_level is set to 0, each time Advanced
Server sends an 8kB page to the Infinite Cache server that page is stored (uncompressed)
in 8kB of cache memory. If the edb_icache_compression_level parameter is set to
9, Advanced Server applies the maximum compression possible before sending it to the
Infinite Cache server, so a page that previously took 8kB of cached memory might take
2kB of cached memory. Exact compression numbers are difficult to predict, as they are
dependent on the nature of the data on each page.

This parameter must be an integer in the range 0 to 9.

x A compression level of 0 disables compression; it uses no CPU time for
compression, but requires more storage space and network resources to process.

x A compression level of 9 invokes the maximum amount of compression; it
increases the load on the CPU, but less data flows across the network, so network
demand is reduced. Each page takes less room on the Infinite Cache server, so
memory requirements are reduced.

x A compression level of 5 or 6 is a reasonable compromise between the amount of
compression received and the amount of CPU time invested.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

70

The compression level must be set by the superuser and can be changed for the current
session while the server is running. The following command disables the compression
mechanism for the currently active session:

SET edb_icache_compression_level TO 0;

2.1.3.3 Resource Usage / EDB Resource Manager

The configuration parameters in this section control resource usage through EDB
Resource Manager.

2.1.3.3.1 edb_max_resource_groups

Parameter Type: Integer

Default Value: 16

Range: 0 to 65536

Minimum Scope of Effect: Cluster

When Value Changes Take Effect: Restart

Required Authorization to Activate: PPAS service account

This parameter controls the maximum number of resource groups that can be used
simultaneously by EDB Resource Manager. More resource groups can be created than
the value specified by edb_max_resource_groups, however, the number of resource
groups in active use by processes in these groups cannot exceed this value.

Parameter edb_max_resource_groups should be set comfortably larger than the
number of groups you expect to maintain so as not to run out.

2.1.3.3.2 edb_resource_group

Parameter Type: String

Default Value: none

Range: n/a

Minimum Scope of Effect: Per session

When Value Changes Take Effect: Immediate

Required Authorization to Activate: Session user

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

71

Set the edb_resource_group parameter to the name of the resource group to which
the current session is to be controlled by EDB Resource Manager according to the
group‟s resource type settings.

If the parameter is not set, then the current session does not utilize EDB Resource
Manager.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

72

2.1.3.4 Query Tuning

This section describes the configuration parameters used for optimizer hints.

2.1.3.4.1 enable_hints

Parameter Type: Boolean

Default Value: true

Range: {true | false}

Minimum Scope of Effect: Per session

When Value Changes Take Effect: Immediate

Required Authorization to Activate: Session user

Optimizer hints embedded in SQL commands are utilized when enable_hints is on.
Optimizer hints are ignored when this parameter is off.

2.1.3.5 Query Tuning / Planner Method Configuration

This section describes the configuration parameters used for planner method
configuration.

2.1.3.5.1 edb_custom_plan_tries

Parameter Type: Numeric

Default Value: 5

Range: {0 | 100}

Minimum Scope of Effect: Per session

When Value Changes Take Effect: Immediate

Required Authorization to Activate: Session User

This configuration parameter controls the number of custom execution plans considered
by the planner before the planner settles on a generic execution plan.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

73

When a client application repeatedly executes a prepared statement, the server may
decide to evaluate several execution plans before deciding to choose a custom plan or a
generic plan.

x A custom plan is a plan built for a specific set of parameter values.
x A generic plan is a plan that will work with any set of parameter values supplied

by the client application.

By default, the optimizer will generate five custom plans before evaluating a generic
plan. That means that if you execute a prepared statement six times, the optimizer will
generate five custom plans, then one generic plan, and then decide whether to stick with
the generic plan.

In certain workloads, this extra planning can have a negative impact on performance.
You can adjust the edb_custom_plan_tries configuration parameter to decrease the
number of custom plans considered before evaluating a generic plan. Setting
edb_custom_plan_tries to 0 will effectively disable custom plan generation.

Consider the following query:

PREPARE custQuery AS SELECT * FROM customer WHERE salesman >= $1

The $1 token in this query is a parameter marker - the client application must provide a
value for each parameter marker each time the statement executes.

If an index has been defined on customer.salesman, the optimizer may choose to
execute this query using a sequential scan, or using an index scan. In some cases, an
index is faster than a sequential scan; in other cases, the sequential scan will win. The
optimal plan will depend on the distribution of salesman values in the table and on the
search value (the value provided for the $1 parameter).

When the client application repeatedly executes the custQuery prepared statement, the
optimizer will generate some number of parameter-value-specific execution plans
(custom plans), followed by a generic plan (a plan that ignores the parameter values), and
then decide whether to stick with the generic plan or to continue to generate custom plans
for each execution. The decision process takes into account not only the cost of executing
the plans, but the cost of generating custom plans as well.

2.1.3.5.2 edb_enable_pruning

Parameter Type: Boolean

Default Value: true

Range: {true | false}

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

74

Minimum Scope of Effect: Per session

When Value Changes Take Effect: Immediate

Required Authorization to Activate: Session user

When set to TRUE, edb_enable_pruning allows the query planner to early-prune
partitioned tables. Early-pruning means that the query planner can “prune” (i.e., ignore)
partitions that would not be searched in a query before generating query plans. This helps
improve performance time as it eliminates the generation of query plans of partitions that
would not be searched.

Conversely, late-pruning means that the query planner prunes partitions after generating
query plans for each partition. (The constraint_exclusion configuration parameter
controls late-pruning.)

The ability to early-prune depends upon the nature of the query in the WHERE clause.
Early-pruning can be utilized in only simple queries with constraints of the type WHERE
column = literal (e.g., WHERE deptno = 10).

Early-pruning is not used for more complex queries such as WHERE column =
expression (e.g., WHERE deptno = 10 + 5).

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

75

2.1.3.6 Reporting and Logging / What to Log

The configuration parameters in this section control reporting and logging.

2.1.3.6.1 trace_hints

Parameter Type: Boolean

Default Value: false

Range: {true | false}

Minimum Scope of Effect: Per session

When Value Changes Take Effect: Immediate

Required Authorization to Activate: Session user

Use with the optimizer hints feature to provide more detailed information regarding
whether or not a hint was used by the planner. Set the client_min_messages and
trace_hints configuration parameters as follows:

SET client_min_messages TO info;
SET trace_hints TO true;

The SELECT command with the NO_INDEX hint shown below illustrates the additional
information produced when the aforementioned configuration parameters are set.

EXPLAIN SELECT /*+ NO_INDEX(accounts accounts_pkey) */ * FROM accounts WHERE
aid = 100;

INFO: [HINTS] Index Scan of [accounts].[accounts_pkey] rejected because of
NO_INDEX hint.

INFO: [HINTS] Bitmap Heap Scan of [accounts].[accounts_pkey] rejected
because of NO_INDEX hint.
 QUERY PLAN

 Seq Scan on accounts (cost=0.00..14461.10 rows=1 width=97)
 Filter: (aid = 100)
(2 rows)

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

76

2.1.3.7 EnterpriseDB Auditing Settings

This section describes configuration parameters used by the Postgres Plus Advanced
Server database auditing feature.

2.1.3.7.1 edb_audit

Parameter Type: Enum

Default Value: none

Range: {none | csv | xml}

Minimum Scope of Effect: Cluster

When Value Changes Take Effect: Reload

Required Authorization to Activate: PPAS service account

Enables or disables database auditing. The values xml or csv will enable database
auditing. These values represent the file format in which auditing information will be
captured. none will disable database auditing and is also the default.

2.1.3.7.2 edb_audit_directory

Parameter Type: String

Default Value: edb_audit

Range: n/a

Minimum Scope of Effect: Cluster

When Value Changes Take Effect: Reload

Required Authorization to Activate: PPAS service account

Specifies the directory where the audit log files will be created. The path of the directory
can be absolute or relative to the POSTGRES_PLUS_HOME/data directory.

2.1.3.7.3 edb_audit_filename

Parameter Type: String

Default Value: audit-%Y%m%d_%H%M%S

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

77

Range: n/a

Minimum Scope of Effect: Cluster

When Value Changes Take Effect: Reload

Required Authorization to Activate: PPAS service account

Specifies the file name of the audit file where the auditing information will be stored. The
default file name will be audit-%Y%m%d_%H%M%S. The escape sequences, %Y, %m etc.,
will be replaced by the appropriate current values according to the system date and time.

2.1.3.7.4 edb_audit_rotation_day

Parameter Type: String

Default Value: every

Range: {none | every | sun | mon | tue | wed | thu | fri | sat} ...

Minimum Scope of Effect: Cluster

When Value Changes Take Effect: Reload

Required Authorization to Activate: PPAS service account

Specifies the day of the week on which to rotate the audit files. Valid values are sun,
mon, tue, wed, thu, fri, sat, every, and none. To disable rotation, set the value to
none. To rotate the file every day, set the edb_audit_rotation_day value to every.
To rotate the file on a specific day of the week, set the value to the desired day of the
week.

2.1.3.7.5 edb_audit_rotation_size

Parameter Type: Integer

Default Value: 0MB

Range: 0MB to 5000MB

Minimum Scope of Effect: Cluster

When Value Changes Take Effect: Reload

Required Authorization to Activate: PPAS service account

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

78

Specifies a file size threshold in megabytes when file rotation will be forced to occur. The
default value is 0MB. If the parameter is commented out or set to 0, rotation of the file on
a size basis will not occur.

2.1.3.7.6 edb_audit_rotation_seconds

Parameter Type: Integer

Default Value: 0s

Range: 0s to 2147483647s

Minimum Scope of Effect: Cluster

When Value Changes Take Effect: Reload

Required Authorization to Activate: PPAS service account

Specifies the rotation time in seconds when a new log file should be created. To disable
this feature, set this parameter to 0.

2.1.3.7.7 edb_audit_connect

Parameter Type: Enum

Default Value: failed

Range: {none | failed | all}

Minimum Scope of Effect: Cluster

When Value Changes Take Effect: Reload

Required Authorization to Activate: PPAS service account

Enables auditing of database connection attempts by users. To disable auditing of all
connection attempts, set edb_audit_connect to none. To audit all failed connection
attempts, set the value to failed. To audit all connection attempts, set the value to all.

2.1.3.7.8 edb_audit_disconnect

Parameter Type: Enum

Default Value: none

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

79

Range: {none | all}

Minimum Scope of Effect: Cluster

When Value Changes Take Effect: Reload

Required Authorization to Activate: PPAS service account

Enables auditing of database disconnections by connected users. To enable auditing of
disconnections, set the value to all. To disable, set the value to none.

2.1.3.7.9 edb_audit_statement

Parameter Type: String

Default Value: ddl, error

Range: {none | ddl | dml | select | error | rollback | all} ...

Minimum Scope of Effect: Cluster

When Value Changes Take Effect: Reload

Required Authorization to Activate: PPAS service account

This configuration parameter is used to specify auditing of different categories of SQL
statements. To audit statements resulting in error, set the parameter value to error. To
audit DDL statements such as CREATE TABLE, ALTER TABLE, etc., set the parameter
value to ddl. Modification statements such as INSERT, UPDATE, DELETE or TRUNCATE
can be audited by setting edb_audit_statement to dml. Setting the value to all will
audit every statement while none disables this feature.

2.1.3.7.10 edb_audit_tag

Parameter Type: String

Default Value: none

Minimum Scope of Effect: Session

When Value Changes Take Effect: Immediate

Required Authorization to Activate: User

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

80

Use edb_audit_tag to specify a string value that will be included in the audit log when
the edb_audit parameter is set to csv or xml.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

81

2.1.3.8 Client Connection Defaults / Locale and Formatting

This section describes configuration parameters affecting locale and formatting.

2.1.3.8.1 icu_short_form

Parameter Type: String

Default Value: none

Range: n/a

Minimum Scope of Effect: Database

When Value Changes Take Effect: n/a

Required Authorization to Activate: n/a

The configuration parameter icu_short_form is a parameter containing the default
ICU short form name assigned to a database or to the Advanced Server instance. See
Section 2.3 for general information about the ICU short form and the Unicode Collation
Algorithm.

This configuration parameter is set either when the CREATE DATABASE command is
used with the ICU_SHORT_FORM parameter (see Section 2.3.3.2) in which case the
specified short form name is set and appears in the icu_short_form configuration
parameter when connected to this database, or when an Advanced Server instance is
created with the initdb command used with the --icu_short_form option (see
Section 2.3.3.3) in which case the specified short form name is set and appears in the
icu_short_form configuration parameter when connected to a database in that
Advanced Server instance, and the database does not override it with its own
ICU_SHORT_FORM parameter with a different short form.

Once established in the manner described, the icu_short_form configuration
parameter cannot be changed.

2.1.3.9 Client Connection Defaults / Statement Behavior

This section describes configuration parameters affecting statement behavior.

2.1.3.9.1 default_heap_fillfactor

Parameter Type: Integer

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

82

Default Value: 100

Range: 10 to 100

Minimum Scope of Effect: Per session

When Value Changes Take Effect: Immediate

Required Authorization to Activate: Session user

Sets the fillfactor for a table when the FILLFACTOR storage parameter is omitted from a
CREATE TABLE command.

The fillfactor for a table is a percentage between 10 and 100. 100 (complete packing) is
the default. When a smaller fillfactor is specified, INSERT operations pack table pages
only to the indicated percentage; the remaining space on each page is reserved for
updating rows on that page. This gives UPDATE a chance to place the updated copy of a
row on the same page as the original, which is more efficient than placing it on a different
page. For a table whose entries are never updated, complete packing is the best choice,
but in heavily updated tables smaller fillfactors are appropriate.

2.1.3.10 Client Connection Defaults / Other Defaults

The parameters in this section set other miscellaneous client connection defaults.

2.1.3.10.1 oracle_home

Parameter Type: String

Default Value: none

Range: n/a

Minimum Scope of Effect: Cluster

When Value Changes Take Effect: Restart

Required Authorization to Activate: PPAS service account

Before creating an Oracle Call Interface (OCI) database link to an Oracle server, you
must direct Advanced Server to the correct Oracle home directory. Set the
LD_LIBRARY_PATH environment variable on Linux (or PATH on Windows) to the lib
directory of the Oracle client installation directory.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

83

For Windows only, you can instead set the value of the oracle_home configuration
parameter in the postgresql.conf file. The value specified in the oracle_home
configuration parameter will override the Windows PATH environment variable.

The LD_LIBRARY_PATH environment variable on Linux (PATH environment variable or
oracle_home configuration parameter on Windows) must be set properly each time you
start Advanced Server.

For Windows only: To set the oracle_home configuration parameter in the
postgresql.conf file, edit the file, adding the following line:

oracle_home = 'lib_directory'

Substitute the name of the Windows directory that contains oci.dll for
lib_directory.

After setting the oracle_home configuration parameter, you must restart the server for
the changes to take effect. Restart the server from the Windows Services console.

2.1.3.10.2 odbc_lib_path

Parameter Type: String

Default Value: none

Range: n/a

Minimum Scope of Effect: Cluster

When Value Changes Take Effect: Restart

Required Authorization to Activate: PPAS service account

If you will be using an ODBC driver manager, and if it is installed in a non-standard
location, you specify the location by setting the odbc_lib_path configuration
parameter in the postgresql.conf file:

odbc_lib_path = 'complete_path_to_libodbc.so'

The configuration file must include the complete pathname to the driver manager shared
library (typically libodbc.so).

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

84

2.1.3.11 Compatibility Options

The configuration parameters described in this section control various database
compatibility features.

2.1.3.11.1 edb_redwood_date

Parameter Type: Boolean

Default Value: false

Range: {true | false}

Minimum Scope of Effect: Per session

When Value Changes Take Effect: Immediate

Required Authorization to Activate: Session user

When DATE appears as the data type of a column in the commands, it is translated to
TIMESTAMP(0) at the time the table definition is stored in the database if the
configuration parameter edb_redwood_date is set to TRUE. Thus, a time component
will also be stored in the column along with the date.

If edb_redwood_date is set to FALSE the column‟s data type in a CREATE TABLE or
ALTER TABLE command remains as a native PostgreSQL DATE data type and is stored as
such in the database. The PostgreSQL DATE data type stores only the date without a time
component in the column.

Regardless of the setting of edb_redwood_date, when DATE appears as a data type in
any other context such as the data type of a variable in an SPL declaration section, or the
data type of a formal parameter in an SPL procedure or SPL function, or the return type
of an SPL function, it is always internally translated to a TIMESTAMP(0) and thus, can
handle a time component if present.

2.1.3.11.2 edb_redwood_greatest_least

Parameter Type: Boolean

Default Value: true

Range: {true | false}

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

85

Minimum Scope of Effect: Per session

When Value Changes Take Effect: Immediate

Required Authorization to Activate: Session user

The GREATEST function returns the parameter with the greatest value from its list of
parameters. The LEAST function returns the parameter with the least value from its list of
parameters.

When edb_redwood_greatest_least is set to TRUE, the GREATEST and LEAST
functions return null when at least one of the parameters is null.

SET edb_redwood_greatest_least TO on;

SELECT GREATEST(1, 2, NULL, 3);

greatest

(1 row)

When edb_redwood_greatest_least is set to FALSE, null parameters are ignored
except when all parameters are null in which case null is returned by the functions.

SET edb_redwood_greatest_least TO off;

SELECT GREATEST(1, 2, NULL, 3);

greatest

 3
(1 row)

SELECT GREATEST(NULL, NULL, NULL);

greatest

(1 row)

2.1.3.11.3 edb_redwood_raw_names

Parameter Type: Boolean

Default Value: false

Range: {true | false}

Minimum Scope of Effect: Per session

When Value Changes Take Effect: Immediate

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

86

Required Authorization to Activate: Session user

When edb_redwood_raw_names is set to its default value of FALSE, database object
names such as table names, column names, trigger names, program names, user names,
etc. appear in uppercase letters when viewed from Redwood catalogs (that is, system
catalogs prefixed by ALL_, DBA_, or USER_. See Chapter 10 for a list of such catalogs).
In addition, quotation marks enclose names that were created with enclosing quotation
marks.

When edb_redwood_raw_names is set to TRUE, the database object names are
displayed exactly as they are stored in the PostgreSQL system catalogs when viewed
from the Redwood catalogs. Thus, names created without enclosing quotation marks
appear in lowercase as expected in PostgreSQL. Names created with enclosing quotation
marks appear exactly as they were created, but without the quotation marks.

For example, the following user name is created, and then a session is started with that
user.

CREATE USER reduser IDENTIFIED BY password;
edb=# \c - reduser
Password for user reduser:
You are now connected to database "edb" as user "reduser".

When connected to the database as reduser, the following tables are created.

CREATE TABLE all_lower (col INTEGER);
CREATE TABLE ALL_UPPER (COL INTEGER);
CREATE TABLE "Mixed_Case" ("Col" INTEGER);

When viewed from the Redwood catalog, USER_TABLES, with
edb_redwood_raw_names set to the default value FALSE, the names appear in
uppercase except for the Mixed_Case name, which appears as created and also with
enclosing quotation marks.

edb=> SELECT * FROM USER_TABLES;
 schema_name | table_name | tablespace_name | status | temporary
-------------+--------------+-----------------+--------+-----------
 REDUSER | ALL_LOWER | | VALID | N
 REDUSER | ALL_UPPER | | VALID | N
 REDUSER | "Mixed_Case" | | VALID | N
(3 rows)

When viewed with edb_redwood_raw_names set to TRUE, the names appear in
lowercase except for the Mixed_Case name, which appears as created, but now without
the enclosing quotation marks.

edb=> SET edb_redwood_raw_names TO true;
SET
edb=> SELECT * FROM USER_TABLES;
 schema_name | table_name | tablespace_name | status | temporary

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

87

-------------+------------+-----------------+--------+-----------
 reduser | all_lower | | VALID | N
 reduser | all_upper | | VALID | N
 reduser | Mixed_Case | | VALID | N
(3 rows)

These names now match the case when viewed from the PostgreSQL pg_tables
catalog.

edb=> SELECT schemaname, tablename, tableowner FROM pg_tables WHERE
tableowner = 'reduser';
 schemaname | tablename | tableowner
------------+------------+------------
 reduser | all_lower | reduser
 reduser | all_upper | reduser
 reduser | Mixed_Case | reduser
(3 rows)

2.1.3.11.4 edb_redwood_strings

Parameter Type: Boolean

Default Value: false

Range: {true | false}

Minimum Scope of Effect: Per session

When Value Changes Take Effect: Immediate

Required Authorization to Activate: Session user

If the edb_redwood_strings parameter is set to TRUE, when a string is concatenated
with a null variable or null column, the result is the original string. If
edb_redwood_strings is set to FALSE, the native PostgreSQL behavior is maintained,
which is the concatenation of a string with a null variable or null column gives a null
result.

The following example illustrates the difference.

The sample application contains a table of employees. This table has a column named
comm that is null for most employees. The following query is run with
edb_redwood_string set to FALSE. The concatenation of a null column with non-
empty strings produces a final result of null, so only employees that have a commission
appear in the query result. The output line for all other employees is null.

SET edb_redwood_strings TO off;

SELECT RPAD(ename,10) || ' ' || TO_CHAR(sal,'99,999.99') || ' ' ||
TO_CHAR(comm,'99,999.99') "EMPLOYEE COMPENSATION" FROM emp;

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

88

 EMPLOYEE COMPENSATION

 ALLEN 1,600.00 300.00
 WARD 1,250.00 500.00

 MARTIN 1,250.00 1,400.00

 TURNER 1,500.00 .00

(14 rows)

The following is the same query executed when edb_redwood_strings is set to TRUE.
Here, the value of a null column is treated as an empty string. The concatenation of an
empty string with a non-empty string produces the non-empty string.

SET edb_redwood_strings TO on;

SELECT RPAD(ename,10) || ' ' || TO_CHAR(sal,'99,999.99') || ' ' ||
TO_CHAR(comm,'99,999.99') "EMPLOYEE COMPENSATION" FROM emp;

 EMPLOYEE COMPENSATION

 SMITH 800.00
 ALLEN 1,600.00 300.00
 WARD 1,250.00 500.00
 JONES 2,975.00
 MARTIN 1,250.00 1,400.00
 BLAKE 2,850.00
 CLARK 2,450.00
 SCOTT 3,000.00
 KING 5,000.00
 TURNER 1,500.00 .00
 ADAMS 1,100.00
 JAMES 950.00
 FORD 3,000.00
 MILLER 1,300.00
(14 rows)

2.1.3.11.5 edb_stmt_level_tx

Parameter Type: Boolean

Default Value: false

Range: {true | false}

Minimum Scope of Effect: Per session

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

89

When Value Changes Take Effect: Immediate

Required Authorization to Activate: Session user

The term statement level transaction isolation describes the behavior whereby when a
runtime error occurs in a SQL command, all the updates on the database caused by that
single command are rolled back. For example, if a single UPDATE command successfully
updates five rows, but an attempt to update a sixth row results in an exception, the
updates to all six rows made by this UPDATE command are rolled back. The effects of
prior SQL commands that have not yet been committed or rolled back are pending until a
COMMIT or ROLLBACK command is executed.

In Postgres Plus, if an exception occurs while executing a SQL command, all the updates
on the database since the start of the transaction are rolled back. In addition, the
transaction is left in an aborted state and either a COMMIT or ROLLBACK command must
be issued before another transaction can be started.

If edb_stmt_level_tx is set to TRUE, then an exception will not automatically roll
back prior uncommitted database updates. If edb_stmt_level_tx is set to FALSE, then
an exception will roll back uncommitted database updates.

Note: Use edb_stmt_level_tx set to TRUE only when absolutely necessary, as this
may cause a negative performance impact.

The following example run in PSQL shows that when edb_stmt_level_tx is FALSE,
the abort of the second INSERT command also rolls back the first INSERT command.
Note that in PSQL, the command \set AUTOCOMMIT off must be issued, otherwise
every statement commits automatically defeating the purpose of this demonstration of the
effect of edb_stmt_level_tx.

\set AUTOCOMMIT off
SET edb_stmt_level_tx TO off;

INSERT INTO emp (empno,ename,deptno) VALUES (9001, 'JONES', 40);
INSERT INTO emp (empno,ename,deptno) VALUES (9002, 'JONES', 00);
ERROR: insert or update on table "emp" violates foreign key constraint
"emp_ref_dept_fk"
DETAIL: Key (deptno)=(0) is not present in table "dept".

COMMIT;
SELECT empno, ename, deptno FROM emp WHERE empno > 9000;

empno | ename | deptno
-------+-------+--------
(0 rows)

In the following example, with edb_stmt_level_tx set to TRUE, the first INSERT
command has not been rolled back after the error on the second INSERT command. At
this point, the first INSERT command can either be committed or rolled back.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

90

\set AUTOCOMMIT off
SET edb_stmt_level_tx TO on;

INSERT INTO emp (empno,ename,deptno) VALUES (9001, 'JONES', 40);
INSERT INTO emp (empno,ename,deptno) VALUES (9002, 'JONES', 00);
ERROR: insert or update on table "emp" violates foreign key constraint
"emp_ref_dept_fk"
DETAIL: Key (deptno)=(0) is not present in table "dept"

SELECT empno, ename, deptno FROM emp WHERE empno > 9000;

empno | ename | deptno
-------+-------+--------
 9001 | JONES | 40
(1 row)

COMMIT;

A ROLLBACK command could have been issued instead of the COMMIT command in
which case the insert of employee number 9001 would have been rolled back as well.

2.1.3.11.6 db_dialect

Parameter Type: Enum

Default Value: postgres

Range: {postgres | redwood}

Minimum Scope of Effect: Per session

When Value Changes Take Effect: Immediate

Required Authorization to Activate: Session user

In addition to the native PostgreSQL system catalog, pg_catalog, Advanced Server
contains extended catalog views (see Chapter 10) as well as system catalogs compatible
with Microsoft® SQL Server®. These are sys for the expanded catalog views and dbo
for SQL Server. The db_dialect parameter controls the order in which these catalogs
are searched for name resolution.

When set to postgres, the namespace precedence is pg_catalog, sys, then dbo,
giving the PostgreSQL catalog the highest precedence. When set to redwood, the
namespace precedence is sys, dbo, then pg_catalog, giving the expanded catalog
views the highest precedence.

2.1.3.11.7 default_with_rowids

Parameter Type: Boolean

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

91

Default Value: false

Range: {true | false}

Minimum Scope of Effect: Per session

When Value Changes Take Effect: Immediate

Required Authorization to Activate: Session user

When set to on, CREATE TABLE includes a ROWID column in newly created tables,
which can then be referenced in SQL commands.

2.1.3.11.8 optimizer_mode

Parameter Type: Enum

Default Value: choose

Range: {choose | ALL_ROWS | FIRST_ROWS | FIRST_ROWS_10 | FIRST_ROWS_100 |
FIRST_ROWS_1000}

Minimum Scope of Effect: Per session

When Value Changes Take Effect: Immediate

Required Authorization to Activate: Session user

Sets the default optimization mode for analyzing optimizer hints.

The following table shows the possible values:

Table 2-2 - Optimizer Modes

Hint Description
ALL_ROWS Optimizes for retrieval of all rows of the result set.

CHOOSE Does no default optimization based on assumed number of rows to be retrieved
from the result set. This is the default.

FIRST_ROWS Optimizes for retrieval of only the first row of the result set.
FIRST_ROWS_10 Optimizes for retrieval of the first 10 rows of the results set.
FIRST_ROWS_100 Optimizes for retrieval of the first 100 rows of the result set.
FIRST_ROWS_1000 Optimizes for retrieval of the first 1000 rows of the result set.

These optimization modes are based upon the assumption that the client submitting the
SQL command is interested in viewing only the first “n” rows of the result set and will

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

92

then abandon the remainder of the result set. Resources allocated to the query are
adjusted as such.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

93

2.1.3.12 Customized Options

In previous releases of Advanced Server, the custom_variable_classes was
required by those parameters not normally known to be added by add-on modules (such
as procedural languages).

2.1.3.12.1 custom_variable_classes

The custom_variable_classes parameter is deprecated in Advanced Server 9.2;
parameters that previously depended on this parameter no longer require its support.

2.1.3.12.2 dbms_alert.max_alerts

Parameter Type: Integer

Default Value: 100

Range: 0 to 500

Minimum Scope of Effect: Cluster

When Value Changes Take Effect: Restart

Required Authorization to Activate: PPAS service account

Specifies the maximum number of concurrent alerts allowed on a system using the
DBMS_ALERTS package.

2.1.3.12.3 dbms_pipe.total_message_buffer

Parameter Type: Integer

Default Value: 30 Kb

Range: 30 Kb to 256 Kb

Minimum Scope of Effect: Postmaster

When Value Changes Take Effect: Restart

Required Authorization to Activate: PPAS service account

Specifies the total size of the buffer used for the DBMS_PIPE package.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

94

2.1.3.12.4 index_advisor.enabled

Parameter Type: Boolean

Default Value: true

Range: {true | false}

Minimum Scope of Effect: Per session

When Value Changes Take Effect: Immediate

Required Authorization to Activate: Session user

Provides the capability to temporarily suspend Index Advisor in an EDB-PSQL or PSQL
session. The Index Advisor plugin, index_advisor, must be loaded in the EDB-PSQL
or PSQL session in order to use the index_advisor.enabled configuration
parameter.

The Index Advisor plugin can be loaded as shown by the following example:

$ psql -d edb -U enterprisedb
Password for user enterprisedb:
psql (9.4.0.0)
Type "help" for help.

edb=# LOAD 'index_advisor';
LOAD

Use the SET command to change the parameter setting to control whether or not Index
Advisor generates an alternative query plan as shown by the following example:

edb=# SET index_advisor.enabled TO off;
SET
edb=# EXPLAIN SELECT * FROM t WHERE a < 10000;
 QUERY PLAN

 Seq Scan on t (cost=0.00..1693.00 rows=9864 width=8)
 Filter: (a < 10000)
(2 rows)

edb=# SET index_advisor.enabled TO on;
SET
edb=# EXPLAIN SELECT * FROM t WHERE a < 10000;
 QUERY PLAN

 Seq Scan on t (cost=0.00..1693.00 rows=9864 width=8)
 Filter: (a < 10000)
 Result (cost=0.00..327.88 rows=9864 width=8)
 One-Time Filter: '===[HYPOTHETICAL PLAN]==='::text
 -> Index Scan using "<hypothetical-index>:1" on t (cost=0.00..327.88
rows=9864 width=8)
 Index Cond: (a < 10000)

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

95

(6 rows)

2.1.3.12.5 edb_sql_protect.enabled

Parameter Type: Boolean

Default Value: false

Range: {true | false}

Minimum Scope of Effect: Cluster

When Value Changes Take Effect: Reload

Required Authorization to Activate: PPAS service account

Controls whether or not SQL/Protect is actively monitoring protected roles by analyzing
SQL statements issued by those roles and reacting according to the setting of
edb_sql_protect.level. When you are ready to begin monitoring with SQL/Protect
set this parameter to on.

2.1.3.12.6 edb_sql_protect.level

Parameter Type: Enum

Default Value: passive

Range: {learn | passive | active}

Minimum Scope of Effect: Cluster

When Value Changes Take Effect: Reload

Required Authorization to Activate: PPAS service account

Sets the action taken by SQL/Protect when a SQL statement is issued by a protected role.

The edb_sql_protect.level configuration parameter can be set to one of the
following values to use either learn mode, passive mode, or active mode:

x learn. Tracks the activities of protected roles and records the relations used by the
roles. This is used when initially configuring SQL/Protect so the expected
behaviors of the protected applications are learned.

x passive. Issues warnings if protected roles are breaking the defined rules, but does
not stop any SQL statements from executing. This is the next step after
SQL/Protect has learned the expected behavior of the protected roles. This

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

96

essentially behaves in intrusion detection mode and can be run in production
when properly monitored.

x active. Stops all invalid statements for a protected role. This behaves as a SQL
firewall preventing dangerous queries from running. This is particularly effective
against early penetration testing when the attacker is trying to determine the
vulnerability point and the type of database behind the application. Not only does
SQL/Protect close those vulnerability points, but it tracks the blocked queries
allowing administrators to be alerted before the attacker finds an alternate method
of penetrating the system.

If you are using SQL/Protect for the first time, set edb_sql_protect.level to
learn.

2.1.3.12.7 edb_sql_protect.max_protected_relations

Parameter Type: Integer

Default Value: 1024

Range: 1 to 2147483647

Minimum Scope of Effect: Cluster

When Value Changes Take Effect: Restart

Required Authorization to Activate: PPAS service account

Sets the maximum number of relations that can be protected per role. Please note the
total number of protected relations for the server will be the number of protected relations
times the number of protected roles. Every protected relation consumes space in shared
memory. The space for the maximum possible protected relations is reserved during
database server startup.

If the server is started when edb_sql_protect.max_protected_relations is set
to a value outside of the valid range (for example, a value of 2,147,483,648), then a
warning message is logged in the database server log file:

2014-07-18 16:04:12 EDT WARNING: invalid value for parameter
"edb_sql_protect.max_protected_relations": "2147483648"
2014-07-18 16:04:12 EDT HINT: Value exceeds integer range.

The database server starts successfully, but with
edb_sql_protect.max_protected_relations set to the default value of 1024.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

97

Though the upper range for the parameter is listed as the maximum value for an integer
data type, the practical setting depends on how much shared memory is available and the
parameter value used during database server startup.

As long as the space required can be reserved in shared memory, the value will be
acceptable. If the value is such that the space in shared memory cannot be reserved, the
database server startup fails with an error message such as the following:

2014-07-18 15:22:17 EDT FATAL: could not map anonymous shared memory: Cannot
allocate memory
2014-07-18 15:22:17 EDT HINT: This error usually means that PostgreSQL's
request for a shared memory segment exceeded available memory, swap space or
huge pages. To reduce the request size (currently 2070118400 bytes), reduce
PostgreSQL's shared memory usage, perhaps by reducing shared_buffers or
max_connections.

In such cases, reduce the parameter value until the database server can be started
successfully.

2.1.3.12.8 edb_sql_protect.max_protected_roles

Parameter Type: Integer

Default Value: 64

Range: 1 to 2147483647

Minimum Scope of Effect: Cluster

When Value Changes Take Effect: Restart

Required Authorization to Activate: PPAS service account

Sets the maximum number of roles that can be protected.

Every protected role consumes space in shared memory. Please note that the server will
reserve space for the number of protected roles times the number of protected relations
(edb_sql_protect.max_protected_relations). The space for the maximum
possible protected roles is reserved during database server startup.

If the database server is started when edb_sql_protect.max_protected_roles is
set to a value outside of the valid range (for example, a value of 2,147,483,648), then a
warning message is logged in the database server log file:

2014-07-18 16:04:12 EDT WARNING: invalid value for parameter
"edb_sql_protect.max_protected_roles": "2147483648"
2014-07-18 16:04:12 EDT HINT: Value exceeds integer range.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

98

The database server starts successfully, but with
edb_sql_protect.max_protected_roles set to the default value of 64.

Though the upper range for the parameter is listed as the maximum value for an integer
data type, the practical setting depends on how much shared memory is available and the
parameter value used during database server startup.

As long as the space required can be reserved in shared memory, the value will be
acceptable. If the value is such that the space in shared memory cannot be reserved, the
database server startup fails with an error message such as the following:

2014-07-18 15:22:17 EDT FATAL: could not map anonymous shared memory: Cannot
allocate memory
2014-07-18 15:22:17 EDT HINT: This error usually means that PostgreSQL's
request for a shared memory segment exceeded available memory, swap space or
huge pages. To reduce the request size (currently 2070118400 bytes), reduce
PostgreSQL's shared memory usage, perhaps by reducing shared_buffers or
max_connections.

In such cases, reduce the parameter value until the database server can be started
successfully.

2.1.3.12.9 edb_sql_protect.max_queries_to_save

Parameter Type: Integer

Default Value: 5000

Range: 100 to 2147483647

Minimum Scope of Effect: Cluster

When Value Changes Take Effect: Restart

Required Authorization to Activate: PPAS service account

Sets the maximum number of offending queries to save in view
edb_sql_protect_queries.

Every query that is saved consumes space in shared memory. The space for the maximum
possible queries that can be saved is reserved during database server startup.

If the database server is started when edb_sql_protect.max_queries_to_save is
set to a value outside of the valid range (for example, a value of 10), then a warning
message is logged in the database server log file:

2014-07-18 13:05:31 EDT WARNING: 10 is outside the valid range for parameter
"edb_sql_protect.max_queries_to_save" (100 .. 2147483647)

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

99

The database server starts successfully, but with
edb_sql_protect.max_queries_to_save set to the default value of 5000.

Though the upper range for the parameter is listed as the maximum value for an integer
data type, the practical setting depends on how much shared memory is available and the
parameter value used during database server startup.

As long as the space required can be reserved in shared memory, the value will be
acceptable. If the value is such that the space in shared memory cannot be reserved, the
database server startup fails with an error message such as the following:

2014-07-18 15:22:17 EDT FATAL: could not map anonymous shared memory: Cannot
allocate memory
2014-07-18 15:22:17 EDT HINT: This error usually means that PostgreSQL's
request for a shared memory segment exceeded available memory, swap space or
huge pages. To reduce the request size (currently 2070118400 bytes), reduce
PostgreSQL's shared memory usage, perhaps by reducing shared_buffers or
max_connections.

In such cases, reduce the parameter value until the database server can be started
successfully.

2.1.3.12.10 edbldr.empty_csv_field

Parameter Type: Enum

Default Value: NULL

Range: {NULL | empty_string | pgsql}

Minimum Scope of Effect: Per session

When Value Changes Take Effect: Immediate

Required Authorization to Activate: Session user

Use the edbldr.empty_csv_field parameter to specify how EDB*Loader will treat
an empty string. The valid values for the edbldr.empty_csv_field parameter are:

Parameter Setting EDB*Loader Behavior
NULL An empty field is treated as NULL.
empty_string An empty field is treated as a string of length zero.
pgsql An empty field is treated as a NULL if it does not contain quotes and as an empty

string if it contains quotes.

For more information about the edbldr.empty_csv_field parameter in
EDB*Loader, see Section 6.1.9.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

100

2.1.3.12.11 utl_encode.uudecode_redwood

Parameter Type: Boolean

Default Value: false

Range: {true | false}

Minimum Scope of Effect: Per session

When Value Changes Take Effect: Immediate

Required Authorization to Activate: Session user

When set to TRUE, Advanced Server‟s UTL_ENCODE.UUDECODE function can decode
uuencoded data that was created by the Oracle implementation of the
UTL_ENCODE.UUENCODE function.

When set to the default setting of FALSE, Advanced Server‟s UTL_ENCODE.UUDECODE
function can decode uuencoded data created by Advanced Server‟s
UTL_ENCODE.UUENCODE function.

2.1.3.12.12 utl_file.umask

Parameter Type: String

Default Value: 0077

Range: Octal digits for umask settings

Minimum Scope of Effect: Per session

When Value Changes Take Effect: Immediate

Required Authorization to Activate: Session user

The utl_file.umask parameter sets the file mode creation mask or simply, the mask,
in a manner similar to the Linux umask command. This is for usage only within the
Advanced Server UTL_FILE package.

Note: The utl_file.umask parameter is not supported on Windows systems.

The value specified for utl_file.umask is a 3 or 4-character octal string that would be
valid for the Linux umask command. The setting determines the permissions on files
created by the UTL_FILE functions and procedures. (Refer to any information source

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

101

regarding Linux or Unix systems for information on file permissions and the usage of the
umask command.)

The following shows the results of the default utl_file.umask setting of 0077. Note
that all permissions are denied on users belonging to the enterprisedb group as well
as all other users. Only user enterprisedb has read and write permissions on the file.

-rw------- 1 enterprisedb enterprisedb 21 Jul 24 16:08 utlfile

For an example of using utl_file.umask, see Section 9.17.1.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

102

2.1.3.13 Ungrouped

Configuration parameters in this section apply to Postgres Plus Advanced Server only
and are for a specific, limited purpose.

2.1.3.13.1 nls_length_semantics

Parameter Type: Enum

Default Value: byte

Range: {byte | char}

Minimum Scope of Effect: Per session

When Value Changes Take Effect: Immediate

Required Authorization to Activate: Superuser

This parameter has no effect in Postgres Plus Advanced Server.

For example, the form of the ALTER SESSION command is accepted in Advanced Server
without throwing a syntax error, but does not alter the session environment:

ALTER SESSION SET nls_length_semantics = char;

Note: Since the setting of this parameter has no effect on the server environment, it does
not appear in the system view pg_settings.

2.1.3.13.2 query_rewrite_enabled

Parameter Type: Enum

Default Value: false

Range: {true | false | force}

Minimum Scope of Effect: Per session

When Value Changes Take Effect: Immediate

Required Authorization to Activate: Session user

This parameter has no effect in Postgres Plus Advanced Server.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

103

For example, the following form of the ALTER SESSION command is accepted in
Advanced Server without throwing a syntax error, but does not alter the session
environment:

ALTER SESSION SET query_rewrite_enabled = force;

Note: Since the setting of this parameter has no effect on the server environment, it does
not appear in the system view pg_settings.

2.1.3.13.3 query_rewrite_integrity

Parameter Type: Enum

Default Value: enforced

Range: {enforced | trusted | stale_tolerated}

Minimum Scope of Effect: Per session

When Value Changes Take Effect: Immediate

Required Authorization to Activate: Superuser

This parameter has no effect in Postgres Plus Advanced Server.

For example, the following form of the ALTER SESSION command is accepted in
Advanced Server without throwing a syntax error, but does not alter the session
environment:

ALTER SESSION SET query_rewrite_integrity = stale_tolerated;

Note: Since the setting of this parameter has no effect on the server environment, it does
not appear in the system view pg_settings.

2.1.3.13.4 timed_statistics

Parameter Type: Boolean

Default Value: true

Range: {true | false}

Minimum Scope of Effect: Per session

When Value Changes Take Effect: Immediate

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

104

Required Authorization to Activate: Session user

Controls the collection of timing data for the Dynamic Runtime Instrumentation Tools
Architecture (DRITA) feature. When set to on, timing data is collected.

Note: When Advanced Server is installed, the postgresql.conf file contains an
explicit entry setting timed_statistics to off. If this entry is commented out letting
timed_statistics to default, and the configuration file is reloaded, timed statistics
collection would be turned on.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

105

2.2 Controlling the Audit Logs

Postgres Plus Advanced Server allows database and security administrators, auditors, and
operators to track and analyze database activities using the audit logs. The audit logs can
be configured to information such as:

x When a role establishes a connection to an Advanced Server database
x What database objects a role creates, modifies, or deletes when connected to

Advanced Server
x When any failed authentication attempts occur

You can use parameters specified in the postgresql.conf file to control the
information included in the audit logs.

2.2.1 Auditing Configuration Parameters

Use the following postgresql.conf configuration parameters to control database
auditing:

edb_audit

Enables or disables database auditing. The values xml or csv will enable
database auditing. These values represent the file format in which auditing
information will be captured. none will disable database auditing and is also the
default. This option can only be set at server start or in the postgresql.conf
file.

edb_audit_directory

Specifies the directory where the log files will be created. The path of the
directory can be relative or absolute to the data folder. This option can only be set
at server start or in the postgresql.conf configuration file.

edb_audit_filename

Specifies the file name of the audit file where the auditing information will be
stored. The default file name will be audit-%Y%m%d_%H%M%S. The escape
sequences, %Y, %m etc., will be replaced by the appropriate current values
according to the system date and time. This option can only be set at server start
or in the postgresql.conf configuration file.

edb_audit_rotation_day

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

106

Specifies the day of the week on which to rotate the audit files. Valid values are
sun, mon, tue, wed, thu, fri, sat, every, and none. To disable rotation, set
the value to none. To rotate the file every day, set the
edb_audit_rotation_day value to every. To rotate the file on a specific day
of the week, set the value to the desired day of the week. every is the default
value. This option can only be set at server start or in the postgresql.conf
configuration file.

edb_audit_rotation_size

Specifies a file size threshold in megabytes when file rotation will be forced to
occur. The default value is 0 MB. If the parameter is commented out or set to 0,
rotation of the file on a size basis will not occur. This option can only be set at
server start or in the postgresql.conf configuration file.

edb_audit_rotation_seconds

Specifies the rotation time in seconds when a new log file should be created. To
disable this feature, set this parameter to 0. This option can only be set at server
start or in the postgresql.conf configuration file.

edb_audit_connect

Enables auditing of database connection attempts by users. To disable auditing of
all connection attempts, set edb_audit_connect to none. To audit all failed
connection attempts, set the value to failed. To audit all connection attempts,
set the value to all. This option can only be set at server start or in the
postgresql.conf configuration file.

edb_audit_disconnect

Enables auditing of database disconnections by connected users. To enable
auditing of disconnections, set the value to all. To disable, set the value to none.
This option can only be set at server start or in the postgresql.conf
configuration file.

edb_audit_statement

This configuration parameter is used to specify auditing of different categories of
SQL statements. To audit statements resulting in error, set the parameter value to
error. To audit DDL statements such as CREATE TABLE, ALTER TABLE, etc.,
set the parameter value to ddl. Modification statements such as INSERT,
UPDATE, DELETE or TRUNCATE can be audited by setting
edb_audit_statement to dml. To audit ROLLBACK statements, set the
parameter value to rollback. Setting the value to all will audit every

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

107

statement while none disables this feature. This option can only be set at server
start or in the postgresql.conf configuration file.

edb_audit_tag

Use this configuration parameter is used to specify a string value that will be
included in the audit log when the edb_audit parameter is set to csv or xml.

The following steps describe how to configure Advanced Server to log all connections,
disconnections, DDL statements, and any statements resulting in an error. The resulting
audit file will rotate every Sunday.

1. Enable auditing by the setting the edb_audit parameter to xml or csv.
2. Set the file rotation day when the new file will be created by setting the

parameter edb_audit_rotation_day to sun.
3. To audit all connections, set the parameter, edb_audit_connect, to all.
4. To audit all disconnections, set the parameter, edb_audit_disconnect, to

all.
5. To audit all DDL statements and error statements, set the parameter,

edb_audit_statement, to ddl, error.

The following is the CSV and XML output when auditing is enabled:

CSV Audit Log File

,,,1452,,,2008-03-13 12:40:02 ,startup,"AUDIT: database system is ready"
enterprisedb,mgmtsvr,127.0.0.1(1266),1620,47d9595b.654,0,2008-03-13 12:42:03 ,connect,"AUDIT:
connection authorized: user=enterprisedb database=mgmtsvr"
enterprisedb,mgmtsvr,127.0.0.1(1266),1620,47d9595b.654,1588,2008-03-13 12:42:08 ,ddl,"AUDIT:
statement: drop table HILOSEQUENCES
 "
enterprisedb,mgmtsvr,127.0.0.1(1266),1620,47d9595b.654,1590,2008-03-13 12:42:09 ,ddl,"AUDIT:
statement: create table HILOSEQUENCES (
 SEQUENCENAME varchar(50) not null,
 HIGHVALUES integer not null,
 constraint hilo_pk primary key (SEQUENCENAME)
)
 "
enterprisedb,edb,127.0.0.1(1269),904,47d9598d.388,0,2008-03-13 12:42:53 ,connect,"AUDIT:
connection authorized: user=enterprisedb database=edb"
enterprisedb,edb,127.0.0.1(1269),904,47d9598d.388,1618,2008-03-13 12:43:02 ,ddl,"AUDIT:
statement: CREATE TABLE test (f1 INTEGER);"
enterprisedb,edb,127.0.0.1(1269),904,47d9598d.388,1620,2008-03-13 12:43:02 ,sql
statement,"AUDIT: statement: SELECT * FROM testx;"
enterprisedb,edb,127.0.0.1(1269),904,47d9598d.388,1620,2008-03-13 12:43:02 ,error,"ERROR:
relation "testx" does not exist"
enterprisedb,edb,127.0.0.1(1269),904,47d9598d.388,1621,2008-03-13 12:43:04 ,ddl,"AUDIT:
statement: DROP TABLE test;"
enterprisedb,edb,127.0.0.1(1269),904,47d9598d.388,0,2008-03-13 12:43:20 ,disconnect,"AUDIT:
disconnection: session time: 0:00:26.953 user=enterprisedb database=edb host=127.0.0.1
port=1269"
enterprisedb,mgmtsvr,127.0.0.1(1266),1620,47d9595b.654,0,2008-03-13 12:43:29
,disconnect,"AUDIT: disconnection: session time: 0:01:26.594 user=enterprisedb
database=mgmtsvr host=127.0.0.1 port=1266"
,,,3148,,,2008-03-13 12:43:35 ,shutdown,"AUDIT: database system is shut down"

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

108

XML Audit Log File

 <event process_id="2516" time="2008-03-13 13:22:42 " type="startup">
 <message>AUDIT: database system is ready</message>
 </event>
 <event user="enterprisedb" database="mgmtsvr" remote_host_and_port="127.0.0.1(1281)"
 process_id="352" session_id="47d96338.160" transaction="0"
 time="2008-03-13 13:24:08 " type="connect">
 <message>AUDIT: connection authorized: user=enterprisedb
 database=mgmtsvr</message>
 </event>
 <event user="enterprisedb" database="mgmtsvr" remote_host_and_port="127.0.0.1(1281)"
 process_id="352" session_id="47d96338.160" transaction="1635"
 time="2008-03-13 13:24:10 " type="ddl">
 <command>AUDIT: statement: drop table HILOSEQUENCES</command>
 </event>
 <event user="enterprisedb" database="mgmtsvr" remote_host_and_port="127.0.0.1(1281)"
 process_id="352" session_id="47d96338.160" transaction="1637"
 time="2008-03-13 13:24:10 " type="ddl">
 <command>AUDIT: statement: create table HILOSEQUENCES (
 SEQUENCENAME varchar(50) not null,
 HIGHVALUES integer not null,
 constraint hilo_pk primary key (SEQUENCENAME)
)</command>
 </event>
 <event user="enterprisedb" database="edb" remote_host_and_port="127.0.0.1(1283)"
 process_id="3776" session_id="47d96378.ec0" transaction="0"
 time="2008-03-13 13:25:12 " type="connect">
 <message>AUDIT: connection authorized: user=enterprisedb database=edb</message>
 </event>
 <event user="enterprisedb" database="edb" remote_host_and_port="127.0.0.1(1283)"
 process_id="3776" session_id="47d96378.ec0" transaction="1667"
 time="2008-03-13 13:25:17 " type="ddl">
 <command>AUDIT: statement: CREATE TABLE test (f1 INTEGER);</command>
 </event>
 <event user="enterprisedb" database="edb" remote_host_and_port="127.0.0.1(1283)"
 process_id="3776" session_id="47d96378.ec0" transaction="1669"
 time="2008-03-13 13:25:17 " type="sql statement">
 <command>AUDIT: statement: SELECT * FROM testx;</command>
 </event>
 <event user="enterprisedb" database="edb" remote_host_and_port="127.0.0.1(1283)"
 process_id="3776" session_id="47d96378.ec0" transaction="1669"
 time="2008-03-13 13:25:17 " type="error">
 <message>ERROR: relation "testx" does not exist</message>
 </event>
 <event user="enterprisedb" database="edb" remote_host_and_port="127.0.0.1(1283)"
 process_id="3776" session_id="47d96378.ec0" transaction="1670"
 time="2008-03-13 13:25:18 " type="ddl">
 <command>AUDIT: statement: DROP TABLE test;</command>
 </event>
 <event user="enterprisedb" database="edb" remote_host_and_port="127.0.0.1(1283)"
 process_id="3776" session_id="47d96378.ec0" transaction="0"
 time="2008-03-13 13:25:22 " type="disconnect">
 <message>AUDIT: disconnection: session time: 0:00:10.094 user=enterprisedb
 database=edb host=127.0.0.1 port=1283</message>
 </event>
 <event user="enterprisedb" database="mgmtsvr" remote_host_and_port="127.0.0.1(1281)"
 process_id="352" session_id="47d96338.160" transaction="0"
 time="2008-03-13 13:25:31 " type="disconnect">
 <message>AUDIT: disconnection: session time: 0:01:23.046 user=enterprisedb
 database=mgmtsvr host=127.0.0.1 port=1281</message>
 </event>
 <event process_id="2768" time="2008-03-13 13:25:36 " type="shutdown">
 <message>AUDIT: database system is shut down</message>
 </event>

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

109

2.3 Unicode Collation Algorithm

The Unicode Collation Algorithm (UCA) is a specification (Unicode Technical Report
#10) that defines a customizable method of collating and comparing Unicode data.
Collation means how data is sorted as with a SELECT … ORDER BY clause. Comparison
is relevant for searches that use ranges with less than, greater than, or equal to operators.

Customizability is an important factor for various reasons such as the following.

x Unicode supports a vast number of languages. Letters that may be common to
several languages may be expected to collate in different orders depending upon
the language.

x Characters that appear with letters in certain languages such as accents or umlauts
have an impact on the expected collation depending upon the language.

x In some languages, combinations of several consecutive characters should be
treated as a single character with regards to its collation sequence.

x There may be certain preferences as to the collation of letters according to case.
For example, should the lowercase form of a letter collate before the uppercase
form of the same letter or vice versa.

x There may be preferences as to whether punctuation marks such as underscore
characters, hyphens, or space characters should be considered in the collating
sequence or should they simply be ignored as if they did not exist in the string.

Given all of these variations with the vast number of languages supported by Unicode,
there is a necessity for a method to select the specific criteria for determining a collating
sequence. This is what the Unicode Collation Algorithm defines.

Note: In addition, another advantage for using ICU collations (the implementation of the
Unicode Collation Algorithm) is for performance. Sorting tasks, including B-tree index
creation, can complete in less than half the time it takes with a non-ICU collation. The
exact performance gain depends on your operating system version, the language of your
text data, and other factors.

The following sections provide a brief, simplified explanation of the Unified Collation
Algorithm concepts. As the algorithm and its usage are quite complex with numerous
variations, refer to the official documents cited in these sections for complete details.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

110

2.3.1 Basic Unicode Collation Algorithm Concepts

The official information for the Unicode Collation Algorithm is specified in Unicode
Technical Report #10, which can be found on The Unicode Consortium website at:

http://www.unicode.org/reports/tr10/

The ICU – International Components for Unicode also provides much useful information.
An explanation of the collation concepts can be found on their website located at:

http://userguide.icu-project.org/collation/concepts

The basic concept behind the Unicode Collation Algorithm is the use of multilevel
comparison. This means that a number of levels are defined, which are listed as level 1
through level 5 in the following bullet points. Each level defines a type of comparison.
Strings are first compared using the primary level, also called level 1.

If the order can be determined based on the primary level, then the algorithm is done. If
the order cannot be determined based on the primary level, then the secondary level, level
2, is applied. If the order can be determined based on the secondary level, then the
algorithm is done, otherwise the tertiary level is applied, and so on. There is typically, a
final tie-breaking level to determine the order if it cannot be resolved by the prior levels.

x Level 1 – Primary Level for Base Characters. The order of basic characters
such as letters and digits determines the difference such as A < B.

x Level 2 – Secondary Level for Accents. If there are no primary level differences,
then the presence or absence of accents and other such characters determine the
order such as a < á.

x Level 3 – Tertiary Level for Case. If there are no primary level or secondary
level differences, then a difference in case determines the order such as a < A.

x Level 4 – Quaternary Level for Punctuation. If there are no primary,
secondary, or tertiary level differences, then the presence or absence of white
space characters, control characters, and punctuation determine the order such as
-A < A.

x Level 5 – Identical Level for Tie-Breaking. If there are no primary, secondary,
tertiary, or quaternary level differences, then some other difference such as the
code point values determines the order.

http://www.unicode.org/reports/tr10/
http://userguide.icu-project.org/collation/concepts

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

111

2.3.2 International Components for Unicode

The Unicode Collation Algorithm is implemented by open source software provided by
the International Components for Unicode (ICU). The software is a set of C/C++ and
Java libraries.

When Advanced Server is used to create a collation that invokes the ICU components to
produce the collation, the result is referred to as an ICU collation.

2.3.2.1 Locale Collations

When creating a collation for a locale, a predefined ICU short form name for the given
locale is typically provided.

An ICU short form is a method of specifying collation attributes, which are the
properties of a collation. Section 2.3.2.2 provides additional information on collation
attributes.

There are predefined ICU short forms for locales. The ICU short form for a locale
incorporates the collation attribute settings typically used for the given locale. This
simplifies the collation creation process by eliminating the need to specify the entire list
of collation attributes for that locale.

The system catalog pg_catalog.pg_icu_collate_names contains a list of the
names of the ICU short forms for locales. The ICU short form name is listed in column
icu_short_form.

edb=# SELECT icu_short_form, valid_locale FROM pg_icu_collate_names ORDER BY
valid_locale;
 icu_short_form | valid_locale
----------------+--------------
 LAF | af
 LAR | ar
 LAS | as
 LAZ | az
 LBE | be
 LBG | bg
 LBN | bn
 LBS | bs
 LBS_ZCYRL | bs_Cyrl
 LROOT | ca
 LROOT | chr
 LCS | cs
 LCY | cy
 LDA | da
 LROOT | de
 LROOT | dz
 LEE | ee
 LEL | el

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

112

 LROOT | en
 LROOT | en_US
 LEN_RUS_VPOSIX | en_US_POSIX
 LEO | eo
 LES | es
 LET | et
 LFA | fa
 LFA_RAF | fa_AF
 .
 .
 .

If needed, the default characteristics of an ICU short form for a given locale can be
overridden by specifying the collation attributes to override that property. This is
discussed in the next section.

2.3.2.2 Collation Attributes

When creating an ICU collation, the desired characteristics of the collation must be
specified. As discussed in Section 2.3.2.1, this can typically be done with an ICU short
form for the desired locale. However, if more specific information is required, the
specification of the collation properties can be done by using collation attributes.

Collation attributes define the rules of how characters are to be compared for determining
the collation sequence of text strings. As Unicode covers a vast set of languages in
numerous variations according to country, territory and culture, these collation attributes
are quite complex.

For the complete, precise meaning and usage of collation attributes, see Section 13
“Collator Naming Scheme” on the ICU – International Components for Unicode website
at:

http://userguide.icu-project.org/collation/concepts

The following is a brief summary of the collation attributes and how they are specified
using the ICU short form method

Each collation attribute is represented by an uppercase letter, which are listed in the
following bullet points. The possible valid values for each attribute are given by codes
shown within the parentheses. Some codes have general meanings for all attributes. X
means to set the attribute off. O means to set the attribute on. D means to set the attribute
to its default value.

x A – Alternate (N, S, D). Handles treatment of variable characters such as white
spaces, punctuation marks, and symbols. When set to non-ignorable (N),
differences in variable characters are treated with the same importance as
differences in letters. When set to shifted (S), then differences in variable
characters are of minor importance (that is, the variable character is ignored when
comparing base characters).

http://userguide.icu-project.org/collation/concepts

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

113

x C – Case First (X, L, U, D). Controls whether a lowercase letter sorts before the
same uppercase letter (L), or the uppercase letter sorts before the same lowercase
letter (U). Off (X) is typically specified when lowercase first (L) is desired.

x E – Case Level (X, O, D). Set in combination with the Strength attribute, the
Case Level attribute is used when accents are to be ignored, but not case.

x F – French Collation (X, O, D). When set to on, secondary differences (presence
of accents) are sorted from the back of the string as done in the French Canadian
locale.

x H – Hiragana Quaternary (X, O, D). Introduces an additional level to
distinguish between the Hiragana and Katakana characters for compatibility with
the JIS X 4061 collation of Japanese character strings.

x N – Normalization Checking (X, O, D). Controls whether or not text is
thoroughly normalized for comparison. Normalization deals with the issue of
canonical equivalence of text whereby different code point sequences represent
the same character, which then present issues when sorting or comparing such
characters. Languages such as Arabic, ancient Greek, Hebrew, Hindi, Thai, or
Vietnamese should be used with Normalization Checking set to on.

x S – Strength (1, 2, 3, 4, I, D). Maximum collation level used for comparison.
Influences whether accents or case are taken into account when collating or
comparing strings. Each number represents a level. A setting of I represents
identical strength (that is, level 5).

x T – Variable Top (hexadecimal digits). Applicable only when the Alternate
attribute is not set to non-ignorable (N). The hexadecimal digits specify the
highest character sequence that is to be considered ignorable. For example, if
white space is to be ignorable, but visible variable characters are not to be
ignorable, then Variable Top set to 0020 would be specified along with the
Alternate attribute set to S and the Strength attribute set to 3. (The space character
is hexadecimal 0020. Other non-visible variable characters such as backspace,
tab, line feed, carriage return, etc. have values less than 0020. All visible
punctuation marks have values greater than 0020.)

A set of collation attributes and their values is represented by a text string consisting of
the collation attribute letter concatenated with the desired attribute value. Each
attribute/value pair is joined to the next pair with an underscore character as shown by the
following example.

AN_CX_EX_FX_HX_NO_S3

Collation attributes can be specified along with a locale‟s ICU short form name to
override those default attribute settings of the locale.

The following is an example where the ICU short form named LROOT is modified with a
number of other collation attribute/value pairs.

AN_CX_EX_LROOT_NO_S3

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

114

In the preceding example, the Alternate attribute (A) is set to non-ignorable (N). The Case
First attribute (C) is set to off (X). The Case Level attribute (E) is set to off (X). The
Normalization attribute (N) is set to on (O). The Strength attribute (S) is set to the tertiary
level 3. LROOT is the ICU short form to which these other attributes are applying
modifications.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

115

2.3.3 Creating an ICU Collation

Creating an ICU collation can be done a number of different ways.

x When creating a new database cluster with the initdb command, the --icu-
short-form option can be specified to define the ICU collation to be used by
default by all databases in the cluster.

x When creating a new database with the CREATE DATABASE command, the
ICU_SHORT_FORM parameter can be specified to define the ICU collation to be
used by default in that database.

x In an existing database, the CREATE COLLATION command can be used with the
ICU_SHORT_FORM parameter to define an ICU collation to be used under specific
circumstances such as when assigned with the COLLATE clause onto selected
columns of certain tables or when appended with the COLLATE clause onto an
expression such as ORDER BY expr COLLATE "collation_name".

The following describes the various ways of creating an ICU collation.

2.3.3.1 CREATE COLLATION

Use the ICU_SHORT_FORM parameter with the CREATE COLLATION command to create
an ICU collation:

CREATE COLLATION collation_name (
 [LOCALE = locale,]
 [LC_COLLATE = lc_collate,]
 [LC_CTYPE = lc_ctype,]
 [ICU_SHORT_FORM = icu_short_form]
);

To be able to create a collation, you must have CREATE privilege on the destination
schema where the collation is to reside.

For information about the general usage of the CREATE COLLATION command, see the
PostgreSQL core documentation, available at:

http://www.enterprisedb.com/docs/en/9.4/pg/sql-createcollation.html

UTF-8 character encoding of the database is required. Any LOCALE, or LC_COLLATE and
LC_CTYPE settings that are accepted with UTF-8 encoding can be used.

Parameters

collation_name

http://www.enterprisedb.com/docs/en/9.4/pg/sql-createcollation.html
http://www.enterprisedb.com/docs/en/9.4/pg/sql-createcollation.html

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

116

The name of the collation to be added. The collation_name may be schema-
qualified.

locale

The locale to be used. Short cut for setting LC_COLLATE and LC_TYPE. If
LOCALE is specified, then LC_COLLATE and LC_TYPE must be omitted.

lc_collate

The collation to be used. If LC_CTYPE is specified, then LC_COLLATE must also
be specified and LOCALE must be omitted.

lc_ctype

The character classification to be used. If LC_COLLATE is specified, then
LC_CTYPE must also be specified and LOCALE must be omitted.

icu_short_form

The text string specifying the collation attributes and their settings. This typically
consists of an ICU short form name, possibly appended with additional collation
attribute/value pairs. A list of ICU short form names is available from column
icu_short_form in system catalog pg_catalog.pg_icu_collate_names.

Example

The following creates a collation using the LROOT ICU short form.

edb=# CREATE COLLATION icu_collate_a (LOCALE = 'en_US.UTF8', ICU_SHORT_FORM =
'LROOT');
CREATE COLLATION

The definition of the new collation can be seen with the following psql command.

edb=# \dO
 List of collations
 Schema | Name | Collate | Ctype | ICU
--------------+---------------+------------+------------+-------
 enterprisedb | icu_collate_a | en_US.UTF8 | en_US.UTF8 | LROOT
(1 row)

2.3.3.2 CREATE DATABASE

The following is the syntax for creating a database with an ICU collation:

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

117

CREATE DATABASE database_name
 [[WITH] [OWNER [=] user_name]
 [TEMPLATE [=] template]
 [ENCODING [=] encoding]
 [LC_COLLATE [=] lc_collate]
 [LC_CTYPE [=] lc_ctype]
 [TABLESPACE [=] tablespace_name]
 [CONNECTION LIMIT [=] connlimit]
 [ICU_SHORT_FORM [=] icu_short_form]];

For complete information about the general usage, syntax, and parameters of the CREATE
DATABASE command, see the PostgreSQL core documentation, available at:

http://www.enterprisedb.com/docs/en/9.4/pg/sql-createdatabase.html

When using the CREATE DATABASE command to create a database using an ICU
collation, the TEMPLATE template0 clause must be specified and the database
encoding must be UTF-8.

The following is an example of creating a database using the LROOT ICU short form
collation, but sorts an uppercase form of a letter before its lowercase counterpart (CU) and
treats variable characters as non-ignorable (AN).

CREATE DATABASE collation_db
 TEMPLATE template0
 ENCODING 'UTF8'
 ICU_SHORT_FORM = 'AN_CU_EX_NX_LROOT';

The following psql command shows the newly created database.

edb=# \l collation_db
 List of databases
 Name | Owner | Encoding | Collate | Ctype | ICU |
Access privileges
--------------+--------------+----------+-------------+-------------+-------------------+-----

 collation_db | enterprisedb | UTF8 | en_US.UTF-8 | en_US.UTF-8 | AN_CU_EX_NX_LROOT |
(1 row)

The following table is created and populated with rows in the database.

CREATE TABLE collate_tbl (
 id INTEGER,
 c2 VARCHAR(2)
);

INSERT INTO collate_tbl VALUES (1, 'A');
INSERT INTO collate_tbl VALUES (2, 'B');
INSERT INTO collate_tbl VALUES (3, 'C');
INSERT INTO collate_tbl VALUES (4, 'a');
INSERT INTO collate_tbl VALUES (5, 'b');
INSERT INTO collate_tbl VALUES (6, 'c');
INSERT INTO collate_tbl VALUES (7, '1');
INSERT INTO collate_tbl VALUES (8, '2');

http://www.enterprisedb.com/docs/en/9.4/pg/sql-createdatabase.html
http://www.enterprisedb.com/docs/en/9.4/pg/sql-createdatabase.html

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

118

INSERT INTO collate_tbl VALUES (9, '.B');
INSERT INTO collate_tbl VALUES (10, '-B');
INSERT INTO collate_tbl VALUES (11, ' B');

The following query shows that the uppercase form of a letter sorts before the lowercase
form of the same base letter, and in addition, variable characters are taken into account
when sorted as they appear at the beginning of the sort list. (The default behavior for
en_US.UTF-8 is to sort the lowercase form of a letter before the uppercase form of the
same base letter, and to ignore variable characters.)

collation_db=# SELECT id, c2 FROM collate_tbl ORDER BY c2;
 id | c2
----+----
 11 | B
 10 | -B
 9 | .B
 7 | 1
 8 | 2
 1 | A
 4 | a
 2 | B
 5 | b
 3 | C
 6 | c
(11 rows)

2.3.3.3 initdb

A database cluster can be created with a default ICU collation for all databases in the
cluster by using the --icu-short-form option with the initdb command.

For complete information about the general usage, syntax, and parameters of the initdb
command, see the PostgreSQL core documentation, available at:

http://www.enterprisedb.com/docs/en/9.4/pg/app-initdb.html

The following illustrates this process.

$ su enterprisedb
Password:
$ /opt/PostgresPlus/9.4AS/bin/initdb -U enterprisedb -D /tmp/collation_data -
-encoding UTF8 --icu-short-form 'AN_CU_EX_NX_LROOT'
The files belonging to this database system will be owned by user
"enterprisedb".
This user must also own the server process.

The database cluster will be initialized with locale "en_US.UTF-8".
The default text search configuration will be set to "english".

Data page checksums are disabled.

creating directory /tmp/collation_data ... ok

http://www.enterprisedb.com/docs/en/9.4/pg/app-initdb.html
http://www.enterprisedb.com/docs/en/9.4/pg/app-initdb.html

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

119

creating subdirectories ... ok
 .
 .
 .
Success. You can now start the database server using:

 /opt/PostgresPlus/9.4AS/bin/edb-postgres -D /tmp/collation_data
or
 /opt/PostgresPlus/9.4AS/bin/pg_ctl -D /tmp/collation_data -l logfile
start

The following shows the databases created in the cluster which all have an ICU collation
of AN_CU_EX_NX_LROOT.

edb=# \l
 List of databases
 Name | Owner | Encoding | Collate | Ctype | ICU |
Access privileges
-----------+--------------+----------+-------------+-------------+-------------------+--------

 edb | enterprisedb | UTF8 | en_US.UTF-8 | en_US.UTF-8 | AN_CU_EX_NX_LROOT |
 postgres | enterprisedb | UTF8 | en_US.UTF-8 | en_US.UTF-8 | AN_CU_EX_NX_LROOT |
 template0 | enterprisedb | UTF8 | en_US.UTF-8 | en_US.UTF-8 | AN_CU_EX_NX_LROOT |
=c/enterprisedb +
 | | | | | |
enterprisedb=CTc/enterprisedb
 template1 | enterprisedb | UTF8 | en_US.UTF-8 | en_US.UTF-8 | AN_CU_EX_NX_LROOT |
=c/enterprisedb +
 | | | | | |
enterprisedb=CTc/enterprisedb
(4 rows)

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

120

2.3.4 Using a Collation

A newly defined ICU collation can be used anywhere the COLLATION
"collation_name" clause can be used in a SQL command such as in the column
specifications of the CREATE TABLE command or appended to an expression in the
ORDER BY clause of a SELECT command.

The following are some examples of the creation and usage of ICU collations based on
the English language in the United States (en_US.UTF8).

In these examples, ICU collations are created with the following characteristics.

Collation icu_collate_lowercase forces the lowercase form of a letter to sort before
its uppercase counterpart (CL).

Collation icu_collate_uppercase forces the uppercase form of a letter to sort before
its lowercase counterpart (CU).

Collation icu_collate_ignore_punct causes variable characters (white space and
punctuation marks) to be ignored during sorting (AS).

Collation icu_collate_ignore_white_sp causes white space and other non-visible
variable characters to be ignored during sorting, but visible variable characters
(punctuation marks) are not ignored (AS, T0020).

CREATE COLLATION icu_collate_lowercase (
 LOCALE = 'en_US.UTF8',
 ICU_SHORT_FORM = 'AN_CL_EX_NX_LROOT'
);

CREATE COLLATION icu_collate_uppercase (
 LOCALE = 'en_US.UTF8',
 ICU_SHORT_FORM = 'AN_CU_EX_NX_LROOT'
);

CREATE COLLATION icu_collate_ignore_punct (
 LOCALE = 'en_US.UTF8',
 ICU_SHORT_FORM = 'AS_CX_EX_NX_LROOT_L3'
);

CREATE COLLATION icu_collate_ignore_white_sp (
 LOCALE = 'en_US.UTF8',
 ICU_SHORT_FORM = 'AS_CX_EX_NX_LROOT_L3_T0020'
);

Note: When creating collations, ICU may generate notice and warning messages when
attributes are given to modify the LROOT collation.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

121

The following psql command lists the collations.

edb=# \dO
 List of collations
 Schema | Name | Collate | Ctype | ICU
--------------+-----------------------------+------------+------------+-----------------------

 enterprisedb | icu_collate_ignore_punct | en_US.UTF8 | en_US.UTF8 | AS_CX_EX_NX_LROOT_L3
 enterprisedb | icu_collate_ignore_white_sp | en_US.UTF8 | en_US.UTF8 |
AS_CX_EX_NX_LROOT_L3_T0020
 enterprisedb | icu_collate_lowercase | en_US.UTF8 | en_US.UTF8 | AN_CL_EX_NX_LROOT
 enterprisedb | icu_collate_uppercase | en_US.UTF8 | en_US.UTF8 | AN_CU_EX_NX_LROOT
(4 rows)

The following table is created and populated.

CREATE TABLE collate_tbl (
 id INTEGER,
 c2 VARCHAR(2)
);

INSERT INTO collate_tbl VALUES (1, 'A');
INSERT INTO collate_tbl VALUES (2, 'B');
INSERT INTO collate_tbl VALUES (3, 'C');
INSERT INTO collate_tbl VALUES (4, 'a');
INSERT INTO collate_tbl VALUES (5, 'b');
INSERT INTO collate_tbl VALUES (6, 'c');
INSERT INTO collate_tbl VALUES (7, '1');
INSERT INTO collate_tbl VALUES (8, '2');
INSERT INTO collate_tbl VALUES (9, '.B');
INSERT INTO collate_tbl VALUES (10, '-B');
INSERT INTO collate_tbl VALUES (11, ' B');

The following query sorts on column c2 using the default collation. Note that variable
characters (white space and punctuation marks) with id column values of 9, 10, and 11
are ignored and sort with the letter B.

edb=# SELECT * FROM collate_tbl ORDER BY c2;
 id | c2
----+----
 7 | 1
 8 | 2
 4 | a
 1 | A
 5 | b
 2 | B
 11 | B
 10 | -B
 9 | .B
 6 | c
 3 | C
(11 rows)

The following query sorts on column c2 using collation icu_collate_lowercase,
which forces the lowercase form of a letter to sort before the uppercase form of the same
base letter. Also note that the AN attribute forces variable characters to be included in the

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

122

sort order at the same level when comparing base characters so rows with id values of 9,
10, and 11 appear at the beginning of the sort list before all letters and numbers.

edb=# SELECT * FROM collate_tbl ORDER BY c2 COLLATE "icu_collate_lowercase";
 id | c2
----+----
 11 | B
 10 | -B
 9 | .B
 7 | 1
 8 | 2
 4 | a
 1 | A
 5 | b
 2 | B
 6 | c
 3 | C
(11 rows)

The following query sorts on column c2 using collation icu_collate_uppercase,
which forces the uppercase form of a letter to sort before the lowercase form of the same
base letter.

edb=# SELECT * FROM collate_tbl ORDER BY c2 COLLATE "icu_collate_uppercase";
 id | c2
----+----
 11 | B
 10 | -B
 9 | .B
 7 | 1
 8 | 2
 1 | A
 4 | a
 2 | B
 5 | b
 3 | C
 6 | c
(11 rows)

The following query sorts on column c2 using collation
icu_collate_ignore_punct, which causes variable characters to be ignored so rows
with id values of 9, 10, and 11 sort with the letter B as that is the character immediately
following the ignored variable character.

edb=# SELECT * FROM collate_tbl ORDER BY c2 COLLATE
"icu_collate_ignore_punct";
 id | c2
----+----
 7 | 1
 8 | 2
 4 | a
 1 | A
 5 | b
 11 | B
 2 | B
 9 | .B
 10 | -B

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

123

 6 | c
 3 | C
(11 rows)

The following query sorts on column c2 using collation
icu_collate_ignore_white_sp. The AS and T0020 attributes of the collation cause
variable characters with code points less than or equal to hexadecimal 0020 to be ignored
while variable characters with code points greater than hexadecimal 0020 are included in
the sort.

The row with id value of 11, which starts with a space character (hexadecimal 0020)
sorts with the letter B. The rows with id values of 9 and 10, which start with visible
punctuation marks greater than hexadecimal 0020, appear at the beginning of the sort list
as these particular variable characters are included in the sort order at the same level
when comparing base characters.

edb=# SELECT * FROM collate_tbl ORDER BY c2 COLLATE
"icu_collate_ignore_white_sp";
 id | c2
----+----
 10 | -B
 9 | .B
 7 | 1
 8 | 2
 4 | a
 1 | A
 5 | b
 11 | B
 2 | B
 6 | c
 3 | C
(11 rows)

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

124

2.4 Profile Management

Advanced Server 9.5 allows a database superuser to create named profiles. Each profile
defines rules for password management that augment password and md5 authentication.
The rules in a profile can:

x count failed login attempts
x lock an account due to excessive failed login attempts
x mark a password for expiration
x define a grace period after a password expiration
x define rules for password complexity
x define rules that limit password re-use

A profile is a named set of password attributes that allow you to easily manage a group of
roles that share comparable authentication requirements. If the password requirements
change, you can modify the profile to have the new requirements applied to each user that
is associated with that profile.

After creating the profile, you can associate the profile with one or more users. When a
user connects to the server, the server enforces the profile that is associated with their
login role. Profiles are shared by all databases within a cluster, but each cluster may have
multiple profiles. A single user with access to multiple databases will use the same
profile when connecting to each database within the cluster.

Advanced Server 9.5 creates a profile named default that is associated with a new role
when the role is created unless an alternate profile is specified. If you upgrade to
Advanced Server 9.5 from a previous server version, existing roles will automatically be
assigned to the default profile. You cannot delete the default profile.

The default profile specifies the following attributes:

FAILED_LOGIN_ATTEMPTS UNLIMITED
PASSWORD_LOCK_TIME UNLIMITED
PASSWORD_LIFE_TIME UNLIMITED
PASSWORD_GRACE_TIME UNLIMITED
PASSWORD_REUSE_TIME UNLIMITED
PASSWORD_REUSE_MAX UNLIMITED
PASSWORD_VERIFY_FUNCTION NULL

A database superuser can use the ALTER PROFILE command to modify the values
specified by the default profile. For more information about modifying a profile, see
Section 2.4.2.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

125

2.4.1 Creating a New Profile

Use the CREATE PROFILE command to create a new profile. The syntax is:

CREATE PROFILE profile_name
 [LIMIT {parameter value} ...];

Include the LIMIT clause and one or more space-delimited parameter/value pairs to
specify the rules enforced by Advanced Server.

Parameters:

profile_name specifies the name of the profile.

parameter specifies the attribute limited by the profile.

value specifies the parameter limit.

Advanced Server supports the values shown in the following table for each
parameter:

Parameter Name

Description

Supported Values

FAILED_LOGIN_ATTEMPTS
x An INTEGER value greater than 0.
x DEFAULT - the value of

FAILED_LOGIN_ATTEMPTS specified in
the DEFAULT profile.

x UNLIMITED – The connecting user may
make an unlimited number of failed login
attempts.

Specifies the number of failed login
attempts that a user may make before the
server locks the user out of their account
for the length of time specified by
PASSWORD_LOCK_TIME.

PASSWORD_LOCK_TIME
x A NUMERIC value greater than or equal to

0. To specify a fractional portion of a
day, specify a decimal value. For
example, use the value 4.5 to specify 4
days, 12 hours.

x DEFAULT - the value of
PASSWORD_LOCK_TIME specified in the

Specifies the length of time that must
pass before the server unlocks an account
that has been locked because of

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

126

FAILED_LOGIN_ATTEMPTS. DEFAULT profile.
x UNLIMITED – The account is locked until

it is manually unlocked by a database
superuser.

PASSWORD_LIFE_TIME
x A NUMERIC value greater than or equal to

0. To specify a fractional portion of a
day, specify a decimal value. For
example, use the value 4.5 to specify 4
days, 12 hours.

x DEFAULT - the value of
PASSWORD_LIFE_TIME specified in the
DEFAULT profile.

x UNLIMITED – The password does not
have an expiration date.

Specifies the number of days that the
current password may be used before the
user is prompted to provide a new
password. Include the
PASSWORD_GRACE_TIME clause when
using the PASSWORD_LIFE_TIME clause
to specify the number of days that will
pass after the password expires before
connections by the role are rejected. If
PASSWORD_GRACE_TIME is not
specified, the password will expire on the
day specified by the default value of
PASSWORD_GRACE_TIME, and the user
will not be allowed to execute any
command until a new password is
provided.

PASSWORD_GRACE_TIME
x A NUMERIC value greater than or equal to

0. To specify a fractional portion of a
day, specify a decimal value. For
example, use the value 4.5 to specify 4
days, 12 hours.

x DEFAULT - the value of
PASSWORD_GRACE_TIME specified in
the DEFAULT profile.

x UNLIMITED – The grace period is
infinite.

Specifies the length of the grace period
after a password expires until the user is
forced to change their password. When
the grace period expires, a user will be
allowed to connect, but will not be
allowed to execute any command until
they update their expired password.

PASSWORD_REUSE_TIME
x A NUMERIC value greater than or equal to

0. To specify a fractional portion of a
day, specify a decimal value. For
example, use the value 4.5 to specify 4
days, 12 hours.

x DEFAULT - the value of
PASSWORD_REUSE_TIME specified in
the DEFAULT profile.

Use PASSWORD_REUSE_TIME to specify
the number of days a user must wait
before re-using a password.
The PASSWORD_REUSE_TIME and

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

127

PASSWORD_REUSE_MAX parameters are
intended to be used together. If you
specify a finite value for one of these
parameters while the other is
UNLIMITED, old passwords can never be
reused. If both parameters are set to
UNLIMITED there are no restrictions on
password reuse.

UNLIMITED – The password can be re-
used without restrictions.

PASSWORD_REUSE_MAX
x An INTEGER value greater than or equal

to 0.
x DEFAULT - the value of

PASSWORD_REUSE_MAX specified in the
DEFAULT profile.

x UNLIMITED – The password can be re-
used without restrictions.

Use PASSWORD_REUSE_MAX to specify
the number of password changes that
must occur before a password can be
reused. The PASSWORD_REUSE_TIME
and PASSWORD_REUSE_MAX parameters
are intended to be used together. If you
specify a finite value for one of these
parameters while the other is
UNLIMITED, old passwords can never be
reused. If both parameters are set to
UNLIMITED there are no restrictions on
password reuse.

PASSWORD_VERIFY_FUNCTION
x The name of a PL/SQL function.
x DEFAULT - the value of

PASSWORD_VERIFY_FUNCTION
specified in the DEFAULT profile.

x NULL Use PASSWORD_VERIFY_FUNCTION to
specify password complexity.

Notes

Use DROP PROFILE command to remove the profile.

Examples

The following command creates a profile named acctg. The profile specifies that if a
user has not authenticated with the correct password in five attempts, the account will be
locked for one day:

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

128

CREATE PROFILE acctg LIMIT
 FAILED_LOGIN_ATTEMPTS 5
 PASSWORD_LOCK_TIME 1;

The following command creates a profile named sales. The profile specifies that a user
must change their password every 90 days:

CREATE PROFILE sales LIMIT
 PASSWORD_LIFE_TIME 90
 PASSWORD_GRACE_TIME 3;

If the user has not changed their password before the 90 days specified in the profile has
passed, they will be issued a warning at login. After a grace period of 3 days, their
account will not be allowed to invoke any commands until they change their password.

The following command creates a profile named accts. The profile specifies that a user
cannot re-use a password within 180 days of the last use of the password, and must
change their password at least 5 times before re-using the password:

CREATE PROFILE accts LIMIT
 PASSWORD_REUSE_TIME 180
 PASSWORD_REUSE_MAX 5;

The following command creates a profile named resources; the profile calls a user-
defined function named password_rules that will verify that the password provided
meets their standards for complexity:

CREATE PROFILE resources LIMIT
 PASSWORD_VERIFY_FUNCTION password_rules;

2.4.1.1 Creating a Password Function

When specifying PASSWORD_VERIFY_FUNCTION, you can provide a customized
function that specifies the security rules that will be applied when your users change their
password. For example, you can specify rules that stipulate that the new password must
be at least n characters long, and may not contain a specific value.

The password function has the following signature:

function_name (user_name VARCHAR2,
 new_password VARCHAR2,
 old_password VARCHAR2) RETURN boolean

Where:

user_name is the name of the user.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

129

new_password is the new password.

old_password is the user's previous password. If you reference this parameter
within your function:

When a database superuser changes their password, the third parameter
will always be NULL.

When a user with the CREATEROLE attribute changes their password, the
parameter will pass the previous password if the statement includes the
REPLACE clause. Note that the REPLACE clause is optional syntax for a
user with the CREATEROLE privilege.

When a user that is not a database superuser and does not have the
CREATEROLE attribute changes their password, the third parameter will
contain the previous password for the role.

The function returns a Boolean value. If the function returns true and does not raise an
exception, the password is accepted; if the function returns false or raises an exception,
the password is rejected. If the function raises an exception, the specified error message
is displayed to the user. If the function does not raise an exception, but returns false, the
following error message is displayed:

ERROR: password verification for the specified password failed

The function must be owned by a database superuser, and reside in the sys schema.

Example:

The following example creates a profile and a custom function; then, the function is
associated with the profile. The following CREATE PROFILE command creates a profile
named acctg_pwd_profile:

CREATE PROFILE acctg_pwd_profile;

The following commands create a (schema-qualified) function named
verify_password:

CREATE OR REPLACE FUNCTION sys.verify_password(user_name varchar2,
new_password varchar2, old_password varchar2)
RETURN boolean IMMUTABLE
IS
BEGIN
 IF (length(new_password) < 5)
 THEN
 raise_application_error(-20001, 'too short');
 END IF;

 IF substring(new_password FROM old_password) IS NOT NULL

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

130

 THEN
 raise_application_error(-20002, 'includes old password');
 END IF;

 RETURN true;
END;

The function first ensures that the password is at least 5 characters long, and then
compares the new password to the old password. If the new password contains fewer
than 5 characters, or contains the old password, the function raises an error.

The following statement sets the ownership of the verify_password function to the
enterprisedb database superuser:

ALTER FUNCTION verify_password(varchar2, varchar2, varchar2) OWNER TO
enterprisedb;

Then, the verify_password function is associated with the profile:

ALTER PROFILE acctg_pwd_profile LIMIT PASSWORD_VERIFY_FUNCTION
verify_password;

The following statements confirm that the function is working by first creating a test user
(alice), and then attempting to associate invalid and valid passwords with her role:

CREATE ROLE alice WITH LOGIN PASSWORD 'temp_password' PROFILE
acctg_pwd_profile;

Then, when alice connects to the database and attempts to change her password, she
must adhere to the rules established by the profile function. A non-superuser without
CREATEROLE must include the REPLACE clause when changing a password:

edb=> ALTER ROLE alice PASSWORD 'hey';
ERROR: missing REPLACE clause

The new password must be at least 5 characters long:

edb=> ALTER USER alice PASSWORD 'hey' REPLACE 'temp_password';
ERROR: EDB-20001: too short
CONTEXT: edb-spl function verify_password(character varying,character
varying,character varying) line 5 at procedure/function invocation statement

If the new password is acceptable, the command completes without error:

edb=> ALTER USER alice PASSWORD 'hello' REPLACE 'temp_password';
ALTER ROLE

If alice decides to change her password, the new password must not contain the old
password:

edb=> ALTER USER alice PASSWORD 'helloworld' REPLACE 'hello';

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

131

ERROR: EDB-20002: includes old password
CONTEXT: edb-spl function verify_password(character varying,character
varying,character varying) line 10 at procedure/function invocation statement

To remove the verify function, set password_verify_function to NULL:

ALTER PROFILE acctg_pwd_profile LIMIT password_verify_function NULL;

Then, all password constraints will be lifted:

edb=# ALTER ROLE alice PASSWORD 'hey';
ALTER ROLE

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

132

2.4.2 Altering a Profile

Use the ALTER PROFILE command to modify a user-defined profile; Advanced Server
supports two forms of the command:

ALTER PROFILE profile_name RENAME TO new_name;

ALTER PROFILE profile_name
 LIMIT {parameter value}[...];

Include the LIMIT clause and one or more space-delimited parameter/value pairs to
specify the rules enforced by Advanced Server, or use ALTER PROFILE…RENAME TO to
change the name of a profile.

Parameters:

profile_name specifies the name of the profile.

new_name specifies the new name of the profile.

parameter specifies the attribute limited by the profile.

value specifies the parameter limit.

See the table in Section 2.4.1 for a complete list of accepted parameter/value pairs.

Examples

The following example modifies a profile named acctg_profile:

ALTER PROFILE acctg_profile
 LIMIT FAILED_LOGIN_ATTEMPTS 3 PASSWORD_LOCK_TIME 1;

acctg_profile will count failed connection attempts when a login role attempts to
connect to the server. The profile specifies that if a user has not authenticated with the
correct password in three attempts, the account will be locked for one day.

The following example changes the name of acctg_profile to payables_profile:

ALTER PROFILE acctg_profile RENAME TO payables_profile;

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

133

2.4.3 Dropping a Profile

Use the DROP PROFILE command to drop a profile. The syntax is:

DROP PROFILE [IF EXISTS] profile_name [CASCADE|RESTRICT];

Include the IF EXISTS clause to instruct the server to not throw an error if the specified
profile does not exist. The server will issue a notice if the profile does not exist.

Include the optional CASCADE clause to reassign any users that are currently associated
with the profile to the default profile, and then drop the profile. Include the optional
RESTRICT clause to instruct the server to not drop any profile that is associated with a
role. This is the default behavior.

Parameters

profile_name

The name of the profile being dropped.

Examples

The following example drops a profile named acctg_profile:

DROP PROFILE acctg_profile CASCADE;

The command first re-associates any roles associated with the acctg_profile profile
with the default profile, and then drops the acctg_profile profile.

The following example drops a profile named acctg_profile:

DROP PROFILE acctg_profile RESTRICT;

The RESTRICT clause in the command instructs the server to not drop acctg_profile
if there are any roles associated with the profile.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

134

2.4.4 Associating a Profile with an Existing Role

After creating a profile, you can use the ALTER USER… PROFILE or ALTER ROLE…
PROFILE command to associate the profile with a role. The command syntax related to
profile management functionality is:

ALTER USER|ROLE name [[WITH] option[…]

where option can be the following Oracle-compatible clauses:

 PROFILE profile_name

 | ACCOUNT {LOCK|UNLOCK}
 | PASSWORD EXPIRE [AT 'timestamp']

or option can be the following non-compatible clauses:

 | PASSWORD SET AT 'timestamp'
 | LOCK TIME 'timestamp'
 | STORE PRIOR PASSWORD {'password' 'timestamp} [, ...]

For information about the administrative clauses of the ALTER USER or ALTER ROLE
command that are supported by Advanced Server, please see the PostgreSQL core
documentation, available at:

http://www.enterprisedb.com/docs/en/9.4/pg/sql-commands.html

Only a database superuser can use the ALTER USER|ROLE clauses that enforce profile
management. The clauses enforce the following behaviors:

Include the PROFILE clause and a profile_name to associate a pre-defined
profile with a role, or to change which pre-defined profile is associated with a
user.

Include the ACCOUNT clause and the LOCK or UNLOCK keyword to specify that the
user account should be placed in a locked or unlocked state.

Include the LOCK TIME 'timestamp' clause and a date/time value to lock the
role at the specified time, and unlock the role at the time indicated by the
PASSWORD_LOCK_TIME parameter of the profile assigned to this role. If LOCK
TIME is used with the ACCOUNT LOCK clause, the role can only be unlocked by a
database superuser with the ACCOUNT UNLOCK clause.

http://www.enterprisedb.com/docs/en/9.4/pg/sql-commands.html

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

135

Include the PASSWORD EXPIRE clause with the AT 'timestamp' keywords to
specify a date/time when the password associated with the role will expire. If you
omit the AT 'timestamp' keywords, the password will expire immediately.

Include the PASSWORD SET AT 'timestamp' keywords to set the password
modification date to the time specified.

Include the STORE PRIOR PASSWORD {'password' 'timestamp} [, ...]
clause to modify the password history, adding the new password and the time the
password was set.

Each login role may only have one profile. To discover the profile that is currently
associated with a login role, query the profile column of the DBA_USERS view.

Parameters

name

The name of the role with which the specified profile will be associated.

password

The password associated with the role.

profile_name

The name of the profile that will be associated with the role.

timestamp

The date and time at which the clause will be enforced. When specifying a value
for timestamp, enclose the value in single-quotes.

Examples

The following command uses the ALTER USER… PROFILE command to associate a
profile named acctg with a user named john:

ALTER USER john PROFILE acctg_profile;

The following command uses the ALTER ROLE… PROFILE command to associate a
profile named acctg with a user named john:

ALTER ROLE john PROFILE acctg_profile;

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

136

2.4.5 Unlocking a Locked Account

A database superuser can use clauses of the ALTER USER|ROLE… command to lock or
unlock a role. The syntax is:

ALTER USER|ROLE name
 ACCOUNT {LOCK|UNLOCK}
 LOCK TIME 'timestamp'

Include the ACCOUNT LOCK clause to lock a role immediately; when locked, a role‟s
LOGIN functionality is disabled. When you specify the ACCOUNT LOCK clause without
the LOCK TIME clause, the state of the role will not change until a superuser uses the
ACCOUNT UNLOCK clause to unlock the role.

Use the ACCOUNT UNLOCK clause to unlock a role.

Use the LOCK TIME 'timestamp' clause to instruct the server to lock the account at the
time specified by the given timestamp for the length of time specified by the
PASSWORD_LOCK_TIME parameter of the profile associated with this role.

Combine the LOCK TIME 'timestamp' clause and the ACCOUNT LOCK clause to lock
an account at a specified time until the account is unlocked by a superuser invoking the
ACCOUNT UNLOCK clause.

Parameters

name

The name of the role that is being locked or unlocked.

timestamp

The date and time at which the role will be locked. When specifying a value for
timestamp, enclose the value in single-quotes.

Note

This command (available only in Advanced Server) is implemented to support Oracle-
styled profile management.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

137

Examples

The following example uses the ACCOUNT LOCK clause to lock the role named john.
The account will remain locked until the account is unlocked with the ACCOUNT UNLOCK
clause:

ALTER ROLE john ACCOUNT LOCK;

The following example uses the ACCOUNT UNLOCK clause to unlock the role named
john:

ALTER USER john ACCOUNT UNLOCK;

The following example uses the LOCK TIME 'timestamp' clause to lock the role
named john on September 4, 2015:

ALTER ROLE john LOCK TIME „September 4 12:00:00 2015‟;

The role will remain locked for the length of time specified by the
PASSWORD_LOCK_TIME parameter.

The following example combines the LOCK TIME 'timestamp' clause and the
ACCOUNT LOCK clause to lock the role named john on September 4, 2015:

ALTER ROLE john LOCK TIME „September 4 12:00:00 2015‟ ACCOUNT LOCK;

The role will remain locked until a database superuser uses the ACCOUNT UNLOCK
command to unlock the role.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

138

2.4.6 Creating a New Role Associated with a Profile

A database superuser can use clauses of the CREATE USER|ROLE command to assign a
named profile to a role when creating the role, or to specify profile management details
for a role. The command syntax related to profile management functionality is:

CREATE USER|ROLE name [[WITH] option […]]

where option can be the following Oracle-compatible clauses:

 PROFILE profile_name
 | ACCOUNT {LOCK|UNLOCK}
 | PASSWORD EXPIRE [AT 'timestamp']

or option can be the following non-compatible clauses:

 | LOCK TIME 'timestamp'

For information about the administrative clauses of the CREATE USER or CREATE ROLE
command that are supported by Advanced Server, please see the PostgreSQL core
documentation, available at:

http://www.enterprisedb.com/docs/en/9.4/pg/sql-commands.html

CREATE ROLE|USER… PROFILE adds a new role with an associated profile to an
Advanced Server database cluster.

Roles created with the CREATE USER command are (by default) login roles. Roles created with
the CREATE ROLE command are (by default) not login roles. To create a login account with the
CREATE ROLE command, you must include the LOGIN keyword.

Only a database superuser can use the CREATE USER|ROLE clauses that enforce profile
management; these clauses enforce the following behaviors:

Include the PROFILE clause and a profile_name to associate a pre-defined
profile with a role, or to change which pre-defined profile is associated with a
user.

Include the ACCOUNT clause and the LOCK or UNLOCK keyword to specify that the
user account should be placed in a locked or unlocked state.

Include the LOCK TIME 'timestamp' clause and a date/time value to lock the
role at the specified time, and unlock the role at the time indicated by the
PASSWORD_LOCK_TIME parameter of the profile assigned to this role. If LOCK

http://www.enterprisedb.com/docs/en/9.4/pg/sql-commands.html

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

139

TIME is used with the ACCOUNT LOCK clause, the role can only be unlocked by a
database superuser with the ACCOUNT UNLOCK clause.

Include the PASSWORD EXPIRE clause with the optional AT 'timestamp'
keywords to specify a date/time when the password associated with the role will
expire. If you omit the AT 'timestamp' keywords, the password will expire
immediately.

Each login role may only have one profile. To discover the profile that is currently
associated with a login role, query the profile column of the DBA_USERS view.

Parameters

name

The name of the role.

profile_name

The name of the profile associated with the role.

timestamp

The date and time at which the clause will be enforced. When specifying a value
for timestamp, enclose the value in single-quotes.

Examples

The following example uses CREATE USER to create a login role named john who is
associated with the acctg_profile profile:

CREATE USER john PROFILE acctg_profile IDENTIFIED BY “1safepwd”;

john can log in to the server, using the password 1safepwd.

The following example uses CREATE ROLE to create a login role named john who is
associated with the acctg_profile profile:

CREATE ROLE john PROFILE acctg_profile LOGIN PASSWORD “1safepwd”;

john can log in to the server, using the password 1safepwd.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

140

2.4.7 Backing up Profile Management Functions

A profile may include a PASSWORD_VERIFY_FUNCTION clause that refers to a user-
defined function that specifies the behavior enforced by Advanced Server. Profiles are
global objects; they are shared by all of the databases within a cluster. While profiles are
global objects, user-defined functions are database objects.

Invoking pg_dumpall with the –g or –r option will create a script that recreates the
definition of any existing profiles, but that does not recreate the user-defined functions
that are referred to by the PASSWORD_VERIFY_FUNCTION clause. You should use the
pg_dump utility to explicitly dump (and later restore) the database in which those
functions reside.

The script created by pg_dump will contain a command that includes the clause and
function name:

ALTER PROFILE… LIMIT PASSWORD_VERIFY_FUNCTION function_name

to associate the restored function with the profile with which it was previously associated.

If the PASSWORD_VERIFY_FUNCTION clause is set to DEFAULT or NULL, the behavior
will be replicated by the script generated by the pg_dumpall –g or pg_dumpall –r
command.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

141

3 Enhanced SQL Features
Advanced Server includes enhanced SQL functionality that provides additional flexibility
and convenience.

This chapter describes these additions.

3.1 Synonyms

A synonym is an identifier that can be used to reference another database object in a SQL
statement. A synonym is useful in cases where a database object would normally require
full qualification by schema name to be properly referenced in a SQL statement. A
synonym defined for that object simplifies the reference to a single, unqualified name.

Postgres Plus Advanced Server supports synonyms for:

x Tables
x Views
x Sequences
x Procedures
x Functions
x Types
x Other synonyms

Neither the referenced schema or referenced object must exist at the time that you create
the synonym; a synonym may refer to a non-existent object or schema. A synonym will
become invalid if you drop the referenced object or schema. You must explicitly drop a
synonym to remove it.

As with any other schema object, Advanced Server uses the search path to resolve
unqualified synonym names. If you have two synonyms with the same name, an
unqualified reference to a synonym will resolve to the first synonym with the given name
in the search path. If public is in your search path, you can refer to a synonym in that
schema without qualifying that name.

When Advanced Server executes an SQL command, the privileges of the current user are
checked against the synonym‟s underlying database object; if the user does not have the
proper permissions for that object, the SQL command will fail.

Creating a Synonym

Use the CREATE SYNONYM command to create a synonym. The syntax is:

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

142

CREATE [OR REPLACE] [PUBLIC] SYNONYM [schema.]syn_name
 FOR object_schema.object_name;

Parameters:

syn_name

syn_name is the name of the synonym. A synonym name must be unique within
a schema.

schema

schema specifies the name of the schema that the synonym resides in. If you do
not specify a schema name, the synonym is created in the first existing schema in
your search path.

object_name

object_name specifies the name of the object.

object_schema

object_schema specifies the name of the schema that the object resides in.

Include the REPLACE clause to replace an existing synonym definition with a new
synonym definition.

Include the PUBLIC clause to create the synonym in the public schema. The CREATE
PUBLIC SYNONYM command creates a synonym that resides in the public schema:

CREATE [OR REPLACE] PUBLIC SYNONYM syn_name FOR
object_schema.object_name;

This just a shorthand way to write:

CREATE [OR REPLACE] SYNONYM public.syn_name FOR
object_schema.object_name;

The following example creates a synonym named personnel that refers to the
enterprisedb.emp table.

CREATE SYNONYM personnel FOR enterprisedb.emp;

Unless the synonym is schema qualified in the CREATE SYNONYM command, it will be
created in the first existing schema in your search path. You can view your search path
by executing the following command:

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

143

SHOW SEARCH_PATH;

 search_path

 development,accounting
(1 row)

In our example, if a schema named development does not exist, the synonym will be
created in the schema named accounting.

Now, the emp table in the enterprisedb schema can be referenced in any SQL
statement (DDL or DML), by using the synonym, personnel:

INSERT INTO personnel VALUES (8142,'ANDERSON','CLERK',7902,'17-DEC-06',1300,NULL,20);

SELECT * FROM personnel;

 empno | ename | job | mgr | hiredate | sal | comm | deptno
-------+----------+-----------+------+--------------------+---------+---------+--------
 7369 | SMITH | CLERK | 7902 | 17-DEC-80 00:00:00 | 800.00 | | 20
 7499 | ALLEN | SALESMAN | 7698 | 20-FEB-81 00:00:00 | 1600.00 | 300.00 | 30
 7521 | WARD | SALESMAN | 7698 | 22-FEB-81 00:00:00 | 1250.00 | 500.00 | 30
 7566 | JONES | MANAGER | 7839 | 02-APR-81 00:00:00 | 2975.00 | | 20
 7654 | MARTIN | SALESMAN | 7698 | 28-SEP-81 00:00:00 | 1250.00 | 1400.00 | 30
 7698 | BLAKE | MANAGER | 7839 | 01-MAY-81 00:00:00 | 2850.00 | | 30
 7782 | CLARK | MANAGER | 7839 | 09-JUN-81 00:00:00 | 2450.00 | | 10
 7788 | SCOTT | ANALYST | 7566 | 19-APR-87 00:00:00 | 3000.00 | | 20
 7839 | KING | PRESIDENT | | 17-NOV-81 00:00:00 | 5000.00 | | 10
 7844 | TURNER | SALESMAN | 7698 | 08-SEP-81 00:00:00 | 1500.00 | 0.00 | 30
 7876 | ADAMS | CLERK | 7788 | 23-MAY-87 00:00:00 | 1100.00 | | 20
 7900 | JAMES | CLERK | 7698 | 03-DEC-81 00:00:00 | 950.00 | | 30
 7902 | FORD | ANALYST | 7566 | 03-DEC-81 00:00:00 | 3000.00 | | 20
 7934 | MILLER | CLERK | 7782 | 23-JAN-82 00:00:00 | 1300.00 | | 10
 8142 | ANDERSON | CLERK | 7902 | 17-DEC-06 00:00:00 | 1300.00 | | 20
(15 rows)

Deleting a Synonym

To delete a synonym, use the command, DROP SYNONYM. The syntax is:

DROP [PUBLIC] SYNONYM [schema.] syn_name

Parameters:

syn_name

syn_name is the name of the synonym. A synonym name must be unique within
a schema.

schema

schema specifies the name of the schema in which the synonym resides.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

144

Like any other object that can be schema-qualified, you may have two synonyms with the
same name in your search path. To disambiguate the name of the synonym that you are
dropping, include a schema name. Unless a synonym is schema qualified in the DROP
SYNONYM command, Advanced Server deletes the first instance of the synonym it finds in
your search path.

You can optionally include the PUBLIC clause to drop a synonym that resides in the
public schema. The DROP PUBLIC SYNONYM command drops a synonym that resides
in the public schema:

DROP PUBLIC SYNONYM syn_name;

The following example drops the synonym, personnel:

DROP SYNONYM personnel;

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

145

3.2 Hierarchical Queries

A hierarchical query is a type of query that returns the rows of the result set in a
hierarchical order based upon data forming a parent-child relationship. A hierarchy is
typically represented by an inverted tree structure. The tree is comprised of
interconnected nodes. Each node may be connected to none, one, or multiple child nodes.
Each node is connected to one parent node except for the top node which has no parent.
This node is the root node. Each tree has exactly one root node. Nodes that don‟t have
any children are called leaf nodes. A tree always has at least one leaf node - e.g., the
trivial case where the tree is comprised of a single node. In this case it is both the root and
the leaf.

In a hierarchical query the rows of the result set represent the nodes of one or more trees.

Note: It is possible that a single, given row may appear in more than one tree and thus
appear more than once in the result set.

The hierarchical relationship in a query is described by the CONNECT BY clause which
forms the basis of the order in which rows are returned in the result set. The context of
where the CONNECT BY clause and its associated optional clauses appear in the SELECT
command is shown below.

SELECT select_list FROM table_expression [WHERE ...]
 [START WITH start_expression]
 CONNECT BY { PRIOR parent_expr = child_expr |
 child_expr = PRIOR parent_expr }
 [ORDER SIBLINGS BY column1 [ASC | DESC]
 [, column2 [ASC | DESC]] ...
 [GROUP BY ...]
 [HAVING ...]
 [other ...]

select_list is one or more expressions that comprise the fields of the result set.
table_expression is one or more tables or views from which the rows of the result set
originate. other is any additional legal SELECT command clauses. The clauses pertinent
to hierarchical queries, START WITH, CONNECT BY, and ORDER SIBLINGS BY are
described in the following sections.

Note: At this time, Advanced Server does not support the use of AND (or other operators)
in the CONNECT BY clause.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

146

3.2.1 Defining the Parent/Child Relationship

For any given row, its parent and its children are determined by the CONNECT BY clause.
The CONNECT BY clause must consist of two expressions compared with the equals (=)
operator. In addition, one of these two expressions must be preceded by the keyword,
PRIOR.

For any given row, to determine its children:

x Evaluate parent_expr on the given row
x Evaluate child_expr on any other row resulting from the evaluation of

table_expression
x If parent_expr = child_expr, then this row is a child node of the given

parent row
x Repeat the process for all remaining rows in table_expression. All rows that

satisfy the equation in step 3 are the children nodes of the given parent row.

Note: The evaluation process to determine if a row is a child node occurs on every row
returned by table_expression before the WHERE clause is applied to
table_expression.

By iteratively repeating this process treating each child node found in the prior steps as a
parent, an inverted tree of nodes is constructed. The process is complete when the final
set of child nodes has no children of their own - these are the leaf nodes.

A SELECT command that includes a CONNECT BY clause typically includes the START
WITH clause. The START WITH clause determines the rows that are to be the root nodes -
i.e., the rows that are the initial parent nodes upon which the algorithm described
previously is to be applied. This is further explained in the following section.

3.2.2 Selecting the Root Nodes

The START WITH clause is used to determine the row(s) selected by
table_expression that are to be used as the root nodes. All rows selected by
table_expression where start_expression evaluates to true become a root node
of a tree. Thus, the number of potential trees in the result set is equal to the number of
root nodes. As a consequence, if the START WITH clause is omitted, then every row
returned by table_expression is a root of its own tree.

3.2.3 Organization Tree in the Sample Application

Consider the emp table of the sample application. The rows of the emp table form a
hierarchy based upon the mgr column which contains the employee number of the
employee‟s manager. Each employee has at most, one manager. KING is the president of

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

147

the company so he has no manager, therefore KING‟s mgr column is null. Also, it is
possible for an employee to act as a manager for more than one employee. This
relationship forms a typical, tree-structured, hierarchical organization chart as illustrated
below.

Figure 1 Employee Organization Hierarchy

To form a hierarchical query based upon this relationship, the SELECT command includes
the clause, CONNECT BY PRIOR empno = mgr. For example, given the company
president, KING, with employee number 7839, any employee whose mgr column is 7839
reports directly to KING which is true for JONES, BLAKE, and CLARK (these are the child
nodes of KING). Similarly, for employee, JONES, any other employee with mgr column
equal to 7566 is a child node of JONES - these are SCOTT and FORD in this example.

The top of the organization chart is KING so there is one root node in this tree. The
START WITH mgr IS NULL clause selects only KING as the initial root node.

The complete SELECT command is shown below.

SELECT ename, empno, mgr
FROM emp
START WITH mgr IS NULL
CONNECT BY PRIOR empno = mgr;

The rows in the query output traverse each branch from the root to leaf moving in a top-
to-bottom, left-to-right order. Below is the output from this query.

 ename | empno | mgr
--------+-------+------
 KING | 7839 |
 JONES | 7566 | 7839

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

148

 SCOTT | 7788 | 7566
 ADAMS | 7876 | 7788
 FORD | 7902 | 7566
 SMITH | 7369 | 7902
 BLAKE | 7698 | 7839
 ALLEN | 7499 | 7698
 WARD | 7521 | 7698
 MARTIN | 7654 | 7698
 TURNER | 7844 | 7698
 JAMES | 7900 | 7698
 CLARK | 7782 | 7839
 MILLER | 7934 | 7782
(14 rows)

3.2.4 Node Level

LEVEL is a pseudo-column that can be used wherever a column can appear in the SELECT
command. For each row in the result set, LEVEL returns a non-zero integer value
designating the depth in the hierarchy of the node represented by this row. The LEVEL for
root nodes is 1. The LEVEL for direct children of root nodes is 2, and so on.

The following query is a modification of the previous query with the addition of the
LEVEL pseudo-column. In addition, using the LEVEL value, the employee names are
indented to further emphasize the depth in the hierarchy of each row.

SELECT LEVEL, LPAD (' ', 2 * (LEVEL - 1)) || ename "employee", empno, mgr
FROM emp START WITH mgr IS NULL
CONNECT BY PRIOR empno = mgr;

The output from this query follows.

 level | employee | empno | mgr
-------+-------------+-------+------
 1 | KING | 7839 |
 2 | JONES | 7566 | 7839
 3 | SCOTT | 7788 | 7566
 4 | ADAMS | 7876 | 7788
 3 | FORD | 7902 | 7566
 4 | SMITH | 7369 | 7902
 2 | BLAKE | 7698 | 7839
 3 | ALLEN | 7499 | 7698
 3 | WARD | 7521 | 7698
 3 | MARTIN | 7654 | 7698
 3 | TURNER | 7844 | 7698
 3 | JAMES | 7900 | 7698
 2 | CLARK | 7782 | 7839
 3 | MILLER | 7934 | 7782
(14 rows)

Nodes that share a common parent and are at the same level are called siblings. For
example in the above output, employees ALLEN, WARD, MARTIN, TURNER, and JAMES are
siblings since they are all at level three with parent, BLAKE. JONES, BLAKE, and CLARK
are siblings since they are at level two and KING is their common parent.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

149

3.2.5 Ordering the Siblings

The result set can be ordered so the siblings appear in ascending or descending order by
selected column value(s) using the ORDER SIBLINGS BY clause. This is a special case
of the ORDER BY clause that can be used only with hierarchical queries.

The previous query is further modified with the addition of ORDER SIBLINGS BY
ename ASC.

SELECT LEVEL, LPAD (' ', 2 * (LEVEL - 1)) || ename "employee", empno, mgr
FROM emp START WITH mgr IS NULL
CONNECT BY PRIOR empno = mgr
ORDER SIBLINGS BY ename ASC;

The output from the prior query is now modified so the siblings appear in ascending
order by name. Siblings BLAKE, CLARK, and JONES are now alphabetically arranged
under KING. Siblings ALLEN, JAMES, MARTIN, TURNER, and WARD are alphabetically
arranged under BLAKE, and so on.

 level | employee | empno | mgr
-------+-------------+-------+------
 1 | KING | 7839 |
 2 | BLAKE | 7698 | 7839
 3 | ALLEN | 7499 | 7698
 3 | JAMES | 7900 | 7698
 3 | MARTIN | 7654 | 7698
 3 | TURNER | 7844 | 7698
 3 | WARD | 7521 | 7698
 2 | CLARK | 7782 | 7839
 3 | MILLER | 7934 | 7782
 2 | JONES | 7566 | 7839
 3 | FORD | 7902 | 7566
 4 | SMITH | 7369 | 7902
 3 | SCOTT | 7788 | 7566
 4 | ADAMS | 7876 | 7788
(14 rows)

This final example adds the WHERE clause and starts with three root nodes. After the node
tree is constructed, the WHERE clause filters out rows in the tree to form the result set.

SELECT LEVEL, LPAD (' ', 2 * (LEVEL - 1)) || ename "employee", empno, mgr
FROM emp WHERE mgr IN (7839, 7782, 7902, 7788)
START WITH ename IN ('BLAKE','CLARK','JONES')
CONNECT BY PRIOR empno = mgr
ORDER SIBLINGS BY ename ASC;

The output from the query shows three root nodes (level one) - BLAKE, CLARK, and
JONES. In addition, rows that do not satisfy the WHERE clause have been eliminated from
the output.

 level | employee | empno | mgr
-------+-----------+-------+------
 1 | BLAKE | 7698 | 7839

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

150

 1 | CLARK | 7782 | 7839
 2 | MILLER | 7934 | 7782
 1 | JONES | 7566 | 7839
 3 | SMITH | 7369 | 7902
 3 | ADAMS | 7876 | 7788
(6 rows)

3.2.6 Retrieving the Root Node with CONNECT_BY_ROOT

CONNECT_BY_ROOT is a unary operator that can be used to qualify a column in order to
return the column‟s value of the row considered to be the root node in relation to the
current row.

Note: A unary operator operates on a single operand, which in the case of
CONNECT_BY_ROOT, is the column name following the CONNECT_BY_ROOT keyword.

In the context of the SELECT list, the CONNECT_BY_ROOT operator is shown by the
following.

SELECT [... ,] CONNECT_BY_ROOT column [, ...]
 FROM table_expression ...

The following are some points to note about the CONNECT_BY_ROOT operator.

x The CONNECT_BY_ROOT operator can be used in the SELECT list, the WHERE
clause, the GROUP BY clause, the HAVING clause, the ORDER BY clause, and the
ORDER SIBLINGS BY clause as long as the SELECT command is for a
hierarchical query.

x The CONNECT_BY_ROOT operator cannot be used in the CONNECT BY clause or
the START WITH clause of the hierarchical query.

x It is possible to apply CONNECT_BY_ROOT to an expression involving a column,
but to do so, the expression must be enclosed within parentheses.

The following query shows the use of the CONNECT_BY_ROOT operator to return the
employee number and employee name of the root node for each employee listed in the
result set based on trees starting with employees BLAKE, CLARK, and JONES.

SELECT LEVEL, LPAD (' ', 2 * (LEVEL - 1)) || ename "employee", empno, mgr,
CONNECT_BY_ROOT empno "mgr empno",
CONNECT_BY_ROOT ename "mgr ename"
FROM emp
START WITH ename IN ('BLAKE','CLARK','JONES')
CONNECT BY PRIOR empno = mgr
ORDER SIBLINGS BY ename ASC;

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

151

Note that the output from the query shows that all of the root nodes in columns mgr
empno and mgr ename are one of the employees, BLAKE, CLARK, or JONES, listed in the
START WITH clause.

 level | employee | empno | mgr | mgr empno | mgr ename
-------+-----------+-------+------+-----------+-----------
 1 | BLAKE | 7698 | 7839 | 7698 | BLAKE
 2 | ALLEN | 7499 | 7698 | 7698 | BLAKE
 2 | JAMES | 7900 | 7698 | 7698 | BLAKE
 2 | MARTIN | 7654 | 7698 | 7698 | BLAKE
 2 | TURNER | 7844 | 7698 | 7698 | BLAKE
 2 | WARD | 7521 | 7698 | 7698 | BLAKE
 1 | CLARK | 7782 | 7839 | 7782 | CLARK
 2 | MILLER | 7934 | 7782 | 7782 | CLARK
 1 | JONES | 7566 | 7839 | 7566 | JONES
 2 | FORD | 7902 | 7566 | 7566 | JONES
 3 | SMITH | 7369 | 7902 | 7566 | JONES
 2 | SCOTT | 7788 | 7566 | 7566 | JONES
 3 | ADAMS | 7876 | 7788 | 7566 | JONES
(13 rows)

The following is a similar query, but producing only one tree starting with the single, top-
level, employee where the mgr column is null.

SELECT LEVEL, LPAD (' ', 2 * (LEVEL - 1)) || ename "employee", empno, mgr,
CONNECT_BY_ROOT empno "mgr empno",
CONNECT_BY_ROOT ename "mgr ename"
FROM emp START WITH mgr IS NULL
CONNECT BY PRIOR empno = mgr
ORDER SIBLINGS BY ename ASC;

In the following output, all of the root nodes in columns mgr empno and mgr ename
indicate KING as the root for this particular query.

 level | employee | empno | mgr | mgr empno | mgr ename
-------+-------------+-------+------+-----------+-----------
 1 | KING | 7839 | | 7839 | KING
 2 | BLAKE | 7698 | 7839 | 7839 | KING
 3 | ALLEN | 7499 | 7698 | 7839 | KING
 3 | JAMES | 7900 | 7698 | 7839 | KING
 3 | MARTIN | 7654 | 7698 | 7839 | KING
 3 | TURNER | 7844 | 7698 | 7839 | KING
 3 | WARD | 7521 | 7698 | 7839 | KING
 2 | CLARK | 7782 | 7839 | 7839 | KING
 3 | MILLER | 7934 | 7782 | 7839 | KING
 2 | JONES | 7566 | 7839 | 7839 | KING
 3 | FORD | 7902 | 7566 | 7839 | KING
 4 | SMITH | 7369 | 7902 | 7839 | KING
 3 | SCOTT | 7788 | 7566 | 7839 | KING
 4 | ADAMS | 7876 | 7788 | 7839 | KING
(14 rows)

By contrast, the following example omits the START WITH clause thereby resulting in
fourteen trees.

SELECT LEVEL, LPAD (' ', 2 * (LEVEL - 1)) || ename "employee", empno, mgr,

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

152

CONNECT_BY_ROOT empno "mgr empno",
CONNECT_BY_ROOT ename "mgr ename"
FROM emp
CONNECT BY PRIOR empno = mgr
ORDER SIBLINGS BY ename ASC;

The following is the output from the query. Each node appears at least once as a root
node under the mgr empno and mgr ename columns since even the leaf nodes form the
top of their own trees.

 level | employee | empno | mgr | mgr empno | mgr ename
-------+-------------+-------+------+-----------+-----------
 1 | ADAMS | 7876 | 7788 | 7876 | ADAMS
 1 | ALLEN | 7499 | 7698 | 7499 | ALLEN
 1 | BLAKE | 7698 | 7839 | 7698 | BLAKE
 2 | ALLEN | 7499 | 7698 | 7698 | BLAKE
 2 | JAMES | 7900 | 7698 | 7698 | BLAKE
 2 | MARTIN | 7654 | 7698 | 7698 | BLAKE
 2 | TURNER | 7844 | 7698 | 7698 | BLAKE
 2 | WARD | 7521 | 7698 | 7698 | BLAKE
 1 | CLARK | 7782 | 7839 | 7782 | CLARK
 2 | MILLER | 7934 | 7782 | 7782 | CLARK
 1 | FORD | 7902 | 7566 | 7902 | FORD
 2 | SMITH | 7369 | 7902 | 7902 | FORD
 1 | JAMES | 7900 | 7698 | 7900 | JAMES
 1 | JONES | 7566 | 7839 | 7566 | JONES
 2 | FORD | 7902 | 7566 | 7566 | JONES
 3 | SMITH | 7369 | 7902 | 7566 | JONES
 2 | SCOTT | 7788 | 7566 | 7566 | JONES
 3 | ADAMS | 7876 | 7788 | 7566 | JONES
 1 | KING | 7839 | | 7839 | KING
 2 | BLAKE | 7698 | 7839 | 7839 | KING
 3 | ALLEN | 7499 | 7698 | 7839 | KING
 3 | JAMES | 7900 | 7698 | 7839 | KING
 3 | MARTIN | 7654 | 7698 | 7839 | KING
 3 | TURNER | 7844 | 7698 | 7839 | KING
 3 | WARD | 7521 | 7698 | 7839 | KING
 2 | CLARK | 7782 | 7839 | 7839 | KING
 3 | MILLER | 7934 | 7782 | 7839 | KING
 2 | JONES | 7566 | 7839 | 7839 | KING
 3 | FORD | 7902 | 7566 | 7839 | KING
 4 | SMITH | 7369 | 7902 | 7839 | KING
 3 | SCOTT | 7788 | 7566 | 7839 | KING
 4 | ADAMS | 7876 | 7788 | 7839 | KING
 1 | MARTIN | 7654 | 7698 | 7654 | MARTIN
 1 | MILLER | 7934 | 7782 | 7934 | MILLER
 1 | SCOTT | 7788 | 7566 | 7788 | SCOTT
 2 | ADAMS | 7876 | 7788 | 7788 | SCOTT
 1 | SMITH | 7369 | 7902 | 7369 | SMITH
 1 | TURNER | 7844 | 7698 | 7844 | TURNER
 1 | WARD | 7521 | 7698 | 7521 | WARD
(39 rows)

The following illustrates the unary operator effect of CONNECT_BY_ROOT. As shown in
this example, when applied to an expression that is not enclosed in parentheses, the
CONNECT_BY_ROOT operator affects only the term, ename, immediately following it.
The subsequent concatenation of || ' manages ' || ename is not part of the
CONNECT_BY_ROOT operation, hence the second occurrence of ename results in the

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

153

value of the currently processed row while the first occurrence of ename results in the
value from the root node.

SELECT LEVEL, LPAD (' ', 2 * (LEVEL - 1)) || ename "employee", empno, mgr,
CONNECT_BY_ROOT ename || ' manages ' || ename "top mgr/employee"
FROM emp
START WITH ename IN ('BLAKE','CLARK','JONES')
CONNECT BY PRIOR empno = mgr
ORDER SIBLINGS BY ename ASC;

The following is the output from the query. Note the values produced under the top
mgr/employee column.

 level | employee | empno | mgr | top mgr/employee
-------+-----------+-------+------+----------------------
 1 | BLAKE | 7698 | 7839 | BLAKE manages BLAKE
 2 | ALLEN | 7499 | 7698 | BLAKE manages ALLEN
 2 | JAMES | 7900 | 7698 | BLAKE manages JAMES
 2 | MARTIN | 7654 | 7698 | BLAKE manages MARTIN
 2 | TURNER | 7844 | 7698 | BLAKE manages TURNER
 2 | WARD | 7521 | 7698 | BLAKE manages WARD
 1 | CLARK | 7782 | 7839 | CLARK manages CLARK
 2 | MILLER | 7934 | 7782 | CLARK manages MILLER
 1 | JONES | 7566 | 7839 | JONES manages JONES
 2 | FORD | 7902 | 7566 | JONES manages FORD
 3 | SMITH | 7369 | 7902 | JONES manages SMITH
 2 | SCOTT | 7788 | 7566 | JONES manages SCOTT
 3 | ADAMS | 7876 | 7788 | JONES manages ADAMS
(13 rows)

The following example uses the CONNECT_BY_ROOT operator on an expression enclosed
in parentheses.

SELECT LEVEL, LPAD (' ', 2 * (LEVEL - 1)) || ename "employee", empno, mgr,
CONNECT_BY_ROOT ('Manager ' || ename || ' is emp # ' || empno)
"top mgr/empno"
FROM emp
START WITH ename IN ('BLAKE','CLARK','JONES')
CONNECT BY PRIOR empno = mgr
ORDER SIBLINGS BY ename ASC;

The following is the output of the query. Note that the values of both ename and empno
are affected by the CONNECT_BY_ROOT operator and as a result, return the values from
the root node as shown under the top mgr/empno column.

 level | employee | empno | mgr | top mgr/empno
-------+-----------+-------+------+-----------------------------
 1 | BLAKE | 7698 | 7839 | Manager BLAKE is emp # 7698
 2 | ALLEN | 7499 | 7698 | Manager BLAKE is emp # 7698
 2 | JAMES | 7900 | 7698 | Manager BLAKE is emp # 7698
 2 | MARTIN | 7654 | 7698 | Manager BLAKE is emp # 7698
 2 | TURNER | 7844 | 7698 | Manager BLAKE is emp # 7698
 2 | WARD | 7521 | 7698 | Manager BLAKE is emp # 7698
 1 | CLARK | 7782 | 7839 | Manager CLARK is emp # 7782
 2 | MILLER | 7934 | 7782 | Manager CLARK is emp # 7782
 1 | JONES | 7566 | 7839 | Manager JONES is emp # 7566

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

154

 2 | FORD | 7902 | 7566 | Manager JONES is emp # 7566
 3 | SMITH | 7369 | 7902 | Manager JONES is emp # 7566
 2 | SCOTT | 7788 | 7566 | Manager JONES is emp # 7566
 3 | ADAMS | 7876 | 7788 | Manager JONES is emp # 7566
(13 rows)

3.2.7 Retrieving a Path with SYS_CONNECT_BY_PATH

SYS_CONNECT_BY_PATH is a function that works within a hierarchical query to retrieve
the column values of a specified column that occur between the current node and the root
node. The signature of the function is:

SYS_CONNECT_BY_PATH (column, delimiter)

The function takes two arguments:

column is the name of a column that resides within a table specified in the
hierarchical query that is calling the function.

delimiter is the varchar value that separates each entry in the specified
column.

The following example returns a list of employee names, and their managers; if the
manager has a manager, that name is appended to the result:

edb=# SELECT level, ename , SYS_CONNECT_BY_PATH(ename, '/') managers
 FROM emp
 CONNECT BY PRIOR empno = mgr
 START WITH mgr IS NULL
 ORDER BY level, ename, managers;

 level | ename | managers
-------+--------+-------------------------
 1 | KING | /KING
 2 | BLAKE | /KING/BLAKE
 2 | CLARK | /KING/CLARK
 2 | JONES | /KING/JONES
 3 | ALLEN | /KING/BLAKE/ALLEN
 3 | FORD | /KING/JONES/FORD
 3 | JAMES | /KING/BLAKE/JAMES
 3 | MARTIN | /KING/BLAKE/MARTIN
 3 | MILLER | /KING/CLARK/MILLER
 3 | SCOTT | /KING/JONES/SCOTT
 3 | TURNER | /KING/BLAKE/TURNER
 3 | WARD | /KING/BLAKE/WARD
 4 | ADAMS | /KING/JONES/SCOTT/ADAMS
 4 | SMITH | /KING/JONES/FORD/SMITH
(14 rows)

Within the result set:

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

155

x The level column displays the number of levels that the query returned.
x The ename column displays the employee name.
x The managers column contains the hierarchical list of managers.

The Advanced Server implementation of SYS_CONNECT_BY_PATH does not support use
of:

x SYS_CONNECT_BY_PATH inside CONNECT_BY_PATH
x SYS_CONNECT_BY_PATH inside SYS_CONNECT_BY_PATH

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

156

3.3 Extended Functions and Operators

This section describes the extended functions and operators provided in Advanced
Server.

3.3.1 Logical Operators

The usual logical operators are available: AND, OR, NOT

SQL uses a three-valued Boolean logic where the null value represents "unknown".
Observe the following truth tables:

Table 3-3-1 AND/OR Truth Table

a b a AND b a OR b
True True True True
True False False True
True Null Null True
False False False False
False Null False Null
Null Null Null Null

Table 3-3-2 NOT Truth Table

a NOT a
True False
False True
Null Null

The operators AND and OR are commutative, that is, you can switch the left and right
operand without affecting the result.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

157

3.3.2 Comparison Operators

The usual comparison operators are shown in the following table.

Table 3-3-3 Comparison Operators

Operator Description
< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to
= Equal
<> Not equal
!= Not equal

Comparison operators are available for all data types where this makes sense. All
comparison operators are binary operators that return values of type BOOLEAN;
expressions like 1 < 2 < 3 are not valid (because there is no < operator to compare a
Boolean value with 3).

In addition to the comparison operators, the special BETWEEN construct is available.

a BETWEEN x AND y

is equivalent to

a >= x AND a <= y

Similarly,

a NOT BETWEEN x AND y

is equivalent to

a < x OR a > y

There is no difference between the two respective forms apart from the CPU cycles
required to rewrite the first one into the second one internally.

To check whether a value is or is not null, use the constructs

expression IS NULL
expression IS NOT NULL

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

158

Do not write expression = NULL because NULL is not "equal to" NULL. (The null
value represents an unknown value, and it is not known whether two unknown values are
equal.) This behavior conforms to the SQL standard.

Some applications may expect that expression = NULL returns true if expression
evaluates to the null value. It is highly recommended that these applications be modified
to comply with the SQL standard.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

159

3.3.3 Mathematical Functions and Operators

Mathematical operators are provided for many Postgres Plus Advanced Server types. For
types without common mathematical conventions for all possible permutations (e.g.,
date/time types) the actual behavior is described in subsequent sections.

The following table shows the available mathematical operators.

Table 3-3-4 Mathematical Operators

Operator Description Example Result
+ Addition 2 + 3 5

- Subtraction 2 – 3 -1

* Multiplication 2 * 3 6

/ Division (integer division truncates results) 4 / 2 2

** Exponentiation Operator 2 ** 3 8

The following table shows the available mathematical functions. Many of these functions
are provided in multiple forms with different argument types. Except where noted, any
given form of a function returns the same data type as its argument. The functions
working with DOUBLE PRECISION data are mostly implemented on top of the host
system‟s C library; accuracy and behavior in boundary cases may therefore vary
depending on the host system.

Table 3-3-5 Mathematical Functions

Function Return Type Description Example Result
ABS(x) Same as x Absolute value ABS(-17.4) 17.4

CEIL(DOUBLE PRECISION
or NUMBER) Same as input Smallest integer not

less than argument CEIL(-42.8) -42

EXP(DOUBLE PRECISION
or NUMBER) Same as input Exponential EXP(1.0) 2.71828182845904

52

FLOOR(DOUBLE PRECISION
or NUMBER) Same as input Largest integer not

greater than argument
FLOOR(-42.8) 43

LN(DOUBLE PRECISION or
NUMBER) Same as input Natural logarithm LN(2.0) 0.69314718055994

53
LOG(b NUMBER, x
NUMBER) NUMBER Logarithm to base b LOG(2.0, 64.0) 6.00000000000000

00

MOD(y, x) Same as
argument types Remainder of y/x MOD(9, 4) 1

NVL(x, y)

Same as
argument types;
where both
arguments are of
the same data
type

If x is null, then NVL
returns y

NVL(9, 0) 9

POWER(a DOUBLE
PRECISION, b DOUBLE
PRECISION)

DOUBLE
PRECISION

a raised to the power
of b

POWER(9.0, 3.0) 729.000000000000
0000

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

160

Function Return Type Description Example Result
POWER(a NUMBER, b
NUMBER) NUMBER a raised to the power

of b
POWER(9.0, 3.0) 729.000000000000

0000

ROUND(DOUBLE PRECISION
or NUMBER) Same as input Round to nearest

integer ROUND(42.4) 42

ROUND(v NUMBER, s
INTEGER) NUMBER Round to s decimal

places
ROUND(42.4382, 2) 42.44

SIGN(DOUBLE PRECISION
or NUMBER) Same as input Sign of the argument

(-1, 0, +1)
SIGN(-8.4) -1

SQRT(DOUBLE PRECISION
or NUMBER) Same as input Square root SQRT(2.0) 1.41421356237309

5
TRUNC(DOUBLE PRECISION
or NUMBER) Same as input Truncate toward zero TRUNC(42.8) 42

TRUNC(v NUMBER, s
INTEGER) NUMBER Truncate to s decimal

places TRUNC(42.4382, 2) 42.43

WIDTH_BUCKET(op
NUMBER, b1 NUMBER, b2
NUMBER, count INTEGER)

INTEGER

Return the bucket to
which op would be
assigned in an
equidepth histogram
with count buckets,
in the range b1 to b2

WIDTH_BUCKET(5.35,
0.024, 10.06, 5) 3

The following table shows the available trigonometric functions. All trigonometric
functions take arguments and return values of type DOUBLE PRECISION.

Table 3-3-6 Trigonometric Functions

Function Description
ACOS(x) Inverse cosine
ASIN(x) Inverse sine
ATAN(x) Inverse tangent
ATAN2(x, y) Inverse tangent of x/y
COS(x) Cosine
SIN(x) Sine
TAN(x) Tangent

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

161

3.3.4 String Functions and Operators

This section describes functions and operators for examining and manipulating string
values. Strings in this context include values of the types CHAR, VARCHAR2, and CLOB.
Unless otherwise noted, all of the functions listed below work on all of these types, but be
wary of potential effects of automatic padding when using the CHAR type. Generally, the
functions described here also work on data of non-string types by converting that data to
a string representation first.

Table 3-3-7 SQL String Functions and Operators

Function Return
Type Description Example Result

string || string CLOB String concatenation 'Enterprise' ||
'DB' EnterpriseDB

CONCAT(string,
string) CLOB String concatenation 'a' || 'b' ab

HEXTORAW(varchar2) RAW Converts a VARCHAR2 value
to a RAW value

HEXTORAW('303132') '012'

RAWTOHEX(raw) VARCHAR2 Converts a RAW value to a
HEXADECIMAL value

RAWTOHEX('012') '303132'

INSTR(string, set, [
start [, occurrence]
])

INTEGER

Finds the location of a set of
characters in a string, starting
at position start in the
string, string, and looking
for the first, second, third and
so on occurrences of the set.
Returns 0 if the set is not
found.

INSTR('PETER PIPER
PICKED a PECK of
PICKLED
PEPPERS','PI',1,3)

30

INSTRB(string, set) INTEGER
Returns the position of the
set within the string.
Returns 0 if set is not found.

INSTRB('PETER PIPER
PICKED a PECK of
PICKLED PEPPERS',
'PICK')

13

INSTRB(string, set,
start) INTEGER

Returns the position of the
set within the string,
beginning at start. Returns
0 if set is not found.

INSTRB('PETER PIPER
PICKED a PECK of
PICKLED
PEPPERS','PICK',
14)

30

INSTRB(string, set,
start, occurrence) INTEGER

Returns the position of the
specified occurrence of set
within the string, beginning
at start. Returns 0 if set is
not found.

INSTRB('PETER PIPER
PICKED a PECK of
PICKLED
PEPPERS','PICK', 1,
2)

30

LOWER(string) CLOB Convert string to lower case LOWER('TOM') tom

SUBSTR(string, start
[, count]) CLOB

Extract substring starting from
start and going for count
characters. If count is not
specified, the string is clipped
from the start till the end.

SUBSTR('This is a
test',6,2) is

SUBSTRB(string, start
[, count]) CLOB Same as SUBSTR except

SUBSTRB('abc',3)
(assuming a double-byte c

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

162

Function Return
Type Description Example Result

start and count are in
number of bytes.

character set)

SUBSTR2(string, start
[, count]) CLOB Alias for SUBSTR. SUBSTR2('This is a

test',6,2) is

SUBSTR2(string, start
[, count]) CLOB Alias for SUBSTRB.

SUBSTR2('abc',3)
(assuming a double-byte
character set)

c

SUBSTR4(string, start
[, count]) CLOB Alias for SUBSTR. SUBSTR4('This is a

test',6,2) is

SUBSTR4(string, start
[, count]) CLOB Alias for SUBSTRB.

SUBSTR4('abc',3)
(assuming a double-byte
character set)

c

SUBSTRC(string, start
[, count]) CLOB Alias for SUBSTR. SUBSTRC('This is a

test',6,2) is

SUBSTRC(string, start
[, count]) CLOB Alias for SUBSTRB.

SUBSTRC('abc',3)
(assuming a double-byte
character set)

c

TRIM([LEADING |
TRAILING | BOTH] [
characters] FROM
string)

CLOB

Remove the longest string
containing only the characters
(a space by default) from the
start/end/both ends of the
string.

TRIM(BOTH 'x' FROM
'xTomxx') Tom

LTRIM(string [, set]) CLOB

Removes all the characters
specified in set from the left
of a given string. If set is
not specified, a blank space is
used as default.

LTRIM('abcdefghi',
'abc') defghi

RTRIM(string [, set]) CLOB

Removes all the characters
specified in set from the right
of a given string. If set is
not specified, a blank space is
used as default.

RTRIM('abcdefghi',
'ghi') abcdef

UPPER(string) CLOB Convert string to upper case UPPER('tom') TOM

Additional string manipulation functions are available and are listed in the following
table. Some of them are used internally to implement the SQL-standard string functions
listed in Table 3-3-7.

Table 3-3-8 Other String Functions

Function Return Type Description Example Result

ASCII(string) INTEGER ASCII code of the first byte
of the argument

ASCII('x') 120

CHR(INTEGER) CLOB Character with the given
ASCII code

CHR(65) A

DECODE(expr, expr1a,
expr1b [, expr2a,
expr2b]... [, default
])

Same as
argument
types of
expr1b,
expr2b,...,
default

Finds first match of expr
with expr1a, expr2a, etc.
When match found, returns
corresponding parameter
pair, expr1b, expr2b, etc.
If no match found, returns

DECODE(3, 1,'One',
2,'Two', 3,'Three',
'Not found')

Three

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

163

Function Return Type Description Example Result
default. If no match found
and default not specified,
returns null.

INITCAP(string) CLOB

Convert the first letter of
each word to uppercase and
the rest to lowercase. Words
are sequences of
alphanumeric characters
separated by non-
alphanumeric characters.

INITCAP('hi THOMAS') Hi Thomas

LENGTH INTEGER Returns the number of
characters in a string value.

LENGTH('Côte d''Azur') 11

LENGTHC

INTEGER This function is identical in
functionality to LENGTH; the
function name is supported
for compatibility.

LENGTHC('Côte d''Azur') 11

LENGTH2

INTEGER This function is identical in
functionality to LENGTH; the
function name is supported
for compatibility.

LENGTH2('Côte d''Azur') 11

LENGTH4

INTEGER This function is identical in
functionality to LENGTH; the
function name is supported
for compatibility.

LENGTH4('Côte d''Azur') 11

LENGTHB
INTEGER Returns the number of bytes

required to hold the given
value.

LENGTHB('Côte d''Azur') 12

LPAD(string, length
INTEGER [, fill]) CLOB

Fill up string to size,
length by prepending the
characters, fill (a space by
default). If string is
already longer than length
then it is truncated (on the
right).

LPAD('hi', 5, 'xy') xyxhi

REPLACE(string,
search_string [,
replace_string]

CLOB

Replaces one value in a
string with another. If you
do not specify a value for
replace_string, the
search_string value
when found, is removed.

REPLACE('GEORGE',
'GE', 'EG') EGOREG

RPAD(string, length
INTEGER [, fill]) CLOB

Fill up string to size,
length by appending the
characters, fill (a space by
default). If string is
already longer than length
then it is truncated.

RPAD('hi', 5, 'xy') hixyx

TRANSLATE(string, from,
to) CLOB

Any character in string
that matches a character in
the from set is replaced by
the corresponding character
in the to set.

TRANSLATE('12345',
'14', 'ax') a23x5

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

164

3.3.5 Pattern Matching String Functions

Advanced Server offers support for the REGEXP_COUNT, REGEXP_INSTR and
REGEXP_SUBSTR functions. These functions search a string for a pattern specified by a
regular expression, and return information about occurrences of the pattern within the
string. The pattern should be a POSIX-style regular expression; for more information
about forming a POSIX-style regular expression, please refer to the core documentation
at:

http://www.enterprisedb.com/docs/en/9.4/pg/functions-matching.html

3.3.5.1 REGEXP_COUNT

REGEXP_COUNT searches a string for a regular expression, and returns a count of the
times that the regular expression occurs. The signature is:

INTEGER REGEXP_COUNT
(
 srcstr TEXT,
 pattern TEXT,
 position DEFAULT 1
 modifier DEFAULT NULL
)

Parameters

srcstr

srcstr specifies the string to search.

pattern

pattern specifies the regular expression for which REGEXP_COUNT will search.

position

position is an integer value that indicates the position in the source string at
which REGEXP_COUNT will begin searching. The default value is 1.

modifier

http://www.enterprisedb.com/docs/en/9.4/pg/functions-matching.html#FUNCTIONS-POSIX-REGEXP

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

165

modifier specifies values that control the pattern matching behavior. The
default value is NULL. For a complete list of the modifiers supported by
Advanced Server, see the PostgreSQL core documentation, available at:

http://www.enterprisedb.com/docs/en/9.4/pg/functions-matching.html

Example

In the following simple example, REGEXP_COUNT returns a count of the number of times
the letter i is used in the character string 'reinitializing':

edb=# SELECT REGEXP_COUNT('reinitializing', 'i', 1) FROM DUAL;
 regexp_count

 5
(1 row)

In the first example, the command instructs REGEXP_COUNT begins counting in the first
position; if we modify the command to start the count on the 6th position:

edb=# SELECT REGEXP_COUNT('reinitializing', 'i', 6) FROM DUAL;
 regexp_count

 3
(1 row)

REGEXP_COUNT returns 3; the count now excludes any occurrences of the letter i that
occur before the 6th position.

3.3.5.2 REGEXP_INSTR

REGEXP_INSTR searches a string for a POSIX-style regular expression. This function
returns the position within the string where the match was located. The signature is:

INTEGER REGEXP_INSTR
(
 srcstr TEXT,
 pattern TEXT,
 position INT DEFAULT 1,
 occurrence INT DEFAULT 1,
 returnparam INT DEFAULT 0,
 modifier TEXT DEFAULT NULL,
 subexpression INT DEFAULT 0,
)

Parameters

srcstr

http://www.enterprisedb.com/docs/en/9.4/pg/functions-matching.html#FUNCTIONS-POSIX-REGEXP

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

166

srcstr specifies the string to search.

pattern

pattern specifies the regular expression for which REGEXP_INSTR will search.

position

position specifies an integer value that indicates the start position in a source
string. The default value is 1.

occurrence

occurrence specifies which match is returned if more than one occurrence of
the pattern occurs in the string that is searched. The default value is 1.

returnparam

returnparam is an integer value that specifies the location within the string that
REGEXP_INSTR should return. The default value is 0. Specify:

0 to return the location within the string of the first character that matches
pattern.

A value greater than 0 to return the position of the first character
following the end of the pattern.

modifier

modifier specifies values that control the pattern matching behavior. The
default value is NULL. For a complete list of the modifiers supported by
Advanced Server, see the PostgreSQL core documentation, available at:

http://www.enterprisedb.com/docs/en/9.4/pg/functions-matching.html

subexpression

subexpression is an integer value that identifies the portion of the pattern
that will be returned by REGEXP_INSTR. The default value of subexpression
is 0.

If you specify a value for subexpression, you must include one (or more) set
of parentheses in the pattern that isolate a portion of the value being searched
for. The value specified by subexpression indicates which set of parentheses

http://www.enterprisedb.com/docs/en/9.4/pg/functions-matching.html

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

167

should be returned; for example, if subexpression is 2, REGEXP_INSTR will
return the position of the second set of parentheses.

Example

In the following simple example, REGEXP_INSTR searches a string that contains the a
phone number for the first occurrence of a pattern that contains three consecutive digits:

edb=# SELECT REGEXP_INSTR('800-555-1212', '[0-9][0-9][0-9]', 1, 1) FROM DUAL;
 regexp_instr

 1
(1 row)

The command instructs REGEXP_INSTR to return the position of the first occurrence. If
we modify the command to return the start of the second occurrence of three consecutive
digits:

edb=# SELECT REGEXP_INSTR('800-555-1212', '[0-9][0-9][0-9]', 1, 2) FROM DUAL;
 regexp_instr

 5
(1 row)

REGEXP_INSTR returns 5; the second occurrence of three consecutive digits begins in the
fifth position.

3.3.5.3 REGEXP_SUBSTR

The REGEXP_SUBSTR function searches a string for a pattern specified by a POSIX
compliant regular expression. REGEXP_SUBSTR returns the string that matches the
pattern specified in the call to the function. The signature of the function is:

TEXT REGEXP_SUBSTR
(
 srcstr TEXT,
 pattern TEXT,
 position INT DEFAULT 1,
 occurrence INT DEFAULT 1,
 modifier TEXT DEFAULT NULL,
 subexpression INT DEFAULT 0
)

Parameters

srcstr

srcstr specifies the string to search.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

168

pattern

pattern specifies the regular expression for which REGEXP_SUBSTR will search.

position

position specifies an integer value that indicates the start position in a source
string. The default value is 1.

occurrence

occurrence specifies which match is returned if more than one occurrence of
the pattern occurs in the string that is searched. The default value is 1.

modifier

modifier specifies values that control the pattern matching behavior. The
default value is NULL. For a complete list of the modifiers supported by
Advanced Server, see the PostgreSQL core documentation, available at:

http://www.enterprisedb.com/docs/en/9.4/pg/functions-matching.html

subexpression

subexpression is an integer value that identifies the portion of the pattern
that will be returned by REGEXP_SUBSTR. The default value of subexpression
is 0.

If you specify a value for subexpression, you must include one (or more) set
of parentheses in the pattern that isolate a portion of the value being searched
for. The value specified by subexpression indicates which set of parentheses
should be returned; for example, if subexpression is 2, REGEXP_SUBSTR will
return the value contained within the second set of parentheses.

Example

In the following simple example, REGEXP_SUBSTR searches a string that contains a
phone number for the first set of three consecutive digits:

edb=# SELECT REGEXP_SUBSTR('800-555-1212', '[0-9][0-9][0-9]', 1, 1) FROM
DUAL;
 regexp_substr

 800
(1 row)

http://www.enterprisedb.com/docs/en/9.4/pg/functions-matching.html#FUNCTIONS-POSIX-REGEXP

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

169

It locates the first occurrence of three digits and returns the string (800); if we modify the
command to check for the second occurrence of three consecutive digits:

edb=# SELECT REGEXP_SUBSTR('800-555-1212', '[0-9][0-9][0-9]', 1, 2) FROM
DUAL;
 regexp_substr

 555
(1 row)

REGEXP_SUBSTR returns 555, the contents of the second substring.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

170

3.3.6 Pattern Matching Using the LIKE Operator

Postgres Plus Advanced Server provides pattern matching using the traditional SQL
LIKE operator. The syntax for the LIKE operator is as follows.

string LIKE pattern [ESCAPE escape-character]
string NOT LIKE pattern [ESCAPE escape-character]

Every pattern defines a set of strings. The LIKE expression returns TRUE if string is
contained in the set of strings represented by pattern. As expected, the NOT LIKE
expression returns FALSE if LIKE returns TRUE, and vice versa. An equivalent expression
is NOT (string LIKE pattern).

If pattern does not contain percent signs or underscore, then the pattern only represents
the string itself; in that case LIKE acts like the equals operator. An underscore (_) in
pattern stands for (matches) any single character; a percent sign (%) matches any string
of zero or more characters.

Some examples:

'abc' LIKE 'abc' true
'abc' LIKE 'a%' true
'abc' LIKE '_b_' true
'abc' LIKE 'c' false

LIKE pattern matches always cover the entire string. To match a pattern anywhere within
a string, the pattern must therefore start and end with a percent sign.

To match a literal underscore or percent sign without matching other characters, the
respective character in pattern must be preceded by the escape character. The default
escape character is the backslash but a different one may be selected by using the
ESCAPE clause. To match the escape character itself, write two escape characters.

Note that the backslash already has a special meaning in string literals, so to write a
pattern constant that contains a backslash you must write two backslashes in an SQL
statement. Thus, writing a pattern that actually matches a literal backslash means writing
four backslashes in the statement. You can avoid this by selecting a different escape
character with ESCAPE; then a backslash is not special to LIKE anymore. (But it is still
special to the string literal parser, so you still need two of them.)

It‟s also possible to select no escape character by writing ESCAPE ''. This effectively
disables the escape mechanism, which makes it impossible to turn off the special
meaning of underscore and percent signs in the pattern.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

171

3.3.7 Data Type Formatting Functions

The Postgres Plus Advanced Server formatting functions (described in Table 3-3-9)
provide a powerful set of tools for converting various data types (date/time, integer,
floating point, numeric) to formatted strings and for converting from formatted strings to
specific data types. These functions all follow a common calling convention: the first
argument is the value to be formatted and the second argument is a string template that
defines the output or input format.

Table 3-3-9 Formatting Functions

Function Return
Type Description Example Result

TO_CHAR(DATE [,
format]) VARCHAR2

Convert a date/time
to a string with
output, format. If
omitted default
format is DD-MON-
YY.

TO_CHAR(SYSDATE, 'MM/DD/YYYY
HH12:MI:SS AM')

07/25/2007
09:43:02 AM

TO_CHAR(TIMESTAMP [,
format]) VARCHAR2

Convert a timestamp
to a string with
output, format. If
omitted default
format is DD-MON-
YY.

TO_CHAR(CURRENT_TIMESTAMP,
'MM/DD/YYYY HH12:MI:SS AM')

08/13/2014
08:55:22 PM

TO_CHAR(INTEGER [,
format]) VARCHAR2

Convert an integer to
a string with output,
format

TO_CHAR(2412, '999,999S') 2,412+

TO_CHAR(NUMBER [,
format]) VARCHAR2

Convert a decimal
number to a string
with output, format

TO_CHAR(10125.35,
'999,999.99') 10,125.35

TO_CHAR(DOUBLE
PRECISION, format) VARCHAR2

Convert a floating-
point number to a
string with output,
format

TO_CHAR(CAST(123.5282 AS
REAL), '999.99') 123.53

TO_DATE(string [,
format]) DATE

Convert a date
formatted string to a
DATE data type

TO_DATE('2007-07-04
13:39:10', 'YYYY-MM-DD
HH24:MI:SS')

04-JUL-07
13:39:10

TO_NUMBER(string [,
format]) NUMBER

Convert a number
formatted string to a
NUMBER data type

TO_NUMBER('2,412-',
'999,999S') -2412

TO_TIMESTAMP(string,
format) TIMESTAMP

Convert a timestamp
formatted string to a
TIMESTAMP data type

TO_TIMESTAMP('05 Dec 2000
08:30:25 pm', 'DD Mon YYYY
hh12:mi:ss pm')

05-DEC-00
20:30:25

In an output template string (for TO_CHAR), there are certain patterns that are recognized
and replaced with appropriately-formatted data from the value to be formatted. Any text
that is not a template pattern is simply copied verbatim. Similarly, in an input template

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

172

string (for anything but TO_CHAR), template patterns identify the parts of the input data
string to be looked at and the values to be found there.

The following table shows the template patterns available for formatting date values
using the TO_CHAR and TO_DATE functions.

Table 3-3-10 Template Date/Time Format Patterns

Pattern Description
HH Hour of day (01-12)
HH12 Hour of day (01-12)
HH24 Hour of day (00-23)
MI Minute (00-59)
SS Second (00-59)
SSSSS Seconds past midnight (0-86399)

FFn Fractional seconds where n is an optional integer from 1 to 9 for the number of digits to
return. If omitted, the default is 6.

AM or A.M. or PM
or P.M. Meridian indicator (uppercase)
am or a.m. or pm
or p.m. Meridian indicator (lowercase)

Y,YYY Year (4 and more digits) with comma
YEAR Year (spelled out)
SYEAR Year (spelled out) (BC dates prefixed by a minus sign)
YYYY Year (4 and more digits)
SYYYY Year (4 and more digits) (BC dates prefixed by a minus sign)
YYY Last 3 digits of year
YY Last 2 digits of year
Y Last digit of year
IYYY ISO year (4 and more digits)
IYY Last 3 digits of ISO year
IY Last 2 digits of ISO year
I Last 1 digit of ISO year
BC or B.C. or AD
or A.D. Era indicator (uppercase)
bc or b.c. or ad
or a.d. Era indicator (lowercase)

MONTH Full uppercase month name
Month Full mixed-case month name
month Full lowercase month name
MON Abbreviated uppercase month name (3 chars in English, localized lengths vary)
Mon Abbreviated mixed-case month name (3 chars in English, localized lengths vary)
mon Abbreviated lowercase month name (3 chars in English, localized lengths vary)
MM Month number (01-12)
DAY Full uppercase day name
Day Full mixed-case day name
day Full lowercase day name
DY Abbreviated uppercase day name (3 chars in English, localized lengths vary)
Dy Abbreviated mixed-case day name (3 chars in English, localized lengths vary)
dy Abbreviated lowercase day name (3 chars in English, localized lengths vary)

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

173

Pattern Description
DDD Day of year (001-366)
DD Day of month (01-31)
D Day of week (1-7; Sunday is 1)
W Week of month (1-5) (The first week starts on the first day of the month)
WW Week number of year (1-53) (The first week starts on the first day of the year)
IW ISO week number of year; the first Thursday of the new year is in week 1
CC Century (2 digits); the 21st century starts on 2001-01-01
SCC Same as CC except BC dates are prefixed by a minus sign
J Julian Day (days since January 1, 4712 BC)
Q Quarter
RM Month in Roman numerals (I-XII; I=January) (uppercase)
rm Month in Roman numerals (i-xii; i=January) (lowercase)

RR

First 2 digits of the year when given only the last 2 digits of the year. Result is based upon an
algorithm using the current year and the given 2-digit year. The first 2 digits of the given 2-
digit year will be the same as the first 2 digits of the current year with the following
exceptions:

If the given 2-digit year is < 50 and the last 2 digits of the current year is >= 50, then the first
2 digits for the given year is 1 greater than the first 2 digits of the current year.

If the given 2-digit year is >= 50 and the last 2 digits of the current year is < 50, then the first
2 digits for the given year is 1 less than the first 2 digits of the current year.

RRRR
Only affects TO_DATE function. Allows specification of 2-digit or 4-digit year. If 2-digit
year given, then returns first 2 digits of year like RR format. If 4-digit year given, returns the
given 4-digit year.

Certain modifiers may be applied to any template pattern to alter its behavior. For
example, FMMonth is the Month pattern with the FM modifier. The following table shows
the modifier patterns for date/time formatting.

Table 3-3-11 Template Pattern Modifiers for Date/Time Formatting

Modifier Description Example
FM prefix Fill mode (suppress padding blanks and zeros) FMMonth

TH suffix Uppercase ordinal number suffix DDTH

th suffix Lowercase ordinal number suffix DDth

FX prefix Fixed format global option (see usage notes) FX Month DD Day

SP suffix Spell mode DDSP

Usage notes for date/time formatting:

x FM suppresses leading zeroes and trailing blanks that would otherwise be added to
make the output of a pattern fixed-width.

x TO_TIMESTAMP and TO_DATE skip multiple blank spaces in the input string if the
FX option is not used. FX must be specified as the first item in the template. For
example TO_TIMESTAMP('2000 JUN', 'YYYY MON') is correct, but

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

174

TO_TIMESTAMP('2000 JUN', 'FXYYYY MON') returns an error, because
TO_TIMESTAMP expects one space only.

x Ordinary text is allowed in TO_CHAR templates and will be output literally.
x In conversions from string to timestamp or date, the CC field is ignored if there

is a YYY, YYYY or Y,YYY field. If CC is used with YY or Y then the year is
computed as (CC-1)*100+YY.

The following table shows the template patterns available for formatting numeric values.

Table 3-3-12 Template Patterns for Numeric Formatting

Pattern Description
9 Value with the specified number of digits
0 Value with leading zeroes
. (period) Decimal point
, (comma) Group (thousand) separator
$ Dollar sign
PR Negative value in angle brackets
S Sign anchored to number (uses locale)
L Currency symbol (uses locale)
D Decimal point (uses locale)
G Group separator (uses locale)
MI Minus sign specified in right-most position (if number < 0)
RN or rn Roman numeral (input between 1 and 3999)
V Shift specified number of digits (see notes)

Usage notes for numeric formatting:

x 9 results in a value with the same number of digits as there are 9s. If a digit is not
available it outputs a space.

x TH does not convert values less than zero and does not convert fractional
numbers.

V effectively multiplies the input values by 10n, where n is the number of digits following
V. TO_CHAR does not support the use of V combined with a decimal point. (E.g.,
99.9V99 is not allowed.)

The following table shows some examples of the use of the TO_CHAR and TO_DATE
functions.

Table 3-3-13 TO_CHAR Examples

Expression Result
TO_CHAR(CURRENT_TIMESTAMP, 'Day, DD HH12:MI:SS') 'Tuesday , 06 05:39:18'
TO_CHAR(CURRENT_TIMESTAMP,
'FMDay, FMDD HH12:MI:SS')

'Tuesday, 6 05:39:18'

TO_CHAR(-0.1, '99.99') ' -.10'
TO_CHAR(-0.1, 'FM9.99') '-.1'

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

175

Expression Result
TO_CHAR(0.1, '0.9') ' 0.1'
TO_CHAR(12, '9990999.9') ' 0012.0'
TO_CHAR(12, 'FM9990999.9') '0012.'
TO_CHAR(485, '999') ' 485'
TO_CHAR(-485, '999') '-485'
TO_CHAR(1485, '9,999') ' 1,485'
TO_CHAR(1485, '9G999') ' 1,485'
TO_CHAR(148.5, '999.999') ' 148.500'
TO_CHAR(148.5, 'FM999.999') '148.5'
TO_CHAR(148.5, 'FM999.990') '148.500'
TO_CHAR(148.5, '999D999') ' 148.500'
TO_CHAR(3148.5, '9G999D999') ' 3,148.500'
TO_CHAR(-485, '999S') '485-'
TO_CHAR(-485, '999MI') '485-'
TO_CHAR(485, '999MI') '485 '
TO_CHAR(485, 'FM999MI') '485'
TO_CHAR(-485, '999PR') '<485>'
TO_CHAR(485, 'L999') '$ 485'
TO_CHAR(485, 'RN') ' CDLXXXV'
TO_CHAR(485, 'FMRN') 'CDLXXXV'
TO_CHAR(5.2, 'FMRN') 'V'
TO_CHAR(12, '99V999') ' 12000'
TO_CHAR(12.4, '99V999') ' 12400'
TO_CHAR(12.45, '99V9') ' 125'

3.3.7.1 IMMUTABLE TO_CHAR(TIMESTAMP, format) Function

There are certain cases of the TO_CHAR function that can result in usage of an
IMMUTABLE form of the function. Basically, a function is IMMUTABLE if the function
does not modify the database, and the function returns the same, consistent value
dependent upon only its input parameters. That is, the settings of configuration
parameters, the locale, the content of the database, etc. do not affect the results returned
by the function.

For more information about function volatility categories VOLATILE, STABLE, and
IMMUTABLE, please see the PostgreSQL Core documentation, available from
EnterpriseDB at:

http://www.enterprisedb.com/docs/en/9.4/pg/xfunc-volatility.html

A particular advantage of an IMMUTABLE function is that it can be used in the CREATE
INDEX command to create an index based on that function.

In order for the TO_CHAR function to use the IMMUTABLE form the following conditions
must be satisfied:

http://www.enterprisedb.com/docs/en/9.4/pg/xfunc-volatility.html

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

176

x The first parameter of the TO_CHAR function must be of data type TIMESTAMP.
x The format specified in the second parameter of the TO_CHAR function must not

affect the return value of the function based on factors such as language, locale,
etc. For example a format of 'YYYY-MM-DD HH24:MI:SS' can be used for an
IMMUTABLE form of the function since, regardless of locale settings, the result of
the function is the date and time expressed solely in numeric form. However, a
format of 'DD-MON-YYYY' cannot be used for an IMMUTABLE form of the
function because the 3-character abbreviation of the month may return different
results depending upon the locale setting.

Format patterns that result in a non-immutable function include any variations of spelled
out or abbreviated months (MONTH, MON), days (DAY, DY), median indicators (AM, PM), or
era indicators (BC, AD).

Note: The condition specified in the second bullet point applies only for an Oracle
compatible installation of Advanced Server. For a PostgreSQL compatible installation of
Advanced Server, the TO_CHAR(TIMESTAMP, format) function is locale independent
and thus categorized as IMMUTABLE unless the format forces locale dependence with the
TM (translation mode) prefix. For example, 'DD-MON-YYYY' would allow the function to
be IMMUTABLE, but 'DD-TMMON-YYYY' would not.

For more information about the PostgreSQL TM date/time formatting prefix, please see
the PostgreSQL Core documentation, available from EnterpriseDB at:

 http://www.enterprisedb.com/docs/en/9.4/pg/functions-formatting.html

For the following example, a table with a TIMESTAMP column is created.

CREATE TABLE ts_tbl (ts_col TIMESTAMP);

The following shows the successful creation of an index with the IMMUTABLE form of the
TO_CHAR function. This applies to both an Oracle compatible installation as well as a
PostgreSQL compatible installation.

edb=# CREATE INDEX ts_idx ON ts_tbl (TO_CHAR(ts_col,'YYYY-MM-DD HH24:MI:SS'));
CREATE INDEX
edb=# \dS ts_idx
 Index "public.ts_idx"
 Column | Type | Definition
---------+-------------------+---

 to_char | character varying | to_char(ts_col, 'YYYY-MM-DD HH24:MI:SS'::character
varying)
btree, for table "public.ts_tbl"

In an Oracle compatible installation, the following results in an error because the format
specified in the TO_CHAR function prevents the use of the IMMUTABLE form since the 3-
character month abbreviation, MON, may result in different return values based on the
locale setting.

http://www.enterprisedb.com/docs/en/9.4/pg/functions-formatting.html
http://www.enterprisedb.com/docs/en/9.4/pg/functions-formatting.html

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

177

edb=# CREATE INDEX ts_idx_2 ON ts_tbl (TO_CHAR(ts_col, 'DD-MON-YYYY'));
ERROR: functions in index expression must be marked IMMUTABLE

However, for a PostgreSQL compatible installation, the CREATE INDEX command
rejected in the preceding example would be accepted because the function is IMMUTABLE
since there is no TM prefix in the format.

postgres=# CREATE INDEX ts_idx_2 ON ts_tbl (TO_CHAR(ts_col, 'DD-MON-YYYY'));
CREATE INDEX
postgres=# \d ts_idx_2
 Index "postgres.ts_idx_2"
 Column | Type | Definition
---------+------+--------------------------------------
 to_char | text | to_char(ts_col, 'DD-MON-YYYY'::text)
btree, for table "postgres.ts_tbl"

But when the TM prefix is included, the function is not IMMUTABLE, and thus, the index is
rejected.

postgres=# CREATE INDEX ts_idx_3 ON ts_tbl (TO_CHAR(ts_col, 'DD-TMMON-
YYYY'));
ERROR: functions in index expression must be marked IMMUTABLE

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

178

3.3.8 Date/Time Functions and Operators

Table 3-3-15 shows the available functions for date/time value processing, with details
appearing in the following subsections. Table 3-3-14 illustrates the behaviors of the basic
arithmetic operators (+, -).

Table 3-3-14 Date/Time Operators

Operator Example Result
+ DATE '2001-09-28' + 7 05-OCT-01 00:00:00
+ TIMESTAMP '2001-09-28 13:30:00' + 3 01-OCT-01 13:30:00
- DATE '2001-10-01' - 7 24-SEP-01 00:00:00
- TIMESTAMP '2001-09-28 13:30:00' - 3 25-SEP-01 13:30:00

- TIMESTAMP '2001-09-29 03:00:00' -
TIMESTAMP '2001-09-27 12:00:00' @ 1 day 15 hours

In the date/time functions of Table 3-3-15 the use of the DATE and TIMESTAMP data
types are interchangeable.

Table 3-3-15 Date/Time Functions

Function Return
Type Description Example Result

ADD_MONTHS(DATE,
NUMBER) DATE Add months to a date; see

Section 3.3.8.1.
ADD_MONTHS('28-FEB-97',
3.8)

31-MAY-97
00:00:00

CURRENT_DATE DATE Current date; see Section
3.3.8.8. CURRENT_DATE 04-JUL-07

CURRENT_TIMESTAMP TIMESTAMP
Returns the current date
and time; see Section
3.3.8.8.

CURRENT_TIMESTAMP 04-JUL-07
15:33:23.484

EXTRACT(field FROM
TIMESTAMP)

DOUBLE
PRECISION

Get subfield; see Section
3.3.8.2.

EXTRACT(hour FROM
TIMESTAMP '2001-02-16
20:38:40')

20

LAST_DAY(DATE) DATE

Returns the last day of the
month represented by the
given date. If the given
date contains a time
portion, it is carried
forward to the result
unchanged.

LAST_DAY('14-APR-98') 30-APR-98
00:00:00

LOCALTIMESTAMP [
(precision)] TIMESTAMP

Current date and time
(start of current
transaction); see Section
3.3.8.8.

LOCALTIMESTAMP 04-JUL-07
15:33:23.484

MONTHS_BETWEEN(DATE,
DATE) NUMBER

Number of months
between two dates; see
Section 3.3.8.3.

MONTHS_BETWEEN('28-FEB-
07', '30-NOV-06') 3

NEXT_DAY(DATE,
dayofweek) DATE

Date falling on
dayofweek following
specified date; see Section

NEXT_DAY('16-APR-
07','FRI')

20-APR-07
00:00:00

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

179

Function Return
Type Description Example Result

3.3.8.4.

NEW_TIME(DATE,
VARCHAR, VARCHAR) DATE Converts a date and time

to an alternate time zone

NEW_TIME(TO_DATE
'2005/05/29 01:45',
'AST', 'PST')

2005/05/29
21:45:00

NUMTODSINTERVAL(NUMB
ER, INTERVAL) INTERVAL

Converts a number to a
specified day or second
interval; see Section
3.3.8.9.

SELECT
numtodsinterval(100,
„hour‟);

4 days
04:00:00

NUMTOYMINTERVAL(NUMB
ER, INTERVAL) INTERVAL

Converts a number to a
specified year or month
interval; see Section
3.3.8.10.

SELECT
numtoyminterval(100,
„month‟);

8 years 4
mons

ROUND(DATE [, format
]) DATE

Date rounded according to
format; see Section
3.3.8.6.

ROUND(TO_DATE('29-MAY-
05'),'MON')

01-JUN-05
00:00:00

SYS_EXTRACT_UTC(TIME
STAMP WITH TIME
ZONE)

TIMESTAMP Returns Coordinated
Universal Time

SYS_EXTRACT_UTC(CAST('24
-MAR-11 12:30:00PM -
04:00' AS TIMESTAMP WITH
TIME ZONE))

24-MAR-11
16:30:00

SYSDATE DATE Returns current date and
time SYSDATE 01-AUG-12

11:12:34

SYSTIMESTAMP() TIMESTAMP Returns current date and
time SYSTIMESTAMP

01-AUG-12
11:11:23.665
229 -07:00

TRUNC(DATE [format]) DATE
Truncate according to
format; see Section
3.3.8.7.

TRUNC(TO_DATE('29-MAY-
05'), 'MON')

01-MAY-05

00:00:00

3.3.8.1 ADD_MONTHS

The ADD_MONTHS functions adds (or subtracts if the second parameter is negative) the
specified number of months to the given date. The resulting day of the month is the same
as the day of the month of the given date except when the day is the last day of the month
in which case the resulting date always falls on the last day of the month.

Any fractional portion of the number of months parameter is truncated before performing
the calculation.

If the given date contains a time portion, it is carried forward to the result unchanged.

The following are examples of the ADD_MONTHS function.

SELECT ADD_MONTHS('13-JUN-07',4) FROM DUAL;

 add_months

 13-OCT-07 00:00:00
(1 row)

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

180

SELECT ADD_MONTHS('31-DEC-06',2) FROM DUAL;

 add_months

 28-FEB-07 00:00:00
(1 row)

SELECT ADD_MONTHS('31-MAY-04',-3) FROM DUAL;

 add_months

 29-FEB-04 00:00:00
(1 row)

3.3.8.2 EXTRACT

The EXTRACT function retrieves subfields such as year or hour from date/time values.
The EXTRACT function returns values of type DOUBLE PRECISION. The following are
valid field names:

YEAR

The year field

SELECT EXTRACT(YEAR FROM TIMESTAMP '2001-02-16 20:38:40') FROM DUAL;

 date_part

 2001
(1 row)

MONTH

The number of the month within the year (1 - 12)

SELECT EXTRACT(MONTH FROM TIMESTAMP '2001-02-16 20:38:40') FROM DUAL;

 date_part

 2
(1 row)

DAY

The day (of the month) field (1 - 31)

SELECT EXTRACT(DAY FROM TIMESTAMP '2001-02-16 20:38:40') FROM DUAL;

 date_part

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

181

 16
(1 row)

HOUR

The hour field (0 - 23)

SELECT EXTRACT(HOUR FROM TIMESTAMP '2001-02-16 20:38:40') FROM DUAL;

 date_part

 20
(1 row)

MINUTE

The minutes field (0 - 59)

SELECT EXTRACT(MINUTE FROM TIMESTAMP '2001-02-16 20:38:40') FROM DUAL;

 date_part

 38
(1 row)

SECOND

The seconds field, including fractional parts (0 - 59)

SELECT EXTRACT(SECOND FROM TIMESTAMP '2001-02-16 20:38:40') FROM DUAL;

 date_part

 40
(1 row)

3.3.8.3 MONTHS_BETWEEN

The MONTHS_BETWEEN function returns the number of months between two dates. The
result is a numeric value which is positive if the first date is greater than the second date
or negative if the first date is less than the second date.

The result is always a whole number of months if the day of the month of both date
parameters is the same, or both date parameters fall on the last day of their respective
months.

The following are some examples of the MONTHS_BETWEEN function.

SELECT MONTHS_BETWEEN('15-DEC-06','15-OCT-06') FROM DUAL;

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

182

 months_between

 2
(1 row)

SELECT MONTHS_BETWEEN('15-OCT-06','15-DEC-06') FROM DUAL;

 months_between

 -2
(1 row)

SELECT MONTHS_BETWEEN('31-JUL-00','01-JUL-00') FROM DUAL;

 months_between

 0.967741935
(1 row)

SELECT MONTHS_BETWEEN('01-JAN-07','01-JAN-06') FROM DUAL;

 months_between

 12
(1 row)

3.3.8.4 NEXT_DAY

The NEXT_DAY function returns the first occurrence of the given weekday strictly greater
than the given date. At least the first three letters of the weekday must be specified - e.g.,
SAT. If the given date contains a time portion, it is carried forward to the result
unchanged.

The following are examples of the NEXT_DAY function.

SELECT NEXT_DAY(TO_DATE('13-AUG-07','DD-MON-YY'),'SUNDAY') FROM DUAL;

 next_day

 19-AUG-07 00:00:00
(1 row)

SELECT NEXT_DAY(TO_DATE('13-AUG-07','DD-MON-YY'),'MON') FROM DUAL;

 next_day

 20-AUG-07 00:00:00
(1 row)

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

183

3.3.8.5 NEW_TIME

The NEW_TIME function converts a date and time from one time zone to another.
NEW_TIME returns a value of type DATE. The syntax is:

NEW_TIME(DATE, time_zone1, time_zone2)

time_zone1 and time_zone2 must be string values from the Time Zone column of the
following table:

Time Zone Offset from UTC Description
AST UTC+4 Atlantic Standard Time
ADT UTC+3 Atlantic Daylight Time
BST UTC+11 Bering Standard Time
BDT UTC+10 Bering Daylight Time
CST UTC+6 Central Standard Time
CDT UTC+5 Central Daylight Time
EST UTC+5 Eastern Standard Time
EDT UTC+4 Eastern Daylight Time
GMT UTC Greenwich Mean Time
HST UTC+10 Alaska-Hawaii Standard Time
HDT UTC+9 Alaska-Hawaii Daylight Time
MST UTC+7 Mountain Standard Time
MDT UTC+6 Mountain Daylight Time
NST UTC+3:30 Newfoundland Standard Time
PST UTC+8 Pacific Standard Time
PDT UTC+7 Pacific Daylight Time
YST UTC+9 Yukon Standard Time
YDT UTC+8 Yukon Daylight Time

Following is an example of the NEW_TIME function.

SELECT NEW_TIME(TO_DATE('08-13-07 10:35:15','MM-DD-YY HH24:MI:SS'),'AST',
'PST') "Pacific Standard Time" FROM DUAL;

Pacific Standard Time

 13-AUG-07 06:35:15
(1 row)

3.3.8.6 ROUND

The ROUND function returns a date rounded according to a specified template pattern. If
the template pattern is omitted, the date is rounded to the nearest day. The following table
shows the template patterns for the ROUND function.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

184

Table 3-3-16 Template Date Patterns for the ROUND Function

Pattern Description

CC, SCC
Returns January 1, cc01 where cc is first 2 digits of the given year if last 2 digits <=
50, or 1 greater than the first 2 digits of the given year if last 2 digits > 50; (for AD
years)

SYYY, YYYY,
YEAR, SYEAR,
YYY, YY, Y

Returns January 1, yyyy where yyyy is rounded to the nearest year; rounds down on
June 30, rounds up on July 1

IYYY, IYY, IY, I
Rounds to the beginning of the ISO year which is determined by rounding down if
the month and day is on or before June 30th, or by rounding up if the month and day
is July 1st or later

Q
Returns the first day of the quarter determined by rounding down if the month and
day is on or before the 15th of the second month of the quarter, or by rounding up if
the month and day is on the 16th of the second month or later of the quarter

MONTH, MON, MM,
RM

Returns the first day of the specified month if the day of the month is on or prior to
the 15th; returns the first day of the following month if the day of the month is on
the 16th or later

WW Round to the nearest date that corresponds to the same day of the week as the first
day of the year

IW Round to the nearest date that corresponds to the same day of the week as the first
day of the ISO year

W Round to the nearest date that corresponds to the same day of the week as the first
day of the month

DDD, DD, J Rounds to the start of the nearest day; 11:59:59 AM or earlier rounds to the start of
the same day; 12:00:00 PM or later rounds to the start of the next day

DAY, DY, D Rounds to the nearest Sunday
HH, HH12, HH24 Round to the nearest hour
MI Round to the nearest minute

Following are examples of usage of the ROUND function.

The following examples round to the nearest hundred years.

SELECT TO_CHAR(ROUND(TO_DATE('1950','YYYY'),'CC'),'DD-MON-YYYY') "Century"
FROM DUAL;

 Century

 01-JAN-1901
(1 row)

SELECT TO_CHAR(ROUND(TO_DATE('1951','YYYY'),'CC'),'DD-MON-YYYY') "Century"
FROM DUAL;

 Century

 01-JAN-2001
(1 row)

The following examples round to the nearest year.

SELECT TO_CHAR(ROUND(TO_DATE('30-JUN-1999','DD-MON-YYYY'),'Y'),'DD-MON-YYYY')
"Year" FROM DUAL;

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

185

 Year

 01-JAN-1999
(1 row)

SELECT TO_CHAR(ROUND(TO_DATE('01-JUL-1999','DD-MON-YYYY'),'Y'),'DD-MON-YYYY')
"Year" FROM DUAL;

 Year

 01-JAN-2000
(1 row)

The following examples round to the nearest ISO year. The first example rounds to 2004
and the ISO year for 2004 begins on December 29th of 2003. The second example rounds
to 2005 and the ISO year for 2005 begins on January 3rd of that same year.

(An ISO year begins on the first Monday from which a 7 day span, Monday thru Sunday,
contains at least 4 days of the new year. Thus, it is possible for the beginning of an ISO
year to start in December of the prior year.)

SELECT TO_CHAR(ROUND(TO_DATE('30-JUN-2004','DD-MON-YYYY'),'IYYY'),'DD-MON-
YYYY') "ISO Year" FROM DUAL;

 ISO Year

 29-DEC-2003
(1 row)

SELECT TO_CHAR(ROUND(TO_DATE('01-JUL-2004','DD-MON-YYYY'),'IYYY'),'DD-MON-
YYYY') "ISO Year" FROM DUAL;

 ISO Year

 03-JAN-2005
(1 row)

The following examples round to the nearest quarter.

SELECT ROUND(TO_DATE('15-FEB-07','DD-MON-YY'),'Q') "Quarter" FROM DUAL;

 Quarter

 01-JAN-07 00:00:00
(1 row)

SELECT ROUND(TO_DATE('16-FEB-07','DD-MON-YY'),'Q') "Quarter" FROM DUAL;

 Quarter

 01-APR-07 00:00:00
(1 row)

The following examples round to the nearest month.

SELECT ROUND(TO_DATE('15-DEC-07','DD-MON-YY'),'MONTH') "Month" FROM DUAL;

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

186

 Month

 01-DEC-07 00:00:00
(1 row)

SELECT ROUND(TO_DATE('16-DEC-07','DD-MON-YY'),'MONTH') "Month" FROM DUAL;

 Month

 01-JAN-08 00:00:00
(1 row)

The following examples round to the nearest week. The first day of 2007 lands on a
Monday so in the first example, January 18th is closest to the Monday that lands on
January 15th. In the second example, January 19th is closer to the Monday that falls on
January 22nd.

SELECT ROUND(TO_DATE('18-JAN-07','DD-MON-YY'),'WW') "Week" FROM DUAL;

 Week

 15-JAN-07 00:00:00
(1 row)

SELECT ROUND(TO_DATE('19-JAN-07','DD-MON-YY'),'WW') "Week" FROM DUAL;

 Week

 22-JAN-07 00:00:00
(1 row)

The following examples round to the nearest ISO week. An ISO week begins on a
Monday. In the first example, January 1, 2004 is closest to the Monday that lands on
December 29, 2003. In the second example, January 2, 2004 is closer to the Monday that
lands on January 5, 2004.

SELECT ROUND(TO_DATE('01-JAN-04','DD-MON-YY'),'IW') "ISO Week" FROM DUAL;

 ISO Week

 29-DEC-03 00:00:00
(1 row)

SELECT ROUND(TO_DATE('02-JAN-04','DD-MON-YY'),'IW') "ISO Week" FROM DUAL;

 ISO Week

 05-JAN-04 00:00:00
(1 row)

The following examples round to the nearest week where a week is considered to start on
the same day as the first day of the month.

SELECT ROUND(TO_DATE('05-MAR-07','DD-MON-YY'),'W') "Week" FROM DUAL;

 Week

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

187

 08-MAR-07 00:00:00
(1 row)

SELECT ROUND(TO_DATE('04-MAR-07','DD-MON-YY'),'W') "Week" FROM DUAL;

 Week

 01-MAR-07 00:00:00
(1 row)

The following examples round to the nearest day.

SELECT ROUND(TO_DATE('04-AUG-07 11:59:59 AM','DD-MON-YY HH:MI:SS AM'),'J')
"Day" FROM DUAL;

 Day

 04-AUG-07 00:00:00
(1 row)

SELECT ROUND(TO_DATE('04-AUG-07 12:00:00 PM','DD-MON-YY HH:MI:SS AM'),'J')
"Day" FROM DUAL;

 Day

 05-AUG-07 00:00:00
(1 row)

The following examples round to the start of the nearest day of the week (Sunday).

SELECT ROUND(TO_DATE('08-AUG-07','DD-MON-YY'),'DAY') "Day of Week" FROM DUAL;

 Day of Week

 05-AUG-07 00:00:00
(1 row)

SELECT ROUND(TO_DATE('09-AUG-07','DD-MON-YY'),'DAY') "Day of Week" FROM DUAL;

 Day of Week

 12-AUG-07 00:00:00
(1 row)

The following examples round to the nearest hour.

SELECT TO_CHAR(ROUND(TO_DATE('09-AUG-07 08:29','DD-MON-YY HH:MI'),'HH'),'DD-
MON-YY HH24:MI:SS') "Hour" FROM DUAL;

 Hour

 09-AUG-07 08:00:00
(1 row)

SELECT TO_CHAR(ROUND(TO_DATE('09-AUG-07 08:30','DD-MON-YY HH:MI'),'HH'),'DD-
MON-YY HH24:MI:SS') "Hour" FROM DUAL;

 Hour

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

188

 09-AUG-07 09:00:00
(1 row)

The following examples round to the nearest minute.

SELECT TO_CHAR(ROUND(TO_DATE('09-AUG-07 08:30:29','DD-MON-YY
HH:MI:SS'),'MI'),'DD-MON-YY HH24:MI:SS') "Minute" FROM DUAL;

 Minute

 09-AUG-07 08:30:00
(1 row)

SELECT TO_CHAR(ROUND(TO_DATE('09-AUG-07 08:30:30','DD-MON-YY
HH:MI:SS'),'MI'),'DD-MON-YY HH24:MI:SS') "Minute" FROM DUAL;

 Minute

 09-AUG-07 08:31:00
(1 row)

3.3.8.7 TRUNC

The TRUNC function returns a date truncated according to a specified template pattern. If
the template pattern is omitted, the date is truncated to the nearest day. The following
table shows the template patterns for the TRUNC function.

Table 3-3-17 Template Date Patterns for the TRUNC Function

Pattern Description
CC, SCC Returns January 1, cc01 where cc is first 2 digits of the given year
SYYY, YYYY,
YEAR, SYEAR,
YYY, YY, Y

Returns January 1, yyyy where yyyy is the given year

IYYY, IYY, IY, I Returns the start date of the ISO year containing the given date
Q Returns the first day of the quarter containing the given date
MONTH, MON, MM,
RM Returns the first day of the specified month

WW Returns the largest date just prior to, or the same as the given date that corresponds
to the same day of the week as the first day of the year

IW Returns the start of the ISO week containing the given date

W Returns the largest date just prior to, or the same as the given date that corresponds
to the same day of the week as the first day of the month

DDD, DD, J Returns the start of the day for the given date
DAY, DY, D Returns the start of the week (Sunday) containing the given date
HH, HH12, HH24 Returns the start of the hour
MI Returns the start of the minute

Following are examples of usage of the TRUNC function.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

189

The following example truncates down to the hundred years unit.

SELECT TO_CHAR(TRUNC(TO_DATE('1951','YYYY'),'CC'),'DD-MON-YYYY') "Century"
FROM DUAL;

 Century

 01-JAN-1901
(1 row)

The following example truncates down to the year.

SELECT TO_CHAR(TRUNC(TO_DATE('01-JUL-1999','DD-MON-YYYY'),'Y'),'DD-MON-YYYY')
"Year" FROM DUAL;

 Year

 01-JAN-1999
(1 row)

The following example truncates down to the beginning of the ISO year.

SELECT TO_CHAR(TRUNC(TO_DATE('01-JUL-2004','DD-MON-YYYY'),'IYYY'),'DD-MON-
YYYY') "ISO Year" FROM DUAL;

 ISO Year

 29-DEC-2003
(1 row)

The following example truncates down to the start date of the quarter.

SELECT TRUNC(TO_DATE('16-FEB-07','DD-MON-YY'),'Q') "Quarter" FROM DUAL;

 Quarter

 01-JAN-07 00:00:00
(1 row)

The following example truncates to the start of the month.

SELECT TRUNC(TO_DATE('16-DEC-07','DD-MON-YY'),'MONTH') "Month" FROM DUAL;

 Month

 01-DEC-07 00:00:00
(1 row)

The following example truncates down to the start of the week determined by the first
day of the year. The first day of 2007 lands on a Monday so the Monday just prior to
January 19th is January 15th.

SELECT TRUNC(TO_DATE('19-JAN-07','DD-MON-YY'),'WW') "Week" FROM DUAL;

 Week

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

190

 15-JAN-07 00:00:00
(1 row)

The following example truncates to the start of an ISO week. An ISO week begins on a
Monday. January 2, 2004 falls in the ISO week that starts on Monday, December 29,
2003.

SELECT TRUNC(TO_DATE('02-JAN-04','DD-MON-YY'),'IW') "ISO Week" FROM DUAL;

 ISO Week

 29-DEC-03 00:00:00
(1 row)

The following example truncates to the start of the week where a week is considered to
start on the same day as the first day of the month.

SELECT TRUNC(TO_DATE('21-MAR-07','DD-MON-YY'),'W') "Week" FROM DUAL;

 Week

 15-MAR-07 00:00:00
(1 row)

The following example truncates to the start of the day.

SELECT TRUNC(TO_DATE('04-AUG-07 12:00:00 PM','DD-MON-YY HH:MI:SS AM'),'J')
"Day" FROM DUAL;

 Day

 04-AUG-07 00:00:00
(1 row)

The following example truncates to the start of the week (Sunday).

SELECT TRUNC(TO_DATE('09-AUG-07','DD-MON-YY'),'DAY') "Day of Week" FROM DUAL;

 Day of Week

 05-AUG-07 00:00:00
(1 row)

The following example truncates to the start of the hour.

SELECT TO_CHAR(TRUNC(TO_DATE('09-AUG-07 08:30','DD-MON-YY HH:MI'),'HH'),'DD-
MON-YY HH24:MI:SS') "Hour" FROM DUAL;

 Hour

 09-AUG-07 08:00:00
(1 row)

The following example truncates to the minute.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

191

SELECT TO_CHAR(TRUNC(TO_DATE('09-AUG-07 08:30:30','DD-MON-YY
HH:MI:SS'),'MI'),'DD-MON-YY HH24:MI:SS') "Minute" FROM DUAL;

 Minute

 09-AUG-07 08:30:00
(1 row)

3.3.8.8 CURRENT DATE/TIME

Postgres Plus Advanced Server provides a number of functions that return values related
to the current date and time. These functions all return values based on the start time of
the current transaction.

x CURRENT_DATE
x CURRENT_TIMESTAMP
x LOCALTIMESTAMP
x LOCALTIMESTAMP(precision)

CURRENT_DATE returns the current date and time based on the start time of the current
transaction. The value of CURRENT_DATE will not change if called multiple times within
a transaction.

SELECT CURRENT_DATE FROM DUAL;

 date

 06-AUG-07

CURRENT_TIMESTAMP returns the current date and time. When called from a single SQL
statement, it will return the same value for each occurrence within the statement. If
called from multiple statements within a transaction, may return different values for each
occurrence. If called from a function, may return a different value than the value
returned by CURRENT_TIMESTAMP in the caller.

SELECT CURRENT_TIMESTAMP, CURRENT_TIMESTAMP FROM DUAL;

 current_timestamp | current_timestamp
----------------------------------+----------------------------------
 02-SEP-13 17:52:28.361473 +05:00 | 02-SEP-13 17:52:28.361474 +05:00

LOCALTIMESTAMP can optionally be given a precision parameter which causes the result
to be rounded to that many fractional digits in the seconds field. Without a precision
parameter, the result is given to the full available precision.

SELECT LOCALTIMESTAMP FROM DUAL;

 timestamp

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

192

 06-AUG-07 16:11:35.973
(1 row)

SELECT LOCALTIMESTAMP(2) FROM DUAL;

 timestamp

 06-AUG-07 16:11:44.58
(1 row)

Since these functions return the start time of the current transaction, their values do not
change during the transaction. This is considered a feature: the intent is to allow a single
transaction to have a consistent notion of the “current” time, so that multiple
modifications within the same transaction bear the same time stamp. Other database
systems may advance these values more frequently.

3.3.8.9 NUMTODSINTERVAL

The NUMTODSINTERVAL function converts a numeric value to a time interval that
includes day through second interval units. When calling the function, specify the
smallest fractional interval type to be included in the result set. The valid interval types
are DAY, HOUR, MINUTE, and SECOND.

The following example converts a numeric value to a time interval that includes days and
hours:

SELECT numtodsinterval(100, „hour‟);
numtodsinterval

4 days 04:00:00
(1 row)

The following example converts a numeric value to a time interval that includes minutes
and seconds:

SELECT numtodsinterval(100, „second‟);
numtodsinterval

1 min 40 secs
(1 row)

3.3.8.10 NUMTOYMINTERVAL

The NUMTOYMINTERVAL function converts a numeric value to a time interval that
includes year through month interval units. When calling the function, specify the

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

193

smallest fractional interval type to be included in the result set. The valid interval types
are YEAR and MONTH.

The following example converts a numeric value to a time interval that includes years
and months:

SELECT numtoyminterval(100, „month‟);
numtoyminterval

8 years 4 mons
(1 row)

The following example converts a numeric value to a time interval that includes years
only:

SELECT numtoyminterval(100, „year‟);
numtoyminterval

100 years
(1 row)

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

194

3.3.9 Sequence Manipulation Functions

This section describes Postgres Plus Advanced Server‟s functions for operating on
sequence objects. Sequence objects (also called sequence generators or just sequences)
are special single-row tables created with the CREATE SEQUENCE command. A sequence
object is usually used to generate unique identifiers for rows of a table. The sequence
functions, listed below, provide simple, multiuser-safe methods for obtaining successive
sequence values from sequence objects.

sequence.NEXTVAL
sequence.CURRVAL

sequence is the identifier assigned to the sequence in the CREATE SEQUENCE
command. The following describes the usage of these functions.

NEXTVAL

Advance the sequence object to its next value and return that value. This is done
atomically: even if multiple sessions execute NEXTVAL concurrently, each will
safely receive a distinct sequence value.

CURRVAL

Return the value most recently obtained by NEXTVAL for this sequence in the
current session. (An error is reported if NEXTVAL has never been called for this
sequence in this session.) Notice that because this is returning a session-local
value, it gives a predictable answer whether or not other sessions have executed
NEXTVAL since the current session did.

If a sequence object has been created with default parameters, NEXTVAL calls on it will
return successive values beginning with 1. Other behaviors can be obtained by using
special parameters in the CREATE SEQUENCE command.

Important: To avoid blocking of concurrent transactions that obtain numbers from the
same sequence, a NEXTVAL operation is never rolled back; that is, once a value has been
fetched it is considered used, even if the transaction that did the NEXTVAL later aborts.
This means that aborted transactions may leave unused "holes" in the sequence of
assigned values.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

195

3.3.10 Conditional Expressions

The following section describes the SQL-compliant conditional expressions available in
Postgres Plus Advanced Server.

3.3.10.1 CASE

The SQL CASE expression is a generic conditional expression, similar to if/else
statements in other languages:

CASE WHEN condition THEN result
 [WHEN ...]
 [ELSE result]
END

CASE clauses can be used wherever an expression is valid. condition is an expression
that returns a BOOLEAN result. If the result is TRUE then the value of the CASE expression
is the result that follows the condition. If the result is FALSE any subsequent WHEN
clauses are searched in the same manner. If no WHEN condition is TRUE then the value
of the CASE expression is the result in the ELSE clause. If the ELSE clause is omitted
and no condition matches, the result is NULL.

An example:

SELECT * FROM test;

 a

 1
 2
 3
(3 rows)

SELECT a,
 CASE WHEN a=1 THEN 'one'
 WHEN a=2 THEN 'two'
 ELSE 'other'
 END
FROM test;

 a | case
---+-------
 1 | one
 2 | two
 3 | other
(3 rows)

The data types of all the result expressions must be convertible to a single output type.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

196

The following “simple” CASE expression is a specialized variant of the general form
above:

CASE expression
 WHEN value THEN result
 [WHEN ...]
 [ELSE result]
END

The expression is computed and compared to all the value specifications in the WHEN
clauses until one is found that is equal. If no match is found, the result in the ELSE
clause (or a null value) is returned.

The example above can be written using the simple CASE syntax:

SELECT a,
 CASE a WHEN 1 THEN 'one'
 WHEN 2 THEN 'two'
 ELSE 'other'
 END
FROM test;

 a | case
---+-------
 1 | one
 2 | two
 3 | other
(3 rows)

A CASE expression does not evaluate any subexpressions that are not needed to determine
the result. For example, this is a possible way of avoiding a division-by-zero failure:

SELECT ... WHERE CASE WHEN x <> 0 THEN y/x > 1.5 ELSE false END;

3.3.10.2 COALESCE

The COALESCE function returns the first of its arguments that is not null. Null is returned
only if all arguments are null.

COALESCE(value [, value2] ...)

It is often used to substitute a default value for null values when data is retrieved for
display or further computation. For example:

SELECT COALESCE(description, short_description, '(none)') ...

Like a CASE expression, COALESCE will not evaluate arguments that are not needed to
determine the result; that is, arguments to the right of the first non-null argument are not

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

197

evaluated. This SQL-standard function provides capabilities similar to NVL and IFNULL,
which are used in some other database systems.

3.3.10.3 NULLIF

The NULLIF function returns a null value if value1 and value2 are equal; otherwise it
returns value1.

NULLIF(value1, value2)

This can be used to perform the inverse operation of the COALESCE example given
above:

SELECT NULLIF(value1, '(none)') ...

If value1 is (none), return a null, otherwise return value1.

3.3.10.4 NVL

The NVL function returns the first of its arguments that is not null. NVL evaluates the first
expression; if that expression evaluates to NULL, NVL returns the second expression.

NVL(expr1, expr2)

The return type is the same as the argument types; all arguments must have the same data
type (or be coercible to a common type). NVL returns NULL if all arguments are NULL.

The following example computes a bonus for non-commissioned employees, If an
employee is a commissioned employee, this expression returns the employees
commission; if the employee is not a commissioned employee (that is, his commission is
NULL), this expression returns a bonus that is 10% of his salary.

bonus = NVL(emp.commission, emp.salary * .10)

3.3.10.5 NVL2

NVL2 evaluates an expression, and returns either the second or third expression,
depending on the value of the first expression. If the first expression is not NULL, NVL2
returns the value in expr2; if the first expression is NULL, NVL2 returns the value in
expr3.

NVL2(expr1, expr2, expr3)

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

198

The return type is the same as the argument types; all arguments must have the same data
type (or be coercible to a common type).

The following example computes a bonus for commissioned employees - if a given
employee is a commissioned employee, this expression returns an amount equal to 110%
of his commission; if the employee is not a commissioned employee (that is, his
commission is NULL), this expression returns 0.

bonus = NVL2(emp.commission, emp.commission * 1.1, 0)

3.3.10.6 GREATEST and LEAST

The GREATEST and LEAST functions select the largest or smallest value from a list of any
number of expressions.

GREATEST(value [, value2] ...)
LEAST(value [, value2] ...)

The expressions must all be convertible to a common data type, which will be the type of
the result. Null values in the list are ignored. The result will be null only if all the
expressions evaluate to null.

Note that GREATEST and LEAST are not in the SQL standard, but are a common
extension.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

199

3.3.11 Aggregate Functions

Aggregate functions compute a single result value from a set of input values. The built-in
aggregate functions are listed in the following tables.

Table 3-3-18 General-Purpose Aggregate Functions

Function Argument Type Return Type Description

AVG(expression)

INTEGER, REAL,
DOUBLE PRECISION,
NUMBER

NUMBER for any integer
type, DOUBLE PRECISION
for a floating-point
argument, otherwise the
same as the argument data
type

The average (arithmetic mean) of
all input values

COUNT(*) BIGINT Number of input rows

COUNT(expression) Any BIGINT Number of input rows for which
the value of expression is not null

MAX(expression) Any numeric, string,
date/time, or bytea type Same as argument type Maximum value of expression

across all input values

MIN(expression) Any numeric, string,
date/time, or bytea type Same as argument type Minimum value of expression

across all input values

SUM(expression)

INTEGER, REAL,
DOUBLE PRECISION,
NUMBER

BIGINT for SMALLINT or
INTEGER arguments,
NUMBER for BIGINT
arguments, DOUBLE
PRECISION for floating-
point arguments, otherwise
the same as the argument
data type

Sum of expression across all input
values

It should be noted that except for COUNT, these functions return a null value when no
rows are selected. In particular, SUM of no rows returns null, not zero as one might
expect. The COALESCE function may be used to substitute zero for null when necessary.

The following table shows the aggregate functions typically used in statistical analysis.
(These are separated out merely to avoid cluttering the listing of more-commonly-used
aggregates.) Where the description mentions N, it means the number of input rows for
which all the input expressions are non-null. In all cases, null is returned if the
computation is meaningless, for example when N is zero.

Table 3-3-19 Aggregate Functions for Statistics

Function Argument Type Return Type Description
CORR(Y, X) DOUBLE PRECISION DOUBLE PRECISION Correlation coefficient
COVAR_POP(Y, X) DOUBLE PRECISION DOUBLE PRECISION Population covariance
COVAR_SAMP(Y, X) DOUBLE PRECISION DOUBLE PRECISION Sample covariance

REGR_AVGX(Y, X) DOUBLE PRECISION DOUBLE PRECISION Average of the independent
variable (sum(X) / N)

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

200

Function Argument Type Return Type Description

REGR_AVGY(Y, X) DOUBLE PRECISION DOUBLE PRECISION
Average of the dependent
variable (sum(Y) / N)

REGR_COUNT(Y, X) DOUBLE PRECISION DOUBLE PRECISION
Number of input rows in
which both expressions are
nonnull

REGR_INTERCEPT(Y, X) DOUBLE PRECISION DOUBLE PRECISION

y-intercept of the least-
squares-fit linear equation
determined by the (X, Y)
pairs

REGR_R2(Y, X) DOUBLE PRECISION DOUBLE PRECISION Square of the correlation
coefficient

REGR_SLOPE(Y, X) DOUBLE PRECISION DOUBLE PRECISION

Slope of the least-squares-
fit linear equation
determined by the (X, Y)
pairs

REGR_SXX(Y, X) DOUBLE PRECISION DOUBLE PRECISION
Sum (X2) – sum (X)2 / N
(“sum of squares” of the
independent variable)

REGR_SXY(Y, X) DOUBLE PRECISION DOUBLE PRECISION

Sum (X*Y) – sum (X) * sum
(Y) / N (“sum of products”
of independent times
dependent variable)

REGR_SYY(Y, X) DOUBLE PRECISION DOUBLE PRECISION
Sum (Y2) – sum (Y)2 / N
(“sum of squares” of the
dependent variable)

STDDEV(expression)
INTEGER, REAL,
DOUBLE PRECISION,
NUMBER

DOUBLE PRECISION for
floating-point arguments,
otherwise NUMBER

Historic alias for
STDDEV_SAMP

STDDEV_POP(expression)
INTEGER, REAL,
DOUBLE PRECISION,
NUMBER

DOUBLE PRECISION for
floating-point arguments,
otherwise NUMBER

Population standard
deviation of the input
values

STDDEV_SAMP(expression)
INTEGER, REAL,
DOUBLE PRECISION,
NUMBER

DOUBLE PRECISION for
floating-point arguments,
otherwise NUMBER

Sample standard deviation
of the input values

VARIANCE(expression)
INTEGER, REAL,
DOUBLE PRECISION,
NUMBER

DOUBLE PRECISION for
floating-point arguments,
otherwise NUMBER

Historical alias for
VAR_SAMP

VAR_POP(expression)
INTEGER, REAL,
DOUBLE PRECISION,
NUMBER

DOUBLE PRECISION for
floating-point arguments,
otherwise NUMBER

Population variance of the
input values (square of the
population standard
deviation)

VAR_SAMP(expression)
INTEGER, REAL,
DOUBLE PRECISION,
NUMBER

DOUBLE PRECISION for
floating-point arguments,
otherwise NUMBER

Sample variance of the
input values (square of the
sample standard deviation)

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

201

3.3.12 Subquery Expressions

This section describes the SQL-compliant subquery expressions available in Postgres
Plus Advanced Server. All of the expression forms documented in this section return
Boolean (TRUE/FALSE) results.

3.3.12.1 EXISTS

The argument of EXISTS is an arbitrary SELECT statement, or subquery. The subquery is
evaluated to determine whether it returns any rows. If it returns at least one row, the
result of EXISTS is TRUE; if the subquery returns no rows, the result of EXISTS is
FALSE.

EXISTS(subquery)

The subquery can refer to variables from the surrounding query, which will act as
constants during any one evaluation of the subquery.

The subquery will generally only be executed far enough to determine whether at least
one row is returned, not all the way to completion. It is unwise to write a subquery that
has any side effects (such as calling sequence functions); whether the side effects occur
or not may be difficult to predict.

Since the result depends only on whether any rows are returned, and not on the contents
of those rows, the output list of the subquery is normally uninteresting. A common
coding convention is to write all EXISTS tests in the form EXISTS(SELECT 1 WHERE
...). There are exceptions to this rule however, such as subqueries that use INTERSECT.

This simple example is like an inner join on deptno, but it produces at most one output
row for each dept row, even though there are multiple matching emp rows:

SELECT dname FROM dept WHERE EXISTS (SELECT 1 FROM emp WHERE emp.deptno =
dept.deptno);

 dname

 ACCOUNTING
 RESEARCH
 SALES
(3 rows)

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

202

3.3.12.2 IN

The right-hand side is a parenthesized subquery, which must return exactly one column.
The left-hand expression is evaluated and compared to each row of the subquery result.
The result of IN is TRUE if any equal subquery row is found. The result is FALSE if no
equal row is found (including the special case where the subquery returns no rows).

expression IN (subquery)

Note that if the left-hand expression yields NULL, or if there are no equal right-hand
values and at least one right-hand row yields NULL, the result of the IN construct will be
NULL, not FALSE. This is in accordance with SQL‟s normal rules for Boolean
combinations of null values.

As with EXISTS, it‟s unwise to assume that the subquery will be evaluated completely.

3.3.12.3 NOT IN

The right-hand side is a parenthesized subquery, which must return exactly one column.
The left-hand expression is evaluated and compared to each row of the subquery result.
The result of NOT IN is TRUE if only unequal subquery rows are found (including the
special case where the subquery returns no rows). The result is FALSE if any equal row is
found.

expression NOT IN (subquery)

Note that if the left-hand expression yields NULL, or if there are no equal right-hand
values and at least one right-hand row yields NULL, the result of the NOT IN construct
will be NULL, not TRUE. This is in accordance with SQL‟s normal rules for Boolean
combinations of null values.

As with EXISTS, it‟s unwise to assume that the subquery will be evaluated completely.

3.3.12.4 ANY/SOME

The right-hand side is a parenthesized subquery, which must return exactly one column.
The left-hand expression is evaluated and compared to each row of the subquery result
using the given operator, which must yield a Boolean result. The result of ANY is TRUE if
any true result is obtained. The result is FALSE if no true result is found (including the
special case where the subquery returns no rows).

expression operator ANY (subquery)
expression operator SOME (subquery)

SOME is a synonym for ANY. IN is equivalent to = ANY.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

203

Note that if there are no successes and at least one right-hand row yields NULL for the
operator‟s result, the result of the ANY construct will be NULL, not FALSE. This is in
accordance with SQL‟s normal rules for Boolean combinations of null values.

As with EXISTS, it‟s unwise to assume that the subquery will be evaluated completely.

3.3.12.5 ALL

The right-hand side is a parenthesized subquery, which must return exactly one column.
The left-hand expression is evaluated and compared to each row of the subquery result
using the given operator, which must yield a Boolean result. The result of ALL is TRUE if
all rows yield true (including the special case where the subquery returns no rows). The
result is FALSE if any false result is found. The result is NULL if the comparison does not
return FALSE for any row, and it returns NULL for at least one row.

expression operator ALL (subquery)

NOT IN is equivalent to <> ALL. As with EXISTS, it‟s unwise to assume that the
subquery will be evaluated completely.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

204

3.3.13 Uniform Resource Locator Functions

This section describes functions that perform operations based on the Uniform Resource
Locator. The Uniform Resource Locator (URL) is a character string that provides the
address of a network resource. Typical usage of URLs is for web pages, which are
accessed using the Hypertext Transfer Protocol (HTTP) protocol.

3.3.13.1 EDB_GET_URL_AS_BYTEA

The EDB_GET_URL_AS_BYTEA function returns content from the user-specified URL in
one continuous BYTEA string. The signature is:

BYTEA EDB_GET_URL_AS_BYTEA
(
 url TEXT
)

Parameters

url

url is the Uniform Resource Locator from which the function will return content.

Example

The following function retrieves the content of the specified URL and displays the first
few lines in chunks of 40 bytes (80 hexadecimal characters) per line. The function also
returns the total content length in number of bytes.

CREATE OR REPLACE FUNCTION get_url_bytea(
 p_url TEXT
) RETURNS INTEGER
AS $$
DECLARE
 v_data BYTEA;
 v_line TEXT;
 v_start INTEGER;
 v_line_count INTEGER := 0;
 v_line_length INTEGER := 40;
BEGIN
 v_data := EDB_GET_URL_AS_BYTEA(p_url);
 FOR i IN 1 .. 10 LOOP
 v_start := (v_line_count * v_line_length) + 1;
 v_line := SUBSTR(v_data, v_start, v_line_length);
 RAISE INFO '%', v_line;
 v_line_count := v_line_count + 1;
 END LOOP;
 RETURN OCTET_LENGTH(v_data);
END;
$$ LANGUAGE 'plpgsql';

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

205

The following is the output from the example.

edb=# SELECT get_url_bytea('http://www.enterprisedb.com');
INFO: \x3c21444f43545950452068746d6c205055424c494320222d2f2f5733432f2f445444205848544d4c
INFO: \x20312e30205374726963742f2f454e220d0a202022687474703a2f2f7777772e77332e6f72672f54
INFO: \x522f7868746d6c312f4454442f7868746d6c312d7374726963742e647464223e0d0a3c68746d6c20
INFO: \x786d6c6e733d22687474703a2f2f7777772e77332e6f72672f313939392f7868746d6c2220786d6c
INFO: \x3a6c616e673d22656e22206c616e673d22656e22206469723d226c7472223e0d0a0d0a20203c212d
INFO: \x2d205f2048454144205f5f5f5f5f
INFO: \x5f202d2d3e0d0a0d0a20203c686561643e0a3c
INFO: \x6d65746120687474702d65717569763d22436f6e74656e742d547970652220636f6e74656e743d22
INFO: \x746578742f68746d6c3b20636861727365743d7574662d3822202f3e0d0a0d0a0d0a202020203c74
INFO: \x69746c653e456e74657270726973654442207c2054686520506f7374677265732044617461626173
 get_url_bytea

 84216
(1 row)

3.3.13.2 EDB_GET_URL_AS_TEXT

The EDB_GET_URL_AS_TEXT function returns content from the user-specified URL in
one continuous TEXT string. The signature is:

TEXT EDB_GET_URL_AS_TEXT
(
 url TEXT
)

Parameters

url

url is the Uniform Resource Locator from which the function will return content.

Example

The following function retrieves the content of the specified URL and displays the first
few lines in chunks of 80 characters per line. The function also returns the total content
length in number of bytes.

CREATE OR REPLACE FUNCTION get_url_text(
 p_url TEXT
) RETURNS INTEGER
AS $$
DECLARE
 v_data TEXT;
 v_line TEXT;
 v_start INTEGER;
 v_line_count INTEGER := 0;
 v_line_length INTEGER := 80;
BEGIN
 v_data := EDB_GET_URL_AS_TEXT(p_url);
 FOR i IN 1 .. 5 LOOP
 v_start := (v_line_count * v_line_length) + 1;

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

206

 v_line := SUBSTR(v_data, v_start, v_line_length);
 RAISE INFO '%', v_line;
 v_line_count := v_line_count + 1;
 END LOOP;
 RETURN OCTET_LENGTH(v_data);
END;
$$ LANGUAGE 'plpgsql';

The following is the output from the example.

edb=# SELECT get_url_text('http://www.enterprisedb.com');
INFO: <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/T
INFO: R/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml
INFO: :lang="en" lang="en" dir="ltr">

 <!-- ___________________________ HEAD _____
INFO: ______________________ -->

 <head>
<meta http-equiv="Content-Type" content="
INFO: text/html; charset=utf-8" />

 <title>EnterpriseDB | The Postgres Databas
 get_url_text

 83892
(1 row)

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

207

3.4 Table Partitioning

In a partitioned table, one logically large table is broken into smaller physical pieces.
Partitioning can provide several benefits:

x Query performance can be improved dramatically in certain situations,
particularly when most of the heavily accessed rows of the table are in a single
partition or a small number of partitions. Partitioning allows you to omit the
partition column from the front of an index, reducing index size and making it
more likely that the heavily used parts of the index fits in memory.

x When a query or update accesses a large percentage of a single partition,
performance may improve because the server will perform a sequential scan of
the partition instead of using an index and random access reads scattered across
the whole table.

x A bulk load (or unload) can be implemented by adding or removing partitions, if
you plan that requirement into the partitioning design. ALTER TABLE is far faster
than a bulk operation. It also entirely avoids the VACUUM overhead caused by a
bulk DELETE.

x Seldom-used data can be migrated to less-expensifve (or slower) storage media.

Table partitioning is worthwhile only when a table would otherwise be very large. The
exact point at which a table will benefit from partitioning depends on the application; a
good rule of thumb is that the size of the table should exceed the physical memory of the
database server.

This document discusses the Oracle-compatible aspects of table partitioning that are
supported by Advanced Server.

The PostgreSQL 9.5 INSERT… ON CONFLICT DO NOTHING/UPDATE clause
(commonly known as UPSERT) is not supported on Oracle-styled partitioned tables. If
you include the ON CONFLICT DO NOTHING/UPDATE clause when invoking the INSERT
command to add data to a partitioned table, the server will return an error.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

208

3.4.1 Selecting a Partition Type
When you create a partitioned table, you specify LIST, RANGE, or HASH partitioning
rules. The partitioning rules provide a set of constraints that define the data that is stored
in each partition. As new rows are added to the partitioned table, the server uses the
partitioning rules to decide which partition should contain each row.
Advanced Server can also use the partitioning rules to enforce partition pruning,
improving performance when responding to user queries. When selecting a partitioning
type and partitioning keys for a table, you should take into consideration how the data
that is stored within a table will be queried, and include often-queried columns in the
partitioning rules.

List Partitioning

When you create a list-partitioned table, you specify a single partitioning key column.
When adding a row to the table, the server compares the key values specified in the
partitioning rule to the corresponding column within the row. If the column value
matches a value in the partitioning rule, the row is stored in the partition named in the
rule.

Range Partitioning

When you create a range-partitioned table, you specify one or more partitioning key
columns. When you add a new row to the table, the server compares the value of the
partitioning key (or keys) to the corresponding column (or columns) in a table entry. If
the column values satisfy the conditions specified in the partitioning rule, the row is
stored in the partition named in the rule.

Hash Partitioning

When you create a hash-partitioned table, you specify one or more partitioning key
columns. Data is divided into (approx.) equal-sized partitions amongst the specified
partitions. When you add a row to a hash-partitioned table, the server computes a hash
value for the data in the specified column (or columns), and stores the row in a partition
according to the hash value.

Subpartitioning

Subpartitioning breaks a partitioned table into smaller subsets that may or may not be
stored on the same server. A table is typically subpartitioned by a different set of
columns, and may be a different subpartitioning type than the parent partition. If one
partition is subpartitioned, then each partition will have at least one subpartition.

If a table is subpartitioned, no data will be stored in any of the partition tables; the data
will be stored instead in the corresponding subpartitions.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

209

3.4.2 Using Partition Pruning
Advanced Server's query planner uses partition pruning to compute an efficient plan to
locate a row (or rows) that matches the conditions specified in the WHERE clause of a
SELECT statement. To successfully prune partitions from an execution plan, the WHERE
clause must constrain the information that is compared to the partitioning key column
specified when creating the partitioned table. When querying a:

x list-partitioned table, partition pruning is effective when the WHERE clause
compares a literal value to the partitioning key using operators like equal (=) or
AND.

x range-partitioned table, partition pruning is effective when the WHERE clause
compares a literal value to a partitioning key using operators such as equal (=),
less than (<), or greater than (>).

x hash-partitioned table, partition pruning is effective when the WHERE clause
compares a literal value to the partitioning key using an operator such as equal
(=).

The partition pruning mechanism uses two optimization techniques:

x Fast Pruning

x Constraint exclusion

Partition pruning techniques limit the search for data to only those partitions in which the
values for which you are searching might reside. Both pruning techniques remove
partitions from a query's execution plan, increasing performance.

The difference between the fast pruning and constraint exclusion is that fast pruning
understands the relationship between the partitions in an Oracle-partitioned table, while
constraint exclusion does not. For example, when a query searches for a specific value
within a list-partitioned table, fast pruning can reason that only a specific partition may
hold that value, while constraint exclusion must examine the constraints defined for each
partition. Fast pruning occurs early in the planning process to reduce the number of
partitions that the planner must consider, while constraint exclusion occurs late in the
planning process.

Using Constraint Exclusion

The constraint_exclusion parameter controls constraint exclusion. The
constraint_exclusion parameter may have a value of on, off, or partition. To

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

210

enable constraint exclusion, the parameter must be set to either partition or on. By
default, the parameter is set to partition.

For more information about constraint exclusion, see:

http://www.enterprisedb.com/docs/en/9.4/pg/ddl-partitioning.html

When constraint exclusion is enabled, the server examines the constraints defined for
each partition to determine if that partition can satisfy a query.

When you execute a SELECT statement that does not contain a WHERE clause, the query
planner must recommend an execution plan that searches the entire table. When you
execute a SELECT statement that does contain a WHERE clause, the query planner
determines in which partition that row would be stored, and sends query fragments to that
partition, pruning the partitions that could not contain that row from the execution plan.
If you are are not using partitioned tables, disabling constraint exclusion may improve
performance.

Fast Pruning

Like constraint exclusion, fast pruning can only optimize queries that include a WHERE
(or join) clause, and only when the qualifiers in the WHERE clause match a certain form.
In both cases, the query planner will avoid searching for data within partitions that cannot
possibly hold the data required by the query.

Fast pruning is controlled by a boolean configuration parameter named
edb_enable_pruning. If edb_enable_pruning is ON, Advanced Server will fast
prune certain queries. If edb_enable_pruning is OFF, the server will disable fast
pruning.

Please note: Fast pruning cannot optimize queries against subpartitioned tables or
optimize queries against range-partitioned tables that are partitioned on more than one
column.

For LIST-partitioned tables, Advanced Server can fast prune queries that contain a
WHERE clause that constrains a partitioning column to a literal value. For example, given
a LIST-partitioned table such as:

CREATE TABLE sales_hist(..., country text, ...)
PARTITION BY LIST(country)
(
 PARTITION americas VALUES('US', 'CA', 'MX'),
 PARTITION europe VALUES('BE', 'NL', 'FR'),
 PARTITION asia VALUES('JP', 'PK', 'CN'),
 PARTITION others VALUES(DEFAULT)
)

http://www.enterprisedb.com/docs/en/9.4/pg/ddl-partitioning.html

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

211

Fast pruning can reason about WHERE clauses such as:

WHERE country = 'US'
WHERE country IS NULL;

Given the first WHERE clause, fast pruning would eliminate partitions europe, asia, and
others because those partitions cannot hold rows that satisfy the qualifier: WHERE
country = 'US'.

Given the second WHERE clause, fast pruning would eliminate partitions americas,
europe, and asia because because those partitions cannot hold rows where country
IS NULL.

The operator specified in the WHERE clause must be an equal sign (=) or the equality
operator appropriate for the data type of the partitioning column.

For range-partitioned tables, Advanced Server can fast prune queries that contain a
WHERE clause that constrains a partitioning column to a literal value, but the operator may
be any of the following:

>
>=
=
<=
<

Fast pruning will also reason about more complex expressions involving AND and
BETWEEN operators, such as:

WHERE size > 100 AND size <= 200
WHERE size BETWEEN 100 AND 200

But cannot prune based on expressions involving OR or IN.

For example, when querying a RANGE-partitioned table, such as:

CREATE TABLE boxes(id int, size int, color text)
 PARTITION BY RANGE(size)
(
 PARTITION small VALUES LESS THAN(100),
 PARTITION medium VALUES LESS THAN(200),
 PARTITION large VALUES LESS THAN(300)
)

Fast pruning can reason about WHERE clauses such as:

WHERE size > 100 -- scan partitions 'medium' and 'large'

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

212

WHERE size >= 100 -- scan partitions 'medium' and 'large'
WHERE size = 100 -- scan partition 'medium'
WHERE size <= 100 -- scan partitions 'small' and 'medium'
WHERE size < 100 -- scan partition 'small'
WHERE size > 100 AND size < 199 -- scan partition 'medium'
WHERE size BETWEEN 100 AND 199 -- scan partition 'medium'
WHERE color = 'red' AND size = 100 -- scan 'medium'
WHERE color = 'red' AND (size > 100 AND size < 199) -- scan
'medium'

In each case, fast pruning requires that the qualifier must refer to a partitioning column
and literal value (or IS NULL/IS NOT NULL).

Note that fast pruning can also optimize DELETE and UPDATE statements containing
WHERE clauses of the forms described above.

3.4.3 Example - Partition Pruning

The EXPLAIN statement displays the execution plan of a statement. You can use the
EXPLAIN statement to confirm that Advanced Server is pruning partitions from the
execution plan of a query.

To demonstrate the efficiency of partition pruning, first create a simple table:

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY LIST(country)
(
 PARTITION europe VALUES('FRANCE', 'ITALY'),
 PARTITION asia VALUES('INDIA', 'PAKISTAN'),
 PARTITION americas VALUES('US', 'CANADA')
);

Then, perform a constrained query that includes the EXPLAIN statement:

EXPLAIN (COSTS OFF) SELECT * FROM sales WHERE country = 'INDIA';

The resulting query plan shows that the server will scan only the sales_asia table - the
table in which a row with a country value of INDIA would be stored:

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

213

edb=# EXPLAIN (COSTS OFF) SELECT * FROM sales WHERE country = 'INDIA';
 QUERY PLAN

 Append
 -> Seq Scan on sales
 Filter: ((country)::text = 'INDIA'::text)
 -> Seq Scan on sales_asia
 Filter: ((country)::text = 'INDIA'::text)
(5 rows)

If you perform a query that searches for a row that matches a value not included in the
partitioning key:

EXPLAIN (COSTS OFF) SELECT * FROM sales WHERE dept_no = '30';

The resulting query plan shows that the server must look in all of the partitions to locate
the rows that satisfy the query:

edb=# EXPLAIN (COSTS OFF) SELECT * FROM sales WHERE dept_no = '30';
 QUERY PLAN

 Append
 -> Seq Scan on sales
 Filter: (dept_no = 30::numeric)
 -> Seq Scan on sales_europe
 Filter: (dept_no = 30::numeric)
 -> Seq Scan on sales_asia
 Filter: (dept_no = 30::numeric)
 -> Seq Scan on sales_americas
 Filter: (dept_no = 30::numeric)
(9 rows)

Constraint exclusion also applies when querying subpartitioned tables:

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY RANGE(date) SUBPARTITION BY LIST (country)
(
 PARTITION "2011" VALUES LESS THAN('01-JAN-2012')
 (
 SUBPARTITION europe_2011 VALUES ('ITALY', 'FRANCE'),
 SUBPARTITION asia_2011 VALUES ('PAKISTAN', 'INDIA'),
 SUBPARTITION americas_2011 VALUES ('US', 'CANADA')
),
 PARTITION "2012" VALUES LESS THAN('01-JAN-2013')
 (
 SUBPARTITION europe_2012 VALUES ('ITALY', 'FRANCE'),

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

214

 SUBPARTITION asia_2012 VALUES ('PAKISTAN', 'INDIA'),
 SUBPARTITION americas_2012 VALUES ('US', 'CANADA')
),
 PARTITION "2013" VALUES LESS THAN('01-JAN-2014')
 (
 SUBPARTITION europe_2013 VALUES ('ITALY', 'FRANCE'),
 SUBPARTITION asia_2013 VALUES ('PAKISTAN', 'INDIA'),
 SUBPARTITION americas_2013 VALUES ('US', 'CANADA')
)
);

When you query the table, the query planner prunes any partitions or subpartitions from
the search path that cannot possibly contain the desired result set:

edb=# EXPLAIN (COSTS OFF) SELECT * FROM sales WHERE country = 'US' AND date =
'Dec 12, 2012';
 QUERY PLAN

 Append
 -> Seq Scan on sales
 Filter: (((country)::text = 'US'::text) AND (date = '12-DEC-12
00:00:00'::timestamp without time zone))
 -> Seq Scan on sales_2012
 Filter: (((country)::text = 'US'::text) AND (date = '12-DEC-12
00:00:00'::timestamp without time zone))
 -> Seq Scan on sales_americas_2012
 Filter: (((country)::text = 'US'::text) AND (date = '12-DEC-12
00:00:00'::timestamp without time zone))
(7 rows)

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

215

3.5 Partitioning Command Syntax

The following sections provide information about using the table partitioning syntax
supported by Advanced Server.

3.5.1 CREATE TABLE…PARTITION BY

Use the PARTITION BY clause of the CREATE TABLE command to create a partitioned
table with data distributed amongst one or more partitions (and subpartitions). The
command syntax comes in the following forms:

List Partitioning Syntax

Use the first form to create a list-partitioned table:

CREATE TABLE [schema.]table_name
 table_definition
 PARTITION BY LIST(column)
 [SUBPARTITION BY {RANGE|LIST} (column[, column]...)]
 (list_partition_definition[, list_partition_definition]...);
Where list_partition_definition is:

PARTITION [partition_name]
 VALUES (value[, value]...)
 [TABLESPACE tablespace_name]
 [(subpartition, ...)]

Range Partitioning Syntax

Use the second form to create a range-partitioned table:

CREATE TABLE [schema.]table_name
 table_definition
 PARTITION BY RANGE(column[, column]...)
 [SUBPARTITION BY {RANGE|LIST} (column[, column]...)]
 (range_partition_definition[, range_partition_definition]...);
Where range_partition_definition is:

PARTITION [partition_name]
 VALUES LESS THAN (value[, value]...)
 [TABLESPACE tablespace_name]
 [(subpartition, ...)]

Hash Partitioning Syntax

Use the third form to create a hash-partitioned table:

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

216

CREATE TABLE [schema.]table_name
 table_definition
 PARTITION BY HASH(column[, column]...)
 [SUBPARTITION BY {RANGE|LIST|HASH} (column[, column]...)]
 (hash_partition_definition[, hash_partition_definition]...);
Where hash_partition_definition is:

[PARTITION partition_name]
 [TABLESPACE tablespace_name]
 [(subpartition, ...)]

Subpartitioning Syntax

subpartition may be one of the following:

{list_subpartition | range_subpartition | hash_subpartition}
where list_subpartition is:

SUBPARTITION [subpartition_name]
 VALUES (value[, value]...)
 [TABLESPACE tablespace_name]

where range_subpartition is:
SUBPARTITION [subpartition_name]
 VALUES LESS THAN (value[, value]...)
 [TABLESPACE tablespace_name]

where hash_subpartition is:
[SUBPARTITION subpartition_name]
 [TABLESPACE tablespace_name]

Description

The CREATE TABLE… PARTITION BY command creates a table with one or more
partitions; each partition may have one or more subpartitions. There is no upper limit to
the number of defined partitions, but if you include the PARTITION BY clause, you must
specify at least one partitioning rule. The resulting table will be owned by the user that
creates it.

Use the PARTITION BY LIST clause to divide a table into partitions based on the values
entered in a specified column. Each partitioning rule must specify at least one literal
value, but there is no upper limit placed on the number of values you may specify.
Include a rule that specifies a matching value of DEFAULT to direct any un-qualified rows
to the given partition; for more information about using the DEFAULT keyword, see
Section 3.6.

Use the PARTITION BY RANGE clause to specify boundary rules by which to create
partitions. Each partitioning rule must contain at least one column of a data type that has
two operators (i.e., a greater-than or equal to operator, and a less-than operator). Range
boundaries are evaluated against a LESS THAN clause and are non-inclusive; a date

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

217

boundary of January 1, 2013 will include only those date values that fall on or before
December 31, 2012.

Range partition rules must be specified in ascending order. INSERT commands that store
rows with values that exceed the top boundary of a range-partitioned table will fail unless
the partitioning rules include a boundary rule that specifies a value of MAXVALUE. If you
do not include a MAXVALUE partitioning rule, any row that exceeds the maximum limit
specified by the boundary rules will result in an error.

For more information about using the MAXVALUE keyword, see Section 3.6.

Use the TABLESPACE keyword to specify the name of a tablespace on which a partition
or subpartition will reside; if you do not specify a tablespace, the partition or subpartition
will reside in the default tablespace.

If a table definition includes the SUBPARTITION BY clause, each partition within that
table will have at least one subpartition. Each subpartition may be explicitly defined or
system-defined.

If the subpartition is system-defined, the server-generated subpartition will reside in the
default tablespace, and the name of the subpartition will be assigned by the server. The
server will create:

x A DEFAULT subpartition if the SUBPARTITION BY clause specifies LIST.

x A MAXVALUE subpartition if the SUBPARTITION BY clause specifies RANGE.

The server will generate a subpartition name that is a combination of the partition table
name and a unique identifier. You can query the ALL_TAB_SUBPARTITIONS table to
review a complete list of subpartition names.

Parameters
table_name

The name (optionally schema-qualified) of the table to be created.

table_definition

The column names, data types, and constraint information as described in the
PostgreSQL core documentation for the CREATE TABLE statement, available at
the EnterpriseDB website at:

http://www.enterprisedb.com/docs/en/9.4/pg/sql-createtable.html

partition_name

http://www.enterprisedb.com/docs/en/9.4/pg/sql-createtable.html

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

218

The name of the partition to be created. Partition names must be unique amongst
all partitions and subpartitions, and must follow the naming conventions for
object identifiers.

subpartition_name

The name of the subpartition to be created. Subpartition names must be unique
amongst all partitions and subpartitions, and must follow the naming conventions
for object identifiers.

column

The name of a column on which the partitioning rules are based. Each row will
be stored in a partition that corresponds to the value of the specified column(s).

(value[, value]...)

Use value to specify a quoted literal value (or comma-delimited list of literal
values) by which table entries will be grouped into partitions. Each partitioning
rule must specify at least one value, but there is no limit placed on the number of
values specified within a rule. value may be NULL, DEFAULT (if specifying a
LIST partition), or MAXVALUE (if specifying a RANGE partition).

When specifying rules for a list-partitioned table, include the DEFAULT keyword in the
last partition rule to direct any un-matched rows to the given partition. If you do not
include a rule that includes a value of DEFAULT, any INSERT statement that attempts to
add a row that does not match the specified rules of at least one partition will fail, and
return an error.
When specifying rules for a list-partitioned table, include the MAXVALUE keyword in the
last partition rule to direct any un-categorized rows to the given partition. If you do not
include a MAXVALUE partition, any INSERT statement that attempts to add a row where
the partitioning key is greater than the highest value specified will fail, and return an
error.
tablespace_name

The name of the tablespace in which the partition or subpartition resides.

3.5.1.1 Example - PARTITION BY LIST

The following example creates a partitioned table (sales) using the PARTITION BY
LIST clause. The sales table stores information in three partitions (europe, asia, and
americas):

CREATE TABLE sales
(
 dept_no number,

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

219

 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY LIST(country)
(
 PARTITION europe VALUES('FRANCE', 'ITALY'),
 PARTITION asia VALUES('INDIA', 'PAKISTAN'),
 PARTITION americas VALUES('US', 'CANADA')
);

The resulting table is partitioned by the value specified in the country column:

acctg=# SELECT partition_name, high_value from ALL_TAB_PARTITIONS;
 partition_name | high_value
----------------+---------------------
 americas | 'US', 'CANADA'
 asia | 'INDIA', 'PAKISTAN'
 europe | 'FRANCE', 'ITALY'
(3 rows)

x Rows with a value of US or CANADA in the country column are stored in the
americas partition.

x Rows with a value of INDIA or PAKISTAN in the country column are stored in
the asia partition.

x Rows with a value of FRANCE or ITALY in the country column are stored in the
europe partition.

The server would evaluate the following statement against the partitioning rules, and
store the row in the europe partition:
INSERT INTO sales VALUES (10, '9519a', 'FRANCE', '18-Aug-2012',
'650000');

3.5.1.2 Example - PARTITION BY RANGE

The following example creates a partitioned table (sales) using the PARTITION BY
RANGE clause. The sales table stores information in four partitions (q1_2012,
q2_2012, q3_2012 and q4_2012) :

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

220

 amount number
)
PARTITION BY RANGE(date)
(
 PARTITION q1_2012
 VALUES LESS THAN('2012-Apr-01'),
 PARTITION q2_2012
 VALUES LESS THAN('2012-Jul-01'),
 PARTITION q3_2012
 VALUES LESS THAN('2012-Oct-01'),
 PARTITION q4_2012
 VALUES LESS THAN('2013-Jan-01')
);

The resulting table is partitioned by the value specified in the date column:

acctg=# SELECT partition_name, high_value from ALL_TAB_PARTITIONS;
 partition_name | high_value
----------------+---------------
 q4_2012 | '2013-Jan-01'
 q3_2012 | '2012-Oct-01'
 q2_2012 | '2012-Jul-01'
 q1_2012 | '2012-Apr-01'
(4 rows)

x Any row with a value in the date column before April 1, 2012 is stored in a
partition named q1_2012.

x Any row with a value in the date column before July 1, 2012 is stored in a
partition named q2_2012.

x Any row with a value in the date column before October 1, 2012 is stored in a
partition named q3_2012.

x Any row with a value in the date column before January 1, 2013 is stored in a
partition named q4_2012.

The server would evaluate the following statement against the partitioning rules and store
the row in the q3_2012 partition:

INSERT INTO sales VALUES (10, '9519a', 'FRANCE', '18-Aug-2012',
'650000');

3.5.1.3 Example - PARTITION BY HASH

The following example creates a partitioned table (sales) using the PARTITION BY
HASH clause. The sales table stores information in three partitions (p1, p2, and p3:

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

221

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY HASH (part_no)
(
 PARTITION p1,
 PARTITION p2,
 PARTITION p3
);

The table is partitioned by the hash value of the value specified in the part_no column:

acctg=# SELECT partition_name, partition_position from ALL_TAB_PARTITIONS;
 partition_name | partition_position
----------------+--------------------
 p3 | 3
 p2 | 2
 p1 | 1
(3 rows)

The server will evaluate the hash value of the part_no column, and distribute the rows
into approximately equal partitions.

3.5.1.4 Example - PARTITION BY RANGE, SUBPARTITION BY
LIST

The following example creates a partitioned table (sales) that is first partitioned by the
transaction date; the range partitions (q1_2012, q2_2012, q3_2012 and q4_2012) are
then list-subpartitioned using the value of the country column.

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY RANGE(date)
 SUBPARTITION BY LIST(country)
 (
 PARTITION q1_2012
 VALUES LESS THAN('2012-Apr-01')
 (
 SUBPARTITION q1_europe VALUES ('FRANCE', 'ITALY'),

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

222

 SUBPARTITION q1_asia VALUES ('INDIA', 'PAKISTAN'),
 SUBPARTITION q1_americas VALUES ('US', 'CANADA')
),
 PARTITION q2_2012
 VALUES LESS THAN('2012-Jul-01')
 (
 SUBPARTITION q2_europe VALUES ('FRANCE', 'ITALY'),
 SUBPARTITION q2_asia VALUES ('INDIA', 'PAKISTAN'),
 SUBPARTITION q2_americas VALUES ('US', 'CANADA')
),
 PARTITION q3_2012
 VALUES LESS THAN('2012-Oct-01')
 (
 SUBPARTITION q3_europe VALUES ('FRANCE', 'ITALY'),
 SUBPARTITION q3_asia VALUES ('INDIA', 'PAKISTAN'),
 SUBPARTITION q3_americas VALUES ('US', 'CANADA')
),
 PARTITION q4_2012
 VALUES LESS THAN('2013-Jan-01')
 (
 SUBPARTITION q4_europe VALUES ('FRANCE', 'ITALY'),
 SUBPARTITION q4_asia VALUES ('INDIA', 'PAKISTAN'),
 SUBPARTITION q4_americas VALUES ('US', 'CANADA')
)
);

This statement creates a table with four partitions; each partition has three subpartitions:

acctg=# SELECT subpartition_name, high_value, partition_name FROM
ALL_TAB_SUBPARTITIONS;
 subpartition_name | high_value | partition_name
-------------------+---------------------+----------------
 q4_asia | 'INDIA', 'PAKISTAN' | q4_2012
 q4_europe | 'FRANCE', 'ITALY' | q4_2012
 q4_americas | 'US', 'CANADA' | q4_2012
 q3_americas | 'US', 'CANADA' | q3_2012
 q3_asia | 'INDIA', 'PAKISTAN' | q3_2012
 q3_europe | 'FRANCE', 'ITALY' | q3_2012
 q2_americas | 'US', 'CANADA' | q2_2012
 q2_asia | 'INDIA', 'PAKISTAN' | q2_2012
 q2_europe | 'FRANCE', 'ITALY' | q2_2012
 q1_americas | 'US', 'CANADA' | q1_2012
 q1_asia | 'INDIA', 'PAKISTAN' | q1_2012
 q1_europe | 'FRANCE', 'ITALY' | q1_2012
(12 rows)

When a row is added to this table, the value in the date column is compared to the
values specified in the range partitioning rules, and the server selects the partition in
which the row should reside. The value in the country column is then compared to the
values specified in the list subpartitioning rules; when the server locates a match for the
value, the row is stored in the corresponding subpartition.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

223

Any row added to the table will be stored in a subpartition, so the partitions will contain
no data.

The server would evaluate the following statement against the partitioning and
subpartitioning rulesand store the row in the q3_europe partition:

INSERT INTO sales VALUES (10, '9519a', 'FRANCE', '18-Aug-2012',
'650000');

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

224

3.5.2 ALTER TABLE...ADD PARTITION

Use the ALTER TABLE… ADD PARTITION command to add a partition to an existing
partitioned table. The syntax is:

ALTER TABLE table_name ADD PARTITION partition_definition;

Where partition_definition is:

{list_partition | range_partition }

and list_partition is:

PARTITION [partition_name]
 VALUES (value[, value]...)
 [TABLESPACE tablespace_name]
 [(subpartition, ...)]

and range_partition is:

PARTITION [partition_name]
 VALUES LESS THAN (value[, value]...)
 [TABLESPACE tablespace_name]
 [(subpartition, ...)]

Where subpartition is:

{list_subpartition | range_subpartition | hash_subpartition}

and list_subpartition is:

SUBPARTITION [subpartition_name]
 VALUES (value[, value]...)
 [TABLESPACE tablespace_name]

and range_subpartition is:

SUBPARTITION [subpartition_name]
 VALUES LESS THAN (value[, value]...)
 [TABLESPACE tablespace_name]

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

225

Description

The ALTER TABLE… ADD PARTITION command adds a partition to an existing
partitioned table. There is no upper limit to the number of defined partitions in a
partitioned table.

New partitions must be of the same type (LIST, RANGE or HASH) as existing partitions.
The new partition rules must reference the same column specified in the partitioning rules
that define the existing partition(s).

You cannot use the ALTER TABLE… ADD PARTITION statement to add a partition to a
table with a MAXVALUE or DEFAULT rule. Note that you can alternatively use the ALTER
TABLE… SPLIT PARTITION statement to split an existing partition, effectively
increasing the number of partitions in a table.

RANGE partitions must be specified in ascending order. You cannot add a new partition
that precedes existing partitions in a RANGE partitioned table.

Include the TABLESPACE clause to specify the tablespace in which the new partition will
reside. If you do not specify a tablespace, the partition will reside in the default
tablespace.

If the table is indexed, the index will be created on the new partition.

To use the ALTER TABLE... ADD PARTITION command you must be the table owner,
or have superuser (or administrative) privileges.

Parameters

table_name

The name (optionally schema-qualified) of the partitioned table.

partition_name

The name of the partition to be created. Partition names must be unique amongst
all partitions and subpartitions, and must follow the naming conventions for
object identifiers.

subpartition_name

The name of the subpartition to be created. Subpartition names must be unique
amongst all partitions and subpartitions, and must follow the naming conventions
for object identifiers.

(value[, value]...)

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

226

Use value to specify a quoted literal value (or comma-delimited list of literal
values) by which rows will be distributed into partitions. Each partitioning rule
must specify at least one value, but there is no limit placed on the number of
values specified within a rule. value may also be NULL, DEFAULT (if specifying
a LIST partition), or MAXVALUE (if specifying a RANGE partition).

For information about creating a DEFAULT or MAXVALUE partition, see Section
3.6.

tablespace_name

The name of the tablespace in which a partition or subpartition resides.

3.5.2.1 Example - Adding a Partition to a LIST Partitioned Table

The example that follows adds a partition to the list-partitioned sales table. The table
was created using the command:

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY LIST(country)
(
 PARTITION europe VALUES('FRANCE', 'ITALY'),
 PARTITION asia VALUES('INDIA', 'PAKISTAN'),
 PARTITION americas VALUES('US', 'CANADA')
);

The table contains three partitions (americas, asia, and europe) :

acctg=# SELECT partition_name, high_value FROM ALL_TAB_PARTITIONS;
 partition_name | high_value
----------------+---------------------
 americas | 'US', 'CANADA'
 asia | 'INDIA', 'PAKISTAN'
 europe | 'FRANCE', 'ITALY'
(3 rows)

The following command adds a partition named east_asia to the sales table:

ALTER TABLE sales ADD PARTITION east_asia
 VALUES ('CHINA', 'KOREA');

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

227

After invoking the command, the table includes the east_asia partition:

acctg=# SELECT partition_name, high_value FROM ALL_TAB_PARTITIONS;
 partition_name | high_value
----------------+---------------------
 east_asia | 'CHINA', 'KOREA'
 americas | 'US', 'CANADA'
 asia | 'INDIA', 'PAKISTAN'
 europe | 'FRANCE', 'ITALY'
(4 rows)

3.5.2.2 Example - Adding a Partition to a RANGE Partitioned Table

The example that follows adds a partition to a range-partitioned table named sales:

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY RANGE(date)
(
 PARTITION q1_2012
 VALUES LESS THAN('2012-Apr-01'),
 PARTITION q2_2012
 VALUES LESS THAN('2012-Jul-01'),
 PARTITION q3_2012
 VALUES LESS THAN('2012-Oct-01'),
 PARTITION q4_2012
 VALUES LESS THAN('2013-Jan-01')
);

The table contains four partitions (q1_2012, q2_2012, q3_2012, and q4_2012):

acctg=# SELECT partition_name, high_value FROM ALL_TAB_PARTITIONS;
 partition_name | high_value
----------------+---------------
 q4_2012 | '2013-Jan-01'
 q3_2012 | '2012-Oct-01'
 q2_2012 | '2012-Jul-01'
 q1_2012 | '2012-Apr-01'
(4 rows)

The following command adds a partition named q1_2013 to the sales table:

ALTER TABLE sales ADD PARTITION q1_2013
 VALUES LESS THAN('01-APR-2013');

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

228

After invoking the command, the table includes the q1_2013 partition:

acctg=# SELECT partition_name, high_value FROM ALL_TAB_PARTITIONS;
 partition_name | high_value
----------------+---------------
 q1_2012 | '2012-Apr-01'
 q2_2012 | '2012-Jul-01'
 q3_2012 | '2012-Oct-01'
 q4_2012 | '2013-Jan-01'
 q1_2013 | '01-APR-2013'
(5 rows)

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

229

3.5.3 ALTER TABLE… ADD SUBPARTITION

The ALTER TABLE… ADD SUBPARTITION command adds a subpartition to an existing
subpartitioned partition. The syntax is:

ALTER TABLE table_name MODIFY PARTITION partition_name
 ADD SUBPARTITION subpartition_definition;

Where subpartition_definition is:

{list_subpartition | range_subpartition}

and list_subpartition is:

SUBPARTITION [subpartition_name]
 VALUES (value[, value]...)
 [TABLESPACE tablespace_name]

and range_subpartition is:

SUBPARTITION [subpartition_name]
 VALUES LESS THAN (value[, value]...)
 [TABLESPACE tablespace_name]

Description

The ALTER TABLE… ADD SUBPARTITION command adds a subpartition to an existing
partition; the partition must already be subpartitioned. There is no upper limit to the
number of defined subpartitions.

New subpartitions must be of the same type (LIST, RANGE or HASH) as existing
subpartitions. The new subpartition rules must reference the same column specified in
the subpartitioning rules that define the existing subpartition(s).

You cannot use the ALTER TABLE… ADD SUBPARTITION statement to add a subpartition
to a table with a MAXVALUE or DEFAULT rule , but you can split an existing subpartition
with the ALTER TABLE… SPLIT SUBPARTITION statement, effectively adding a
subpartition to a table.

You cannot add a new subpartition that precedes existing subpartitions in a range
subpartitioned table; range subpartitions must be specified in ascending order.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

230

Include the TABLESPACE clause to specify the tablespace in which the subpartition will
reside. If you do not specify a tablespace, the subpartition will be created in the default
tablespace.

If the table is indexed, the index will be created on the new subpartition.

To use the ALTER TABLE... ADD SUBPARTITION command you must be the table
owner, or have superuser (or administrative) privileges.

Parameters

table_name

The name (optionally schema-qualified) of the partitioned table in which the
subpartition will reside.

partition_name

The name of the partition in which the new subpartition will reside.

subpartition_name

The name of the subpartition to be created. Subpartition names must be unique
amongst all partitions and subpartitions, and must follow the naming conventions
for object identifiers.

(value[, value]...)

Use value to specify a quoted literal value (or comma-delimited list of literal
values) by which table entries will be grouped into partitions. Each partitioning
rule must specify at least one value, but there is no limit placed on the number of
values specified within a rule. value may also be NULL, DEFAULT (if specifying
a LIST partition), or MAXVALUE (if specifying a RANGE partition).

For information about creating a DEFAULT or MAXVALUE partition, see Section
3.6.

tablespace_name

The name of the tablespace in which the subpartition resides.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

231

3.5.3.1 Example - Adding a Subpartition to a LIST-RANGE Partitioned
Table

The following example adds a RANGE subpartition to the list-partitioned sales table.
The sales table was created with the command:

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY LIST(country)
 SUBPARTITION BY RANGE(date)
(
 PARTITION europe VALUES('FRANCE', 'ITALY')
 (
 SUBPARTITION europe_2011
 VALUES LESS THAN('2012-Jan-01'),
 SUBPARTITION europe_2012
 VALUES LESS THAN('2013-Jan-01')
),
 PARTITION asia VALUES('INDIA', 'PAKISTAN')
 (
 SUBPARTITION asia_2011
 VALUES LESS THAN('2012-Jan-01'),
 SUBPARTITION asia_2012
 VALUES LESS THAN('2013-Jan-01')
),
 PARTITION americas VALUES('US', 'CANADA')
 (
 SUBPARTITION americas_2011
 VALUES LESS THAN('2012-Jan-01'),
 SUBPARTITION americas_2012
 VALUES LESS THAN('2013-Jan-01')
)
);

The sales table has three partitions, named europe, asia, and americas. Each
partition has two range-defined subpartitions:

acctg=# SELECT partition_name, subpartition_name, high_value FROM
ALL_TAB_SUBPARTITIONS;
 partition_name | subpartition_name | high_value
----------------+-------------------+---------------
 europe | europe_2011 | '2012-Jan-01'
 europe | europe_2012 | '2013-Jan-01'
 asia | asia_2011 | '2012-Jan-01'
 asia | asia_2012 | '2013-Jan-01'

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

232

 americas | americas_2011 | '2012-Jan-01'
 americas | americas_2012 | '2013-Jan-01'
(6 rows)

The following command adds a subpartition named europe_2013:

ALTER TABLE sales MODIFY PARTITION europe
 ADD SUBPARTITION europe_2013
 VALUES LESS THAN('2014-Jan-01');

After invoking the command, the table includes a subpartition named europe_2013:

acctg=# SELECT partition_name, subpartition_name, high_value FROM
ALL_TAB_SUBPARTITIONS;
 partition_name | subpartition_name | high_value
----------------+-------------------+---------------
 europe | europe_2011 | '2012-Jan-01'
 europe | europe_2012 | '2013-Jan-01'
 europe | europe_2013 | '2014-Jan-01'
 asia | asia_2011 | '2012-Jan-01'
 asia | asia_2012 | '2013-Jan-01'
 americas | americas_2011 | '2012-Jan-01'
 americas | americas_2012 | '2013-Jan-01'
(7 rows)

Note that when adding a new range subpartition, the subpartitioning rules must specify a
range that falls after any existing subpartitions.

3.5.3.2 Example - Adding a Subpartition to a RANGE-LIST Partitioned
Table

The following example adds a LIST subpartition to the RANGE partitioned sales table.
The sales table was created with the command:

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY RANGE(date)
 SUBPARTITION BY LIST (country)
 (
 PARTITION first_half_2012 VALUES LESS THAN('01-JUL-2012')
 (
 SUBPARTITION europe VALUES ('ITALY', 'FRANCE'),
 SUBPARTITION americas VALUES ('US', 'CANADA')

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

233

),
 PARTITION second_half_2012 VALUES LESS THAN('01-JAN-2013')
 (
 SUBPARTITION asia VALUES ('INDIA', 'PAKISTAN')
)
);

After executing the above command, the sales table will have two partitions, named
first_half_2012 and second_half_2012. The first_half_2012 partition has
two subpartitions, named europe and americas, and the second_half_2012 partition
has one partition, named asia:

acctg=# SELECT partition_name, subpartition_name, high_value FROM
ALL_TAB_SUBPARTITIONS;
 partition_name | subpartition_name | high_value
------------------+-------------------+---------------------
 first_half_2012 | europe | 'ITALY', 'FRANCE'
 first_half_2012 | americas | 'US', 'CANADA'
 second_half_2012 | asia | 'INDIA', 'PAKISTAN'
(3 rows)

The following command adds a subpartition to the second_half_2012 partition,
named east_asia:

ALTER TABLE sales MODIFY PARTITION second_half_2012
 ADD SUBPARTITION east_asia VALUES ('CHINA');

After invoking the command, the table includes a subpartition named east_asia:

acctg=# SELECT partition_name, subpartition_name, high_value FROM
ALL_TAB_SUBPARTITIONS;
 partition_name | subpartition_name | high_value
------------------+-------------------+---------------------
 first_half_2012 | europe | 'ITALY', 'FRANCE'
 first_half_2012 | americas | 'US', 'CANADA'
 second_half_2012 | asia | 'INDIA', 'PAKISTAN'
 second_half_2012 | east_asia | 'CHINA'
(4 rows)

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

234

3.5.4 ALTER TABLE...SPLIT PARTITION

Use the ALTER TABLE… SPLIT PARTITION command to divide a single partition into
two partitions, and redistribute the partition's contents between the new partitions. The
command syntax comes in two forms.

The first form splits a RANGE partition into two partitions:

ALTER TABLE table_name SPLIT PARTITION partition_name
 AT (range_part_value)
 INTO
 (
 PARTITION new_part1
 [TABLESPACE tablespace_name],
 PARTITION new_part2
 [TABLESPACE tablespace_name]
);

The second form splits a LIST partition into two partitions:

ALTER TABLE table_name SPLIT PARTITION partition_name
 VALUES (value[, value]...)
 INTO
 (
 PARTITION new_part1
 [TABLESPACE tablespace_name],
 PARTITION new_part2
 [TABLESPACE tablespace_name]
);

Description

The ALTER TABLE...SPLIT PARTITION command adds a partition to an existing LIST
or RANGE partitioned table. Please note that the ALTER TABLE… SPLIT PARTITION
command cannot add a partition to a HASH partitioned table. There is no upper limit to
the number of partitions that a table may have.

When you execute an ALTER TABLE...SPLIT PARTITION command, Advanced
Server creates two new partitions, and redistributes the content of the old partition
between them (as constrained by the partitioning rules).

Include the TABLESPACE clause to specify the tablespace in which a partition will reside.
If you do not specify a tablespace, the partition will reside in the default tablespace.

If the table is indexed, the index will be created on the new partition.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

235

To use the ALTER TABLE... SPLIT PARTITION command you must be the table
owner, or have superuser (or administrative) privileges.

Parameters

table_name

The name (optionally schema-qualified) of the partitioned table.

partition_name

The name of the partition that is being split.

new_part1

The name of the first new partition to be created. Partition names must be unique
amongst all partitions and subpartitions, and must follow the naming conventions
for object identifiers.

new_part1 will receive the rows that meet the subpartitioning constraints
specified in the ALTER TABLE… SPLIT SUBPARTITION command.

new_part2

The name of the second new partition to be created. Partition names must be
unique amongst all partitions and subpartitions, and must follow the naming
conventions for object identifiers.

new_part2 will receive the rows are not directed to new_part1 by the
partitioning constraints specified in the ALTER TABLE… SPLIT PARTITION
command.

range_part_value

Use range_part_value to specify the boundary rules by which to create the
new partition. The partitioning rule must contain at least one column of a data
type that has two operators (i.e., a greater-than-or-equal to operator, and a less-
than operator). Range boundaries are evaluated against a LESS THAN clause and
are non-inclusive; a date boundary of January 1, 2010 will include only those date
values that fall on or before December 31, 2009.

(value[, value]...)

Use value to specify a quoted literal value (or comma-delimited list of literal
values) by which rows will be distributed into partitions. Each partitioning rule

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

236

must specify at least one value, but there is no limit placed on the number of
values specified within a rule.

For information about creating a DEFAULT or MAXVALUE partition, see Section
3.6.

tablespace_name

The name of the tablespace in which the partition or subpartition resides.

3.5.4.1 Example - Splitting a LIST Partition

Our example will divide one of the partitions in the list-partitioned sales table into two
new partitions, and redistribute the contents of the partition between them. The sales
table is created with the statement:

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY LIST(country)
(
 PARTITION europe VALUES('FRANCE', 'ITALY'),
 PARTITION asia VALUES('INDIA', 'PAKISTAN'),
 PARTITION americas VALUES('US', 'CANADA')
);

The table definition creates three partitions (europe, asia, and americas). The
following command adds rows to each partition:

INSERT INTO sales VALUES
 (10, '4519b', 'FRANCE', '17-Jan-2012', '45000'),
 (20, '3788a', 'INDIA', '01-Mar-2012', '75000'),
 (40, '9519b', 'US', '12-Apr-2012', '145000'),
 (20, '3788a', 'PAKISTAN', '04-Jun-2012', '37500'),
 (40, '4577b', 'US', '11-Nov-2012', '25000'),
 (30, '7588b', 'CANADA', '14-Dec-2012', '50000'),
 (30, '9519b', 'CANADA', '01-Feb-2012', '75000'),
 (30, '4519b', 'CANADA', '08-Apr-2012', '120000'),
 (40, '3788a', 'US', '12-May-2012', '4950'),
 (10, '9519b', 'ITALY', '07-Jul-2012', '15000'),
 (10, '9519a', 'FRANCE', '18-Aug-2012', '650000'),
 (10, '9519b', 'FRANCE', '18-Aug-2012', '650000'),
 (20, '3788b', 'INDIA', '21-Sept-2012', '5090'),

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

237

 (40, '4788a', 'US', '23-Sept-2012', '4950'),
 (40, '4788b', 'US', '09-Oct-2012', '15000'),
 (20, '4519a', 'INDIA', '18-Oct-2012', '650000'),
 (20, '4519b', 'INDIA', '2-Dec-2012', '5090');

The rows are distributed amongst the partitions:

acctg=# SELECT tableoid::regclass, * FROM sales;
 tableoid | dept_no | part_no | country | date | amount
----------------+---------+---------+----------+--------------------+-------
 sales_europe | 10 | 4519b | FRANCE | 17-JAN-12 00:00:00 | 45000
 sales_europe | 10 | 9519b | ITALY | 07-JUL-12 00:00:00 | 15000
 sales_europe | 10 | 9519a | FRANCE | 18-AUG-12 00:00:00 | 650000
 sales_europe | 10 | 9519b | FRANCE | 18-AUG-12 00:00:00 | 650000
 sales_asia | 20 | 3788a | INDIA | 01-MAR-12 00:00:00 | 75000
 sales_asia | 20 | 3788a | PAKISTAN | 04-JUN-12 00:00:00 | 37500
 sales_asia | 20 | 3788b | INDIA | 21-SEP-12 00:00:00 | 5090
 sales_asia | 20 | 4519a | INDIA | 18-OCT-12 00:00:00 | 650000
 sales_asia | 20 | 4519b | INDIA | 02-DEC-12 00:00:00 | 5090
 sales_americas | 40 | 9519b | US | 12-APR-12 00:00:00 | 145000
 sales_americas | 40 | 4577b | US | 11-NOV-12 00:00:00 | 25000
 sales_americas | 30 | 7588b | CANADA | 14-DEC-12 00:00:00 | 50000
 sales_americas | 30 | 9519b | CANADA | 01-FEB-12 00:00:00 | 75000
 sales_americas | 30 | 4519b | CANADA | 08-APR-12 00:00:00 | 120000
 sales_americas | 40 | 3788a | US | 12-MAY-12 00:00:00 | 4950
 sales_americas | 40 | 4788a | US | 23-SEP-12 00:00:00 | 4950
 sales_americas | 40 | 4788b | US | 09-OCT-12 00:00:00 | 15000
(17 rows)

The following command splits the americas partition into two partitions named us and
canada:

ALTER TABLE sales SPLIT PARTITION americas
 VALUES ('US')
 INTO (PARTITION us, PARTITION canada);

A SELECT statement confirms that the rows have been redistributed across the correct
partitions:

acctg=# SELECT tableoid::regclass, * FROM sales;
 tableoid | dept_no | part_no | country | date | amount
--------------+---------+---------+----------+--------------------+--------
 sales_europe | 10 | 4519b | FRANCE | 17-JAN-12 00:00:00 | 45000
 sales_europe | 10 | 9519b | ITALY | 07-JUL-12 00:00:00 | 15000
 sales_europe | 10 | 9519a | FRANCE | 18-AUG-12 00:00:00 | 650000
 sales_europe | 10 | 9519b | FRANCE | 18-AUG-12 00:00:00 | 650000
 sales_asia | 20 | 3788a | INDIA | 01-MAR-12 00:00:00 | 75000
 sales_asia | 20 | 3788a | PAKISTAN | 04-JUN-12 00:00:00 | 37500
 sales_asia | 20 | 3788b | INDIA | 21-SEP-12 00:00:00 | 5090
 sales_asia | 20 | 4519a | INDIA | 18-OCT-12 00:00:00 | 650000
 sales_asia | 20 | 4519b | INDIA | 02-DEC-12 00:00:00 | 5090
 sales_us | 40 | 9519b | US | 12-APR-12 00:00:00 | 145000
 sales_us | 40 | 4577b | US | 11-NOV-12 00:00:00 | 25000
 sales_us | 40 | 3788a | US | 12-MAY-12 00:00:00 | 4950
 sales_us | 40 | 4788a | US | 23-SEP-12 00:00:00 | 4950
 sales_us | 40 | 4788b | US | 09-OCT-12 00:00:00 | 15000
 sales_canada | 30 | 7588b | CANADA | 14-DEC-12 00:00:00 | 50000

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

238

 sales_canada | 30 | 9519b | CANADA | 01-FEB-12 00:00:00 | 75000
 sales_canada | 30 | 4519b | CANADA | 08-APR-12 00:00:00 | 120000
(17 rows)

3.5.4.2 Example - Splitting a RANGE Partition

This example divides the q4_2012 partition (of the range-partitioned sales table) into
two partitions, and redistribute the partition's contents. Use the following command to
create the sales table:

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY RANGE(date)
(
 PARTITION q1_2012
 VALUES LESS THAN('2012-Apr-01'),
 PARTITION q2_2012
 VALUES LESS THAN('2012-Jul-01'),
 PARTITION q3_2012
 VALUES LESS THAN('2012-Oct-01'),
 PARTITION q4_2012
 VALUES LESS THAN('2013-Jan-01')
);

The table definition creates four partitions (q1_2012, q2_2012, q3_2012, and
q4_2012). The following command adds rows to each partition:

INSERT INTO sales VALUES
 (10, '4519b', 'FRANCE', '17-Jan-2012', '45000'),
 (20, '3788a', 'INDIA', '01-Mar-2012', '75000'),
 (40, '9519b', 'US', '12-Apr-2012', '145000'),
 (20, '3788a', 'PAKISTAN', '04-Jun-2012', '37500'),
 (40, '4577b', 'US', '11-Nov-2012', '25000'),
 (30, '7588b', 'CANADA', '14-Dec-2012', '50000'),
 (30, '9519b', 'CANADA', '01-Feb-2012', '75000'),
 (30, '4519b', 'CANADA', '08-Apr-2012', '120000'),
 (40, '3788a', 'US', '12-May-2012', '4950'),
 (10, '9519b', 'ITALY', '07-Jul-2012', '15000'),
 (10, '9519a', 'FRANCE', '18-Aug-2012', '650000'),
 (10, '9519b', 'FRANCE', '18-Aug-2012', '650000'),
 (20, '3788b', 'INDIA', '21-Sept-2012', '5090'),
 (40, '4788a', 'US', '23-Sept-2012', '4950'),

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

239

 (40, '4788b', 'US', '09-Oct-2012', '15000'),
 (20, '4519a', 'INDIA', '18-Oct-2012', '650000'),
 (20, '4519b', 'INDIA', '2-Dec-2012', '5090');

A SELECT statement confirms that the rows are distributed amongst the partitions as
expected:

acctg=# SELECT tableoid::regclass, * FROM sales;
 tableoid | dept_no | part_no | country | date | amount
---------------+---------+---------+----------+--------------------+--------
 sales_q1_2012 | 10 | 4519b | FRANCE | 17-JAN-12 00:00:00 | 45000
 sales_q1_2012 | 20 | 3788a | INDIA | 01-MAR-12 00:00:00 | 75000
 sales_q1_2012 | 30 | 9519b | CANADA | 01-FEB-12 00:00:00 | 75000
 sales_q2_2012 | 40 | 9519b | US | 12-APR-12 00:00:00 | 145000
 sales_q2_2012 | 20 | 3788a | PAKISTAN | 04-JUN-12 00:00:00 | 37500
 sales_q2_2012 | 30 | 4519b | CANADA | 08-APR-12 00:00:00 | 120000
 sales_q2_2012 | 40 | 3788a | US | 12-MAY-12 00:00:00 | 4950
 sales_q3_2012 | 10 | 9519b | ITALY | 07-JUL-12 00:00:00 | 15000
 sales_q3_2012 | 10 | 9519a | FRANCE | 18-AUG-12 00:00:00 | 650000
 sales_q3_2012 | 10 | 9519b | FRANCE | 18-AUG-12 00:00:00 | 650000
 sales_q3_2012 | 20 | 3788b | INDIA | 21-SEP-12 00:00:00 | 5090
 sales_q3_2012 | 40 | 4788a | US | 23-SEP-12 00:00:00 | 4950
 sales_q4_2012 | 40 | 4577b | US | 11-NOV-12 00:00:00 | 25000
 sales_q4_2012 | 30 | 7588b | CANADA | 14-DEC-12 00:00:00 | 50000
 sales_q4_2012 | 40 | 4788b | US | 09-OCT-12 00:00:00 | 15000
 sales_q4_2012 | 20 | 4519a | INDIA | 18-OCT-12 00:00:00 | 650000
 sales_q4_2012 | 20 | 4519b | INDIA | 02-DEC-12 00:00:00 | 5090
(17 rows)

The following command splits the q4_2012 partition into two partitions named
q4_2012_p1 and q4_2012_p2:

ALTER TABLE sales SPLIT PARTITION q4_2012
 AT ('15-Nov-2012')
 INTO
 (
 PARTITION q4_2012_p1,
 PARTITION q4_2012_p2
);

A SELECT statement confirms that the rows have been redistributed across the new
partitions:

acctg=# SELECT tableoid::regclass, * FROM sales;
 tableoid | dept_no | part_no | country | date |amount
------------------+---------+---------+----------+--------------------+------
 sales_q1_2012 | 10 | 4519b | FRANCE | 17-JAN-12 00:00:00 | 45000
 sales_q1_2012 | 20 | 3788a | INDIA | 01-MAR-12 00:00:00 | 75000
 sales_q1_2012 | 30 | 9519b | CANADA | 01-FEB-12 00:00:00 | 75000
 sales_q2_2012 | 40 | 9519b | US | 12-APR-12 00:00:00 |145000
 sales_q2_2012 | 20 | 3788a | PAKISTAN | 04-JUN-12 00:00:00 | 37500
 sales_q2_2012 | 30 | 4519b | CANADA | 08-APR-12 00:00:00 |120000
 sales_q2_2012 | 40 | 3788a | US | 12-MAY-12 00:00:00 | 4950
 sales_q3_2012 | 10 | 9519b | ITALY | 07-JUL-12 00:00:00 | 15000
 sales_q3_2012 | 10 | 9519a | FRANCE | 18-AUG-12 00:00:00 |650000
 sales_q3_2012 | 10 | 9519b | FRANCE | 18-AUG-12 00:00:00 |650000

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

240

 sales_q3_2012 | 20 | 3788b | INDIA | 21-SEP-12 00:00:00 | 5090
 sales_q3_2012 | 40 | 4788a | US | 23-SEP-12 00:00:00 | 4950
 sales_q4_2012_p1 | 40 | 4577b | US | 11-NOV-12 00:00:00 | 25000
 sales_q4_2012_p1 | 40 | 4788b | US | 09-OCT-12 00:00:00 | 15000
 sales_q4_2012_p1 | 20 | 4519a | INDIA | 18-OCT-12 00:00:00 |650000
 sales_q4_2012_p2 | 30 | 7588b | CANADA | 14-DEC-12 00:00:00 | 50000
 sales_q4_2012_p2 | 20 | 4519b | INDIA | 02-DEC-12 00:00:00 | 5090
(17 rows)

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

241

3.5.5 ALTER TABLE...SPLIT SUBPARTITION

Use the ALTER TABLE… SPLIT SUBPARTITION command to divide a single
subpartition into two subpartitions, and redistribute the subpartition's contents. The
command comes in two variations.

The first variation splits a range subpartition into two subpartitions:

ALTER TABLE table_name SPLIT SUBPARTITION subpartition_name
 AT (range_part_value)
 INTO
 (
 SUBPARTITION new_subpart1
 [TABLESPACE tablespace_name],
 SUBPARTITION new_subpart2
 [TABLESPACE tablespace_name]
);

The second variation splits a list subpartition into two subpartitions:

ALTER TABLE table_name SPLIT SUBPARTITION subpartition_name
 VALUES (value[, value]...)
 INTO
 (
 SUBPARTITION new_subpart1
 [TABLESPACE tablespace_name],
 SUBPARTITION new_subpart2
 [TABLESPACE tablespace_name]
);

Description

The ALTER TABLE...SPLIT SUBPARTITION command adds a subpartition to an
existing subpartitioned table. There is no upper limit to the number of defined
subpartitions. When you execute an ALTER TABLE...SPLIT SUBPARTITION
command, Advanced Server creates two new subpartitions, moving any rows that contain
values that are constrained by the specified subpartition rules into new_subpart1, and
any remaining rows into new_subpart2.

The new subpartition rules must reference the column specified in the rules that define
the existing subpartition(s).

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

242

Include the TABLESPACE clause to specify a tablespace in which a new subpartition will
reside. If you do not specify a tablespace, the subpartition will be created in the default
tablespace.

If the table is indexed, the index will be created on the new subpartition.

To use the ALTER TABLE... SPLIT SUBPARTITION command you must be the table
owner, or have superuser (or administrative) privileges.

Parameters

table_name

The name (optionally schema-qualified) of the partitioned table.

subpartition_name

The name of the subpartition that is being split.

new_subpart1

The name of the first new subpartition to be created. Subpartition names must be
unique amongst all partitions and subpartitions, and must follow the naming
conventions for object identifiers.

new_subpart1 will receive the rows that meet the subpartitioning constraints
specified in the ALTER TABLE… SPLIT SUBPARTITION command.

new_subpart2

The name of the second new subpartition to be created. Subpartition names must
be unique amongst all partitions and subpartitions, and must follow the naming
conventions for object identifiers.

new_subpart2 will receive the rows are not directed to new_subpart1 by the
subpartitioning constraints specified in the ALTER TABLE… SPLIT
SUBPARTITION command.

(value[, value]...)

Use value to specify a quoted literal value (or comma-delimited list of literal
values) by which table entries will be grouped into partitions. Each partitioning
rule must specify at least one value, but there is no limit placed on the number of
values specified within a rule. value may also be NULL, DEFAULT (if specifying
a LIST subpartition), or MAXVALUE (if specifying a RANGE subpartition).

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

243

For information about creating a DEFAULT or MAXVALUE partition, see Section
3.6.

tablespace_name

The name of the tablespace in which the partition or subpartition resides.

3.5.5.1 Example - Splitting a LIST Subpartition

The following example splits a list subpartition, redistributing the subpartition's contents
between two new subpartitions. The sample table (sales) was created with the
command:

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY RANGE(date)
 SUBPARTITION BY LIST (country)
 (
 PARTITION first_half_2012 VALUES LESS THAN('01-JUL-2012')
 (
 SUBPARTITION p1_europe VALUES ('ITALY', 'FRANCE'),
 SUBPARTITION p1_americas VALUES ('US', 'CANADA')
),
 PARTITION second_half_2012 VALUES LESS THAN('01-JAN-2013')
 (
 SUBPARTITION p2_europe VALUES ('ITALY', 'FRANCE'),
 SUBPARTITION p2_americas VALUES ('US', 'CANADA')
)
);

The sales table has two partitions, named first_half_2012, and
second_half_2012. Each partition has two range-defined subpartitions that distribute
the partition's contents into subpartitions based on the value of the country column:

acctg=# SELECT partition_name, subpartition_name, high_value FROM
ALL_TAB_SUBPARTITIONS;
 partition_name | subpartition_name | high_value
------------------+-------------------+-------------------
 second_half_2012 | p2_europe | 'ITALY', 'FRANCE'
 first_half_2012 | p1_europe | 'ITALY', 'FRANCE'
 second_half_2012 | p2_americas | 'US', 'CANADA'

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

244

 first_half_2012 | p1_americas | 'US', 'CANADA'
(4 rows)

The following command adds rows to each subpartition:

INSERT INTO sales VALUES
 (10, '4519b', 'FRANCE', '17-Jan-2012', '45000'),
 (40, '9519b', 'US', '12-Apr-2012', '145000'),
 (40, '4577b', 'US', '11-Nov-2012', '25000'),
 (30, '7588b', 'CANADA', '14-Dec-2012', '50000'),
 (30, '9519b', 'CANADA', '01-Feb-2012', '75000'),
 (30, '4519b', 'CANADA', '08-Apr-2012', '120000'),
 (40, '3788a', 'US', '12-May-2012', '4950'),
 (10, '9519b', 'ITALY', '07-Jul-2012', '15000'),
 (10, '9519a', 'FRANCE', '18-Aug-2012', '650000'),
 (10, '9519b', 'FRANCE', '18-Aug-2012', '650000'),
 (40, '4788a', 'US', '23-Sept-2012', '4950'),
 (40, '4788b', 'US', '09-Oct-2012', '15000');

A SELECT statement confirms that the rows are correctly distributed amongst the
subpartitions:

acctg=# SELECT tableoid::regclass, * FROM sales;
 tableoid | dept_no | part_no | country| date |amount
-------------------+---------+---------+--------+--------------------+------
 sales_p1_europe | 10 | 4519b | FRANCE | 17-JAN-12 00:00:00 | 45000
 sales_p1_europe | 10 | 4519b | FRANCE | 17-JAN-12 00:00:00 | 45000
 sales_p1_americas | 40 | 9519b | US | 12-APR-12 00:00:00 | 145000
 sales_p1_americas | 30 | 9519b | CANADA | 01-FEB-12 00:00:00 | 75000
 sales_p1_americas | 30 | 4519b | CANADA | 08-APR-12 00:00:00 | 120000
 sales_p1_americas | 40 | 3788a | US | 12-MAY-12 00:00:00 | 4950
 sales_p2_europe | 10 | 9519b | ITALY | 07-JUL-12 00:00:00 | 15000
 sales_p2_europe | 10 | 9519a | FRANCE | 18-AUG-12 00:00:00 | 650000
 sales_p2_europe | 10 | 9519b | FRANCE | 18-AUG-12 00:00:00 | 650000
 sales_p2_americas | 40 | 4577b | US | 11-NOV-12 00:00:00 | 25000
 sales_p2_americas | 30 | 7588b | CANADA | 14-DEC-12 00:00:00 | 50000
 sales_p2_americas | 40 | 4788a | US | 23-SEP-12 00:00:00 | 4950
 sales_p2_americas | 40 | 4788b | US | 09-OCT-12 00:00:00 | 15000
(13 rows)

The following command splits the p2_americas subpartition into two new
subpartitions, and redistributes the contents:

ALTER TABLE sales SPLIT SUBPARTITION p2_americas
 VALUES ('US')
 INTO
 (
 SUBPARTITION p2_us,
 SUBPARTITION p2_canada
);

After invoking the command, the p2_americas subpartition has been deleted; in it's
place, the server has created two new subpartitions (p2_us and p2_canada):

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

245

acctg=# SELECT partition_name, subpartition_name, high_value FROM
ALL_TAB_SUBPARTITIONS;
 partition_name | subpartition_name | high_value
------------------+-------------------+-------------------
 first_half_2012 | p1_europe | 'ITALY', 'FRANCE'
 first_half_2012 | p1_americas | 'US', 'CANADA'
 second_half_2012 | p2_europe | 'ITALY', 'FRANCE'
 second_half_2012 | p2_canada | 'CANADA'
 second_half_2012 | p2_us | 'US'
(5 rows)

Querying the sales table demonstrates that the content of the p2_americas
subpartition has been redistributed:

acctg=# SELECT tableoid::regclass, * FROM sales;
 tableoid | dept_no | part_no | country | date |amount
-------------------+---------+---------+---------+--------------------+------
 sales_p1_europe | 10 | 4519b | FRANCE | 17-JAN-12 00:00:00 | 45000
 sales_p1_europe | 10 | 4519b | FRANCE | 17-JAN-12 00:00:00 | 45000
 sales_p1_americas | 40 | 9519b | US | 12-APR-12 00:00:00 |145000
 sales_p1_americas | 30 | 9519b | CANADA | 01-FEB-12 00:00:00 | 75000
 sales_p1_americas | 30 | 4519b | CANADA | 08-APR-12 00:00:00 |120000
 sales_p1_americas | 40 | 3788a | US | 12-MAY-12 00:00:00 | 4950
 sales_p2_europe | 10 | 9519b | ITALY | 07-JUL-12 00:00:00 | 15000
 sales_p2_europe | 10 | 9519a | FRANCE | 18-AUG-12 00:00:00 |650000
 sales_p2_europe | 10 | 9519b | FRANCE | 18-AUG-12 00:00:00 |650000
 sales_p2_us | 40 | 4577b | US | 11-NOV-12 00:00:00 | 25000
 sales_p2_us | 40 | 4788a | US | 23-SEP-12 00:00:00 | 4950
 sales_p2_us | 40 | 4788b | US | 09-OCT-12 00:00:00 | 15000
 sales_p2_canada | 30 | 7588b | CANADA | 14-DEC-12 00:00:00 | 50000
(13 rows)

3.5.5.2 Example - Splitting a RANGE Subpartition

The following example splits a range subpartition, redistributing the subpartition's
contents between two new subpartitions. The sample table (sales) was created with the
command:

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY LIST(country)
 SUBPARTITION BY RANGE(date)
(
 PARTITION europe VALUES('FRANCE', 'ITALY')
 (
 SUBPARTITION europe_2011
 VALUES LESS THAN('2012-Jan-01'),

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

246

 SUBPARTITION europe_2012
 VALUES LESS THAN('2013-Jan-01')
),
 PARTITION asia VALUES('INDIA', 'PAKISTAN')
 (
 SUBPARTITION asia_2011
 VALUES LESS THAN('2012-Jan-01'),
 SUBPARTITION asia_2012
 VALUES LESS THAN('2013-Jan-01')
),
 PARTITION americas VALUES('US', 'CANADA')
 (
 SUBPARTITION americas_2011
 VALUES LESS THAN('2012-Jan-01'),
 SUBPARTITION americas_2012
 VALUES LESS THAN('2013-Jan-01')
)
);

The sales table has three partitions (europe, asia, and americas). Each partition
has two range-defined subpartitions that sort the partitions contents into subpartitions by
the value of the date column:

acctg=# SELECT partition_name, subpartition_name, high_value FROM
ALL_TAB_SUBPARTITIONS;
 partition_name | subpartition_name | high_value
----------------+-------------------+---------------
 europe | europe_2011 | '2012-Jan-01'
 europe | europe_2012 | '2013-Jan-01'
 asia | asia_2011 | '2012-Jan-01'
 asia | asia_2012 | '2013-Jan-01'
 americas | americas_2011 | '2012-Jan-01'
 americas | americas_2012 | '2013-Jan-01'
(6 rows)

The following command adds rows to each subpartition:

INSERT INTO sales VALUES
 (10, '4519b', 'FRANCE', '17-Jan-2012', '45000'),
 (20, '3788a', 'INDIA', '01-Mar-2012', '75000'),
 (40, '9519b', 'US', '12-Apr-2012', '145000'),
 (20, '3788a', 'PAKISTAN', '04-Jun-2012', '37500'),
 (40, '4577b', 'US', '11-Nov-2012', '25000'),
 (30, '7588b', 'CANADA', '14-Dec-2012', '50000'),
 (30, '9519b', 'CANADA', '01-Feb-2012', '75000'),
 (30, '4519b', 'CANADA', '08-Apr-2012', '120000'),
 (40, '3788a', 'US', '12-May-2012', '4950'),
 (10, '9519b', 'ITALY', '07-Jul-2012', '15000'),
 (10, '9519a', 'FRANCE', '18-Aug-2012', '650000'),
 (10, '9519b', 'FRANCE', '18-Aug-2012', '650000'),
 (20, '3788b', 'INDIA', '21-Sept-2012', '5090'),
 (40, '4788a', 'US', '23-Sept-2012', '4950'),

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

247

 (40, '4788b', 'US', '09-Oct-2012', '15000'),
 (20, '4519a', 'INDIA', '18-Oct-2012', '650000'),
 (20, '4519b', 'INDIA', '2-Dec-2012', '5090');

A SELECT statement confirms that the rows are distributed amongst the subpartions:

acctg=# SELECT tableoid::regclass, * FROM sales;
 tableoid | dept_no|part_no| country | date |amount
---------------------+--------+-------+---------+--------------------+---
 sales_europe_2012 | 10| 4519b | FRANCE | 17-JAN-12 00:00:00 | 45000
 sales_europe_2012 | 10| 9519b | ITALY | 07-JUL-12 00:00:00 | 15000
 sales_europe_2012 | 10| 9519a | FRANCE | 18-AUG-12 00:00:00 | 650000
 sales_europe_2012 | 10| 9519b | FRANCE | 18-AUG-12 00:00:00 | 650000
 sales_asia_2012 | 20| 3788a | INDIA | 01-MAR-12 00:00:00 | 75000
 sales_asia_2012 | 20| 3788a | PAKISTAN| 04-JUN-12 00:00:00 | 37500
 sales_asia_2012 | 20| 3788b | INDIA | 21-SEP-12 00:00:00 | 5090
 sales_asia_2012 | 20| 4519a | INDIA | 18-OCT-12 00:00:00 | 650000
 sales_asia_2012 | 20| 4519b | INDIA | 02-DEC-12 00:00:00 | 5090
 sales_americas_2012 | 40| 9519b | US | 12-APR-12 00:00:00 | 145000
 sales_americas_2012 | 40| 4577b | US | 11-NOV-12 00:00:00 | 25000
 sales_americas_2012 | 30| 7588b | CANADA | 14-DEC-12 00:00:00 | 50000
 sales_americas_2012 | 30| 9519b | CANADA | 01-FEB-12 00:00:00 | 75000
 sales_americas_2012 | 30| 4519b | CANADA | 08-APR-12 00:00:00 | 120000
 sales_americas_2012 | 40| 3788a | US | 12-MAY-12 00:00:00 | 4950
 sales_americas_2012 | 40| 4788a | US | 23-SEP-12 00:00:00 | 4950
 sales_americas_2012 | 40| 4788b | US | 09-OCT-12 00:00:00 | 15000
(17 rows)

The following command splits the americas_2012 subpartition into two new
subpartitions, and redistributes the contents:

ALTER TABLE sales
 SPLIT SUBPARTITION americas_2012
 AT('2012-Jun-01')
 INTO
 (
 SUBPARTITION americas_p1_2012,
 SUBPARTITION americas_p2_2012
);

After invoking the command, the americas_2012 subpartition has been deleted; in it's
place, the server has created two new subpartitions (americas_p1_2012 and
americas_p2_2012):

acctg=# SELECT partition_name, subpartition_name, high_value FROM
ALL_TAB_SUBPARTITIONS;
 partition_name | subpartition_name | high_value
----------------+-------------------+---------------
 europe | europe_2012 | '2013-Jan-01'
 europe | europe_2011 | '2012-Jan-01'
 americas | americas_2011 | '2012-Jan-01'
 americas | americas_p2_2012 | '2013-Jan-01'
 americas | americas_p1_2012 | '2012-Jun-01'
 asia | asia_2012 | '2013-Jan-01'
 asia | asia_2011 | '2012-Jan-01'

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

248

(7 rows)

Querying the sales table demonstrates that the subpartition's contents are redistributed:

acctg=# SELECT tableoid::regclass, * FROM sales;
 tableoid | dept_no|part_no|country | date |amount
-----------------------+--------+-------+--------+-------------------+-------
sales_europe_2012 | 10| 4519b |FRANCE | 17-JAN-12 00:00:00| 45000
 sales_europe_2012 | 10| 9519b |ITALY | 07-JUL-12 00:00:00| 15000
 sales_europe_2012 | 10| 9519a |FRANCE | 18-AUG-12 00:00:00| 650000
 sales_europe_2012 | 10| 9519b |FRANCE | 18-AUG-12 00:00:00| 650000
 sales_asia_2012 | 20| 3788a |INDIA | 01-MAR-12 00:00:00| 75000
 sales_asia_2012 | 20| 3788a |PAKISTAN| 04-JUN-12 00:00:00| 37500
 sales_asia_2012 | 20| 3788b |INDIA | 21-SEP-12 00:00:00| 5090
 sales_asia_2012 | 20| 4519a |INDIA | 18-OCT-12 00:00:00| 650000
 sales_asia_2012 | 20| 4519b |INDIA | 02-DEC-12 00:00:00| 5090
 sales_americas_p1_2012| 40| 9519b |US | 12-APR-12 00:00:00| 145000
 sales_americas_p1_2012| 30| 9519b |CANADA | 01-FEB-12 00:00:00| 75000
 sales_americas_p1_2012| 30| 4519b |CANADA | 08-APR-12 00:00:00| 120000
 sales_americas_p1_2012| 40| 3788a |US | 12-MAY-12 00:00:00| 4950
 sales_americas_p2_2012| 40| 4577b |US | 11-NOV-12 00:00:00| 25000
 sales_americas_p2_2012| 30| 7588b |CANADA | 14-DEC-12 00:00:00| 50000
 sales_americas_p2_2012| 40| 4788a |US | 23-SEP-12 00:00:00| 4950
 sales_americas_p2_2012| 40| 4788b |US | 09-OCT-12 00:00:00| 15000
(17 rows)

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

249

3.5.6 ALTER TABLE… EXCHANGE PARTITION

The ALTER TABLE…EXCHANGE PARTITION command swaps an existing table with a
partition or subpartition. If you plan to add a large quantity of data to a partitioned table,
you can use the ALTER TABLE… EXCHANGE PARTITION command to implement a bulk
load. You can also use the ALTER TABLE… EXCHANGE PARTITION command to
remove old or unneeded data for storage.

The command syntax is available in two forms. The first form swaps a table for a
partition:

ALTER TABLE target_table
 EXCHANGE PARTITION target_partition
 WITH TABLE source_table
 [(WITH | WITHOUT) VALIDATION];

The second form swaps a table for a subpartition:

ALTER TABLE target_table
 EXCHANGE SUBPARTITION target_subpartition
 WITH TABLE source_table
 [(WITH | WITHOUT) VALIDATION];

This command makes no distinction between a partition and a subpartition:

x You can exchange a partition with the EXCHANGE PARTITION or EXCHANGE
SUBPARTITION clause.

x You can exchange a subpartition with EXCHANGE PARTITION or EXCHANGE
SUBPARTITION clause.

Description

When the ALTER TABLE… EXCHANGE PARTITION command completes, the data
originally located in the target_partition will be located in the source_table,
and the data originally located in the source_table will be located in the
target_partition.

The ALTER TABLE… EXCHANGE PARTITION command can exchange partitions in a
LIST, RANGE or HASH partitioned table. The structure of the source_table must
match the structure of the target_table (both tables must have matching columns and
data types), and the data contained within the table must adhere to the partitioning
constraints.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

250

Advanced Server accepts the WITHOUT VALIDATION clause, but ignores it; the new table
is always validated.

You must own a table to invoke ALTER TABLE… EXCHANGE PARTITION or ALTER
TABLE… EXCHANGE SUBPARTITION against that table.

Parameters

target_table

The name (optionally schema-qualified) of the table in which the partition resides.

target_partition

The name of the partition or subpartition to be replaced.

source_table

The name of the table that will replace the target_partition.

3.5.6.1 Example - Exchanging a Table for a Partition

The example that follows demonstrates swapping a table for a partition (americas) of
the sales table. You can create the sales table with the following command:

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY LIST(country)
(
 PARTITION europe VALUES('FRANCE', 'ITALY'),
 PARTITION asia VALUES('INDIA', 'PAKISTAN'),
 PARTITION americas VALUES('US', 'CANADA')
);

Use the following command to add sample data to the sales table:

INSERT INTO sales VALUES
 (40, '9519b', 'US', '12-Apr-2012', '145000'),
 (10, '4519b', 'FRANCE', '17-Jan-2012', '45000'),
 (20, '3788a', 'INDIA', '01-Mar-2012', '75000'),

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

251

 (20, '3788a', 'PAKISTAN', '04-Jun-2012', '37500'),
 (10, '9519b', 'ITALY', '07-Jul-2012', '15000'),
 (10, '9519a', 'FRANCE', '18-Aug-2012', '650000'),
 (10, '9519b', 'FRANCE', '18-Aug-2012', '650000'),
 (20, '3788b', 'INDIA', '21-Sept-2012', '5090'),
 (20, '4519a', 'INDIA', '18-Oct-2012', '650000'),
 (20, '4519b', 'INDIA', '2-Dec-2012', '5090');

Querying the sales table shows that only one row resides in the americas partition:

acctg=# SELECT tableoid::regclass, * FROM sales;
 tableoid | dept_no| part_no | country | date | amount
---------------+--------+---------+---------+-------------------+-----------
 sales_europe | 10| 4519b | FRANCE | 17-JAN-12 00:00:00| 45000
 sales_europe | 10| 9519b | ITALY | 07-JUL-12 00:00:00| 15000
 sales_europe | 10| 9519a | FRANCE | 18-AUG-12 00:00:00| 650000
 sales_europe | 10| 9519b | FRANCE | 18-AUG-12 00:00:00| 650000
 sales_asia | 20| 3788a | INDIA | 01-MAR-12 00:00:00| 75000
 sales_asia | 20| 3788a | PAKISTAN| 04-JUN-12 00:00:00| 37500
 sales_asia | 20| 3788b | INDIA | 21-SEP-12 00:00:00| 5090
 sales_asia | 20| 4519a | INDIA | 18-OCT-12 00:00:00| 650000
 sales_asia | 20| 4519b | INDIA | 02-DEC-12 00:00:00| 5090
 sales_americas| 40| 9519b | US | 12-APR-12 00:00:00| 145000
(10 rows)

The following command creates a table (n_america) that matches the definition of the
sales table:

CREATE TABLE n_america
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
);

The following command adds data to the n_america table. The data conforms to the
partitioning rules of the americas partition:

INSERT INTO n_america VALUES
 (40, '9519b', 'US', '12-Apr-2012', '145000'),
 (40, '4577b', 'US', '11-Nov-2012', '25000'),
 (30, '7588b', 'CANADA', '14-Dec-2012', '50000'),
 (30, '9519b', 'CANADA', '01-Feb-2012', '75000'),
 (30, '4519b', 'CANADA', '08-Apr-2012', '120000'),
 (40, '3788a', 'US', '12-May-2012', '4950'),
 (40, '4788a', 'US', '23-Sept-2012', '4950'),
 (40, '4788b', 'US', '09-Oct-2012', '15000');

The following command swaps the table into the partitioned table:

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

252

ALTER TABLE sales
 EXCHANGE PARTITION americas
 WITH TABLE n_america;

Querying the sales table shows that the contents of the n_america table has been
exchanged for the content of the americas partition:

acctg=# SELECT tableoid::regclass, * FROM sales;
 tableoid | dept_no| part_no | country | date | amount
---------------+--------+--------+----------+--------------------+-----------
 sales_europe | 10| 4519b | FRANCE | 17-JAN-12 00:00:00 | 45000
 sales_europe | 10| 9519b | ITALY | 07-JUL-12 00:00:00 | 15000
 sales_europe | 10| 9519a | FRANCE | 18-AUG-12 00:00:00 | 650000
 sales_europe | 10| 9519b | FRANCE | 18-AUG-12 00:00:00 | 650000
 sales_asia | 20| 3788a | INDIA | 01-MAR-12 00:00:00 | 75000
 sales_asia | 20| 3788a | PAKISTAN| 04-JUN-12 00:00:00 | 37500
 sales_asia | 20| 3788b | INDIA | 21-SEP-12 00:00:00 | 5090
 sales_asia | 20| 4519a | INDIA | 18-OCT-12 00:00:00 | 650000
 sales_asia | 20| 4519b | INDIA | 02-DEC-12 00:00:00 | 5090
 sales_americas| 40| 9519b | US | 12-APR-12 00:00:00 | 145000
 sales_americas| 40| 4577b | US | 11-NOV-12 00:00:00 | 25000
 sales_americas| 30| 7588b | CANADA | 14-DEC-12 00:00:00 | 50000
 sales_americas| 30| 9519b | CANADA | 01-FEB-12 00:00:00 | 75000
 sales_americas| 30| 4519b | CANADA | 08-APR-12 00:00:00 | 120000
 sales_americas| 40| 3788a | US | 12-MAY-12 00:00:00 | 4950
 sales_americas| 40| 4788a | US | 23-SEP-12 00:00:00 | 4950
 sales_americas| 40| 4788b | US | 09-OCT-12 00:00:00 | 15000
(17 rows)

Querying the n_america table shows that the row that was previously stored in the
americas partition has been moved to the n_america table:

acctg=# SELECT tableoid::regclass, * FROM n_america;
 tableoid | dept_no | part_no | country | date | amount
-----------+---------+---------+---------+--------------------+------------
 n_america | 40 | 9519b | US | 12-APR-12 00:00:00 | 145000
(1 row)

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

253

3.5.7 ALTER TABLE… MOVE PARTITION

Use the ALTER TABLE… MOVE PARTITION command to move a partition or subpartition
to a different tablespace. The command takes two forms.

The first form moves a partition to a new tablespace:

ALTER TABLE table_name
 MOVE PARTITION partition_name
 TABLESPACE tablespace_name;

The second form moves a subpartition to a new tablespace:

ALTER TABLE table_name
 MOVE SUBPARTITION subpartition_name
 TABLESPACE tablespace_name;

The command syntax makes no distinctions between a partition and a subpartition:

x You can move a partition with the MOVE PARTITION or MOVE SUBPARTITION
clause.

x You can move a subpartition with MOVE PARTITION or MOVE SUBPARTITION
clause.

Description

The ALTER TABLE…MOVE PARTITION command moves a partition or subpartition from
it's current tablespace to a different tablespace. The ALTER TABLE… MOVE PARTITION
command can move partitions (or subpartitions) of a LIST, RANGE or HASH partitioned
(or subpartitioned) table. You must own a table to invoke ALTER TABLE… MOVE
PARTITION or ALTER TABLE… MOVE SUBPARTITION.

Parameters

table_name

The name (optionally schema-qualified) of the table in which the partition resides.

partition_name

The name of the partition or subpartition to be moved.

tablespace_name

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

254

The name of the tablespace to which the partition or subpartition will be moved.

3.5.7.1 Example - Moving a Partition to a Different Tablespace

The following example moves a partition of the sales table from one tablespace to
another. First, create the sales table with the command:

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY RANGE(date)
(
 PARTITION q1_2012 VALUES LESS THAN ('2012-Apr-01'),
 PARTITION q2_2012 VALUES LESS THAN ('2012-Jul-01'),
 PARTITION q3_2012 VALUES LESS THAN ('2012-Oct-01'),
 PARTITION q4_2012 VALUES LESS THAN ('2013-Jan-01') TABLESPACE ts_1,
 PARTITION q1_2013 VALUES LESS THAN ('2013-Mar-01') TABLESPACE ts_2
);

Querying the ALL_TAB_PARTITIONS view confirms that the partitions reside on the
expected servers and tablespaces:

acctg=# SELECT partition_name, tablespace_name FROM ALL_TAB_PARTITIONS;
 partition_name | tablespace_name
----------------+-------------+-----------------
 q1_2013 | ts_2
 q4_2012 | ts_1
 q3_2012 |
 q2_2012 |
 q1_2012 |
(5 rows)

After preparing the target tablespace, invoke the ALTER TABLE… MOVE PARTITION
command to move the q1_2013 partition from a tablespace named ts_2 to a tablespace
named ts_3:

ALTER TABLE sales MOVE PARTITION q1_2013 TABLESPACE ts_3;

Querying the ALL_TAB_PARTITIONS view shows that the move was successful:

acctg=# SELECT partition_name, tablespace_name FROM ALL_TAB_PARTITIONS;
 partition_name | tablespace_name
----------------+-----------------
 q1_2013 | ts_3
 q4_2012 | ts_1
 q3_2012 |

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

255

 q2_2012 |
 q1_2012 |
(5 rows)

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

256

3.5.8 ALTER TABLE… RENAME PARTITION

Use the ALTER TABLE… RENAME PARTITION command to rename a table partition. The
syntax takes two forms:

ALTER TABLE table_name
 RENAME PARTITION partition_name
 TO new_name;

and

ALTER TABLE table_name
 RENAME SUBPARTITION subpartition_name
 TO new_name;

This command makes no distinctions between a partition and a subpartition:

x You can rename a partition with the RENAME PARTITION or RENAME
SUBPARTITION clause.

x You can rename a subpartition with RENAME PARTITION or RENAME
SUBPARTITION clause.

Description

The ALTER TABLE… RENAME PARTITION and ALTER TABLE… RENAME
SUBPARTITION commands rename a partition or subpartition. You must own the
specified table to invoke ALTER TABLE… RENAME PARTITION or ALTER TABLE…
RENAME SUBPARTITION.

Parameters

table_name

The name (optionally schema-qualified) of the table in which the partition resides.

partition_name

The name of the partition or subpartition to be renamed.

new_name

The new name of the partition or subpartition.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

257

3.5.8.1 Example - Renaming a Partition

The following command creates a list-partitioned table named sales:

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY LIST(country)
(
 PARTITION europe VALUES('FRANCE', 'ITALY'),
 PARTITION asia VALUES('INDIA', 'PAKISTAN'),
 PARTITION americas VALUES('US', 'CANADA')
);

Query the ALL_TAB_PARTITIONS view to display the partition names:

acctg=# SELECT partition_name, high_value FROM ALL_TAB_PARTITIONS;
 partition_name | high_value
----------------+---------------------
 europe | 'FRANCE', 'ITALY'
 asia | 'INDIA', 'PAKISTAN'
 americas | 'US', 'CANADA'
(3 rows)

The following command renames the americas partition to n_america:

ALTER TABLE sales
 RENAME PARTITION americas TO n_america;

Querying the ALL_TAB_PARTITIONS view demonstrates that the partition has been
successfully renamed:

acctg=# SELECT partition_name, high_value FROM ALL_TAB_PARTITIONS;
 partition_name | high_value
----------------+---------------------
 europe | 'FRANCE', 'ITALY'
 asia | 'INDIA', 'PAKISTAN'
 n_america | 'US', 'CANADA'
(3 rows)

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

258

3.5.9 DROP TABLE

Use the PostgreSQL DROP TABLE command to remove a partitioned table definition, it's
partitions and subpartitions, and delete the table contents. The syntax is:

DROP TABLE table_name

Description

The DROP TABLE command removes an entire table, and the data that resides in that
table. When you delete a table, any partitions or subpartitions (of that table) are deleted
as well.

To use the DROP TABLE command, you must be the owner of the partitioning root, a
member of a group that owns the table, the schema owner, or a database superuser.

Parameters

table_name

The name (optionally schema-qualified) of the partitioned table.

Example

To delete a table, connect to the controller node (the host of the partitioning root), and
invoke the DROP TABLE command. For example, to delete the sales table, invoke the
following command:

DROP TABLE sales;

The server will confirm that the table has been dropped:

acctg=# drop table sales;
DROP TABLE
acctg=#

For more information about the DROP TABLE command, please see the PostgreSQL core
documentation at:

http://www.enterprisedb.com/docs/en/9.4/pg/sql-droptable.html

http://www.enterprisedb.com/docs/en/9.4/pg/sql-droptable.html

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

259

3.5.10 ALTER TABLE… DROP PARTITION

Use the ALTER TABLE… DROP PARTITION command to delete a partition definition, and
the data stored in that partition. The syntax is:

ALTER TABLE table_name DROP PARTITION partition_name;

Parameters

table_name

The name (optionally schema-qualified) of the partitioned table.

partition_name

The name of the partition to be deleted.

Description

The ALTER TABLE… DROP PARTITION command deletes a partition and any data stored
on that partition. The ALTER TABLE… DROP PARTITION command can drop partitions
of a LIST or RANGE partitioned table; please note that this command does not work on a
HASH partitioned table. When you delete a partition, any subpartitions (of that partition)
are deleted as well.

To use the DROP PARTITION clause, you must be the owner of the partitioning root, a
member of a group that owns the table, or have database superuser or administrative
privileges.

3.5.10.1 Example - Deleting a Partition

The example that follows deletes a partition of the sales table. Use the following
command to create the sales table:

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY LIST(country)
(

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

260

 PARTITION europe VALUES('FRANCE', 'ITALY'),
 PARTITION asia VALUES('INDIA', 'PAKISTAN'),
 PARTITION americas VALUES('US', 'CANADA')
);

Querying the ALL_TAB_PARTITIONS view displays the partition names:

acctg=# SELECT partition_name, server_name, high_value FROM
ALL_TAB_PARTITIONS;
 partition_name | server_name | high_value
----------------+-------------+---------------------
 europe | seattle | 'FRANCE', 'ITALY'
 asia | chicago | 'INDIA', 'PAKISTAN'
 americas | boston | 'US', 'CANADA'
(3 rows)

To delete the americas partition from the sales table, invoke the following command:

ALTER TABLE sales DROP PARTITION americas;

Querying the ALL_TAB_PARTITIONS view demonstrates that the partition has been
successfully deleted:

acctg=# SELECT partition_name, server_name, high_value FROM
ALL_TAB_PARTITIONS;
 partition_name | high_value
----------------+---------------------
 asia | 'INDIA', 'PAKISTAN'
 europe | 'FRANCE', 'ITALY'
(2 rows)

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

261

3.5.11 ALTER TABLE… DROP SUBPARTITION

Use the ALTER TABLE… DROP SUBPARTITION command to drop a subpartition
definition, and the data stored in that subpartition. The syntax is:

ALTER TABLE table_name DROP SUBPARTITION subpartition_name;

Parameters

table_name

The name (optionally schema-qualified) of the partitioned table.

subpartition_name

The name of the subpartition to be deleted.

Description

The ALTER TABLE… DROP SUBPARTITION command deletes a subpartition, and the data
stored in that subpartition. To use the DROP SUBPARTITION clause, you must be the
owner of the partitioning root, a member of a group that owns the table, or have superuser
or administrative privileges.

3.5.11.1 Example - Deleting a Subpartition

The example that follows deletes a subpartition of the sales table. Use the following
command to create the sales table:

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY RANGE(date)
 SUBPARTITION BY LIST (country)
 (
 PARTITION first_half_2012 VALUES LESS THAN('01-JUL-2012')
 (
 SUBPARTITION europe VALUES ('ITALY', 'FRANCE'),

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

262

 SUBPARTITION americas VALUES ('CANADA', 'US'),
 SUBPARTITION asia VALUES ('PAKISTAN', 'INDIA')
),
 PARTITION second_half_2012 VALUES LESS THAN('01-JAN-2013')
);

Querying the ALL_TAB_SUBPARTITIONS view displays the subpartition names:

acctg=# SELECT subpartition_name, high_value, server_name FROM
ALL_TAB_SUBPARTITIONS; subpartition_name | high_value | server_name
-------------------+---------------------+-------------
 europe | 'ITALY', 'FRANCE' | chicago
 americas | 'CANADA', 'US' | seattle
 asia | 'PAKISTAN', 'INDIA' | boston
(3 rows)

To delete the americas subpartition from the sales table, invoke the following
command:

ALTER TABLE sales DROP SUBPARTITION americas;

Querying the ALL_TAB_SUBPARTITIONS view demonstrates that the subpartition has
been successfully deleted:

acctg=# SELECT subpartition_name, high_value FROM ALL_TAB_SUBPARTITIONS;
 subpartition_name | high_value
-------------------+---------------------
 europe | 'ITALY', 'FRANCE'
 asia | 'PAKISTAN', 'INDIA'
(2 rows)

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

263

3.5.12 TRUNCATE TABLE

Use the TRUNCATE TABLE command to remove the contents of a table, while preserving
the table definition. When you truncate a table, any partitions or subpartitions of that
table are also truncated. The syntax is:

TRUNCATE TABLE table_name

Description

The TRUNCATE TABLE command removes an entire table, and the data that resides in
that table. When you delete a table, any partitions or subpartitions (of that table) are
deleted as well.

To use the TRUNCATE TABLE command, you must be the owner of the partitioning root, a
member of a group that owns the table, the schema owner, or a database superuser.

Parameters

table_name

The name (optionally schema-qualified) of the partitioned table.

3.5.12.1 Example - Emptying a Table

The example that follows removes the data from the sales table. Use the following
command to create the sales table:

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY LIST(country)
(
 PARTITION europe VALUES('FRANCE', 'ITALY'),
 PARTITION asia VALUES('INDIA', 'PAKISTAN'),
 PARTITION americas VALUES('US', 'CANADA')
);

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

264

Populate the sales table with the command:

INSERT INTO sales VALUES
 (10, '4519b', 'FRANCE', '17-Jan-2012', '45000'),
 (20, '3788a', 'INDIA', '01-Mar-2012', '75000'),
 (40, '9519b', 'US', '12-Apr-2012', '145000'),
 (20, '3788a', 'PAKISTAN', '04-Jun-2012', '37500'),
 (40, '4577b', 'US', '11-Nov-2012', '25000'),
 (30, '7588b', 'CANADA', '14-Dec-2012', '50000'),
 (30, '9519b', 'CANADA', '01-Feb-2012', '75000'),
 (30, '4519b', 'CANADA', '08-Apr-2012', '120000'),
 (40, '3788a', 'US', '12-May-2012', '4950'),
 (10, '9519b', 'ITALY', '07-Jul-2012', '15000'),
 (10, '9519a', 'FRANCE', '18-Aug-2012', '650000'),
 (10, '9519b', 'FRANCE', '18-Aug-2012', '650000'),
 (20, '3788b', 'INDIA', '21-Sept-2012', '5090'),
 (40, '4788a', 'US', '23-Sept-2012', '4950'),
 (40, '4788b', 'US', '09-Oct-2012', '15000'),
 (20, '4519a', 'INDIA', '18-Oct-2012', '650000'),
 (20, '4519b', 'INDIA', '2-Dec-2012', '5090');

Querying the sales table shows that the partitions are populated with data:

acctg=# SELECT tableoid::regclass, * FROM sales;
 tableoid |dept_no | part_no | country | date | amount
--------------+--------+---------+----------+--------------------+-----------
sales_europe | 10 | 4519b | FRANCE | 17-JAN-12 00:00:00 | 45000
sales_europe | 10 | 9519b | ITALY | 07-JUL-12 00:00:00 | 15000
sales_europe | 10 | 9519a | FRANCE | 18-AUG-12 00:00:00 | 650000
 sales_europe | 10 | 9519b | FRANCE | 18-AUG-12 00:00:00 | 650000
sales_asia | 20 | 3788a | INDIA | 01-MAR-12 00:00:00 | 75000
sales_asia | 20 | 3788a | PAKISTAN | 04-JUN-12 00:00:00 | 37500
sales_asia | 20 | 3788b | INDIA | 21-SEP-12 00:00:00 | 5090
sales_asia | 20 | 4519a | INDIA | 18-OCT-12 00:00:00 | 650000
sales_asia | 20 | 4519b | INDIA | 02-DEC-12 00:00:00 | 5090
sales_americas| 40 | 9519b | US | 12-APR-12 00:00:00 | 145000
sales_americas| 40 | 4577b | US | 11-NOV-12 00:00:00 | 25000
sales_americas| 30 | 7588b | CANADA | 14-DEC-12 00:00:00 | 50000
sales_americas| 30 | 9519b | CANADA | 01-FEB-12 00:00:00 | 75000
sales_americas| 30 | 4519b | CANADA | 08-APR-12 00:00:00 | 120000
sales_americas| 40 | 3788a | US | 12-MAY-12 00:00:00 | 4950
sales_americas| 40 | 4788a | US | 23-SEP-12 00:00:00 | 4950
sales_americas| 40 | 4788b | US | 09-OCT-12 00:00:00 | 15000
(17 rows)

To delete the contents of the sales table, invoke the following command:

TRUNCATE TABLE sales;

Now, querying the sales table shows that the data has been removed but the structure is
intact:

acctg=# SELECT tableoid::regclass, * FROM sales;
 tableoid | dept_no | part_no | country | date | amount

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

265

----------+---------+---------+---------+----------+------------
(0 rows)

For more information about the TRUNCATE TABLE command, please see the PostgreSQL
documentation at:

http://www.enterprisedb.com/docs/en/9.4/pg/sql-truncate.html

http://www.enterprisedb.com/docs/en/9.4/pg/sql-truncate.html

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

266

3.5.13 ALTER TABLE… TRUNCATE PARTITION

Use the ALTER TABLE… TRUNCATE PARTITION command to remove the data from the
specified partition, leaving the partition structure intact. The syntax is:

ALTER TABLE table_name TRUNCATE PARTITION partition_name
 [{DROP|REUSE} STORAGE]

Description

Use the ALTER TABLE… TRUNCATE PARTITION command to remove the data from the
specified partition, leaving the partition structure intact. When you truncate a partition,
any subpartitions of that partition are also truncated.

ALTER TABLE… TRUNCATE PARTITION will not cause ON DELETE triggers that might
exist for the table to fire, but it will fire ON TRUNCATE triggers. If an ON TRUNCATE
trigger is defined for the partition, all BEFORE TRUNCATE triggers are fired before any
truncation happens, and all AFTER TRUNCATE triggers are fired after the last truncation
occurs.

You must have the TRUNCATE privilege on a table to invoke ALTER TABLE…
TRUNCATE PARTITION.

Parameters

table_name

The name (optionally schema-qualified) of the partitioned table.

partition_name

The name of the partition to be deleted.

DROP STORAGE and REUSE STORAGE are included for compatibility only; the clauses are
parsed and ignored.

3.5.13.1 Example - Emptying a Partition

The example that follows removes the data from a partition of the sales table. Use the
following command to create the sales table:

CREATE TABLE sales

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

267

(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY LIST(country)
(
 PARTITION europe VALUES('FRANCE', 'ITALY'),
 PARTITION asia VALUES('INDIA', 'PAKISTAN'),
 PARTITION americas VALUES('US', 'CANADA')
);

Populate the sales table with the command:

INSERT INTO sales VALUES
 (10, '4519b', 'FRANCE', '17-Jan-2012', '45000'),
 (20, '3788a', 'INDIA', '01-Mar-2012', '75000'),
 (40, '9519b', 'US', '12-Apr-2012', '145000'),
 (20, '3788a', 'PAKISTAN', '04-Jun-2012', '37500'),
 (40, '4577b', 'US', '11-Nov-2012', '25000'),
 (30, '7588b', 'CANADA', '14-Dec-2012', '50000'),
 (30, '9519b', 'CANADA', '01-Feb-2012', '75000'),
 (30, '4519b', 'CANADA', '08-Apr-2012', '120000'),
 (40, '3788a', 'US', '12-May-2012', '4950'),
 (10, '9519b', 'ITALY', '07-Jul-2012', '15000'),
 (10, '9519a', 'FRANCE', '18-Aug-2012', '650000'),
 (10, '9519b', 'FRANCE', '18-Aug-2012', '650000'),
 (20, '3788b', 'INDIA', '21-Sept-2012', '5090'),
 (40, '4788a', 'US', '23-Sept-2012', '4950'),
 (40, '4788b', 'US', '09-Oct-2012', '15000'),
 (20, '4519a', 'INDIA', '18-Oct-2012', '650000'),
 (20, '4519b', 'INDIA', '2-Dec-2012', '5090');

Querying the sales table shows that the partitions are populated with data:

acctg=# SELECT tableoid::regclass, * FROM sales;
 tableoid | dept_no | part_no | country | date | amount
----------------+---------+---------+----------+--------------------+--------
 sales_europe | 10 | 4519b | FRANCE | 17-JAN-12 00:00:00 | 45000
 sales_europe | 10 | 9519b | ITALY | 07-JUL-12 00:00:00 | 15000
 sales_europe | 10 | 9519a | FRANCE | 18-AUG-12 00:00:00 | 650000
 sales_europe | 10 | 9519b | FRANCE | 18-AUG-12 00:00:00 | 650000
 sales_asia | 20 | 3788a | INDIA | 01-MAR-12 00:00:00 | 75000
 sales_asia | 20 | 3788a | PAKISTAN | 04-JUN-12 00:00:00 | 37500
 sales_asia | 20 | 3788b | INDIA | 21-SEP-12 00:00:00 | 5090
 sales_asia | 20 | 4519a | INDIA | 18-OCT-12 00:00:00 | 650000
 sales_asia | 20 | 4519b | INDIA | 02-DEC-12 00:00:00 | 5090
 sales_americas | 40 | 9519b | US | 12-APR-12 00:00:00 | 145000
 sales_americas | 40 | 4577b | US | 11-NOV-12 00:00:00 | 25000
 sales_americas | 30 | 7588b | CANADA | 14-DEC-12 00:00:00 | 50000
 sales_americas | 30 | 9519b | CANADA | 01-FEB-12 00:00:00 | 75000

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

268

 sales_americas | 30 | 4519b | CANADA | 08-APR-12 00:00:00 | 120000
 sales_americas | 40 | 3788a | US | 12-MAY-12 00:00:00 | 4950
 sales_americas | 40 | 4788a | US | 23-SEP-12 00:00:00 | 4950
 sales_americas | 40 | 4788b | US | 09-OCT-12 00:00:00 | 15000
(17 rows)

To delete the contents of the americas partition, invoke the following command:

ALTER TABLE sales TRUNCATE PARTITION americas;

Now, querying the sales table shows that the content of the americas partition has
been removed:

acctg=# SELECT tableoid::regclass, * FROM sales;
 tableoid | dept_no | part_no | country | date | amount
--------------+---------+---------+----------+--------------------+--------
 sales_europe | 10 | 4519b | FRANCE | 17-JAN-12 00:00:00 | 45000
 sales_europe | 10 | 9519b | ITALY | 07-JUL-12 00:00:00 | 15000
 sales_europe | 10 | 9519a | FRANCE | 18-AUG-12 00:00:00 | 650000
 sales_europe | 10 | 9519b | FRANCE | 18-AUG-12 00:00:00 | 650000
 sales_asia | 20 | 3788a | INDIA | 01-MAR-12 00:00:00 | 75000
 sales_asia | 20 | 3788a | PAKISTAN | 04-JUN-12 00:00:00 | 37500
 sales_asia | 20 | 3788b | INDIA | 21-SEP-12 00:00:00 | 5090
 sales_asia | 20 | 4519a | INDIA | 18-OCT-12 00:00:00 | 650000
 sales_asia | 20 | 4519b | INDIA | 02-DEC-12 00:00:00 | 5090
(9 rows)

While the rows have been removed, the structure of the americas partition is still intact:

acctg=# SELECT partition_name, high_value FROM ALL_TAB_PARTITIONS;
 partition_name | high_value
----------------+---------------------
 europe | 'FRANCE', 'ITALY'
 asia | 'INDIA', 'PAKISTAN'
 americas | 'US', 'CANADA'
(3 rows)

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

269

3.5.14 ALTER TABLE… TRUNCATE SUBPARTITION

Use the ALTER TABLE… TRUNCATE SUBPARTITION command to remove all of the data
from the specified subpartition, leaving the subpartition structure intact. The syntax is:

ALTER TABLE table_name
 TRUNCATE SUBPARTITION subpartition_name
 [{DROP|REUSE} STORAGE]

Description

The ALTER TABLE… TRUNCATE SUBPARTITION command removes all data from a
specified subpartition, leaving the subpartition structure intact.

ALTER TABLE… TRUNCATE SUBPARTITION will not cause ON DELETE triggers that
might exist for the table to fire, but it will fire ON TRUNCATE triggers. If an ON
TRUNCATE trigger is defined for the subpartition, all BEFORE TRUNCATE triggers are
fired before any truncation happens, and all AFTER TRUNCATE triggers are fired after the
last truncation occurs.

You must have the TRUNCATE privilege on a table to invoke ALTER TABLE…
TRUNCATE SUBPARTITION.

Parameters

table_name

The name (optionally schema-qualified) of the partitioned table.

subpartition_name

The name of the subpartition to be truncated.

The DROP STORAGE and REUSE STORAGE clauses are included for compatibility only; the
clauses are parsed and ignored.

3.5.14.1 Example - Emptying a Subpartition

The example that follows removes the data from a subpartition of the sales table. Use
the following command to create the sales table:

CREATE TABLE sales

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

270

(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY RANGE(date) SUBPARTITION BY LIST (country)
(
 PARTITION "2011" VALUES LESS THAN('01-JAN-2012')
 (
 SUBPARTITION europe_2011 VALUES ('ITALY', 'FRANCE'),
 SUBPARTITION asia_2011 VALUES ('PAKISTAN', 'INDIA'),
 SUBPARTITION americas_2011 VALUES ('US', 'CANADA')
),
 PARTITION "2012" VALUES LESS THAN('01-JAN-2013')
 (
 SUBPARTITION europe_2012 VALUES ('ITALY', 'FRANCE'),
 SUBPARTITION asia_2012 VALUES ('PAKISTAN', 'INDIA'),
 SUBPARTITION americas_2012 VALUES ('US', 'CANADA')
),
 PARTITION "2013" VALUES LESS THAN('01-JAN-2014')
 (
 SUBPARTITION europe_2013 VALUES ('ITALY', 'FRANCE'),
 SUBPARTITION asia_2013 VALUES ('PAKISTAN', 'INDIA'),
 SUBPARTITION americas_2013 VALUES ('US', 'CANADA')
)
);

Populate the sales table with the command:

INSERT INTO sales VALUES
 (10, '4519b', 'FRANCE', '17-Jan-2011', '45000'),
 (20, '3788a', 'INDIA', '01-Mar-2012', '75000'),
 (40, '9519b', 'US', '12-Apr-2012', '145000'),
 (20, '3788a', 'PAKISTAN', '04-Jun-2012', '37500'),
 (40, '4577b', 'US', '11-Nov-2012', '25000'),
 (30, '7588b', 'CANADA', '14-Dec-2011', '50000'),
 (30, '4519b', 'CANADA', '08-Apr-2012', '120000'),
 (40, '3788a', 'US', '12-May-2011', '4950'),
 (20, '3788a', 'US', '04-Apr-2012', '37500'),
 (40, '4577b', 'INDIA', '11-Jun-2011', '25000'),
 (10, '9519b', 'ITALY', '07-Jul-2012', '15000'),
 (20, '4519b', 'INDIA', '2-Dec-2012', '5090');

Querying the sales table shows that the rows have been distributed amongst the
subpartitions:

acctg=# SELECT tableoid::regclass, * FROM sales;

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

271

 tableoid | dept_no| part_no| country | date |amount
--------------------+--------+--------+----------+-------------------+-------
 sales_2011_europe | 10| 4519b | FRANCE | 17-JAN-11 00:00:00| 45000
 sales_2011_asia | 40| 4577b | INDIA | 11-JUN-11 00:00:00| 25000
 sales_2011_americas| 30| 7588b | CANADA | 14-DEC-11 00:00:00| 50000
 sales_2011_americas| 40| 3788a | US | 12-MAY-11 00:00:00| 4950
 sales_2012_europe | 10| 9519b | ITALY | 07-JUL-12 00:00:00| 15000
 sales_2012_asia | 20| 3788a | INDIA | 01-MAR-12 00:00:00| 75000
 sales_2012_asia | 20| 3788a | PAKISTAN | 04-JUN-12 00:00:00| 37500
 sales_2012_asia | 20| 4519b | INDIA | 02-DEC-12 00:00:00| 5090
 sales_2012_americas| 40| 9519b | US | 12-APR-12 00:00:00| 145000
 sales_2012_americas| 40| 4577b | US | 11-NOV-12 00:00:00| 25000
 sales_2012_americas| 30| 4519b | CANADA | 08-APR-12 00:00:00| 120000
 sales_2012_americas| 20| 3788a | US | 04-APR-12 00:00:00| 37500
(12 rows)

To delete the contents of the 2012_americas partition, invoke the following command:

ALTER TABLE sales TRUNCATE SUBPARTITION "americas_2012";

Now, querying the sales table shows that the content of the americas_2012 partition
has been removed:

acctg=# SELECT tableoid::regclass, * FROM sales;
 tableoid | dept_no|part_no| country | date | amount
--------------------+--------+-------+----------+--------------------+-------
 sales_2011_europe | 10| 4519b | FRANCE | 17-JAN-11 00:00:00 | 45000
 sales_2011_asia | 40| 4577b | INDIA | 11-JUN-11 00:00:00 | 25000
 sales_2011_americas| 30| 7588b | CANADA | 14-DEC-11 00:00:00 | 50000
 sales_2011_americas| 40| 3788a | US | 12-MAY-11 00:00:00 | 4950
 sales_2012_europe | 10| 9519b | ITALY | 07-JUL-12 00:00:00 | 15000
 sales_2012_asia | 20| 3788a | INDIA | 01-MAR-12 00:00:00 | 75000
 sales_2012_asia | 20| 3788a | PAKISTAN | 04-JUN-12 00:00:00 | 37500
 sales_2012_asia | 20| 4519b | INDIA | 02-DEC-12 00:00:00 | 5090
(8 rows)

While the rows have been removed, the structure of the 2012_americas partition is still
intact:

acctg=# SELECT subpartition_name, high_value FROM ALL_TAB_SUBPARTITIONS;
 subpartition_name | high_value
-------------------+---------------------
 2013_europe | 'ITALY', 'FRANCE'
 2012_europe | 'ITALY', 'FRANCE'
 2011_europe | 'ITALY', 'FRANCE'
 2013_asia | 'PAKISTAN', 'INDIA'
 2012_asia | 'PAKISTAN', 'INDIA'
 2011_asia | 'PAKISTAN', 'INDIA'
 2013_americas | 'US', 'CANADA'
 2012_americas | 'US', 'CANADA'
 2011_americas | 'US', 'CANADA'
(9
rows)

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

272

3.6 Handling Stray Values in a LIST or RANGE Partitioned Table

A DEFAULT or MAXVALUE partition or subpartition will capture any rows that do not meet
the other partitioning rules defined for a table.

Defining a DEFAULT Partition

A DEFAULT partition will capture any rows that do not fit into any other partition in a
LIST partitioned (or subpartitioned) table. If you do not include a DEFAULT rule, any
row that does not match one of the values in the partitioning constraints will result in an
error. Each LIST partition or subpartition may have its own DEFAULT rule.

The syntax of a DEFAULT rule is:

PARTITION [partition_name] VALUES (DEFAULT)

Where partition_name specifies the name of the partition or subpartition that will
store any rows that do not match the rules specified for other partititions.

The last example created a list partitioned table in which the server decided which
partition to store the data based upon the value of the country column. If you attempt
to add a row in which the value of the country column contains a value not listed in the
rules, Advanced Server reports an error:

acctg=# INSERT INTO sales VALUES
acctg-# (40, '3000x', 'IRELAND', '01-Mar-2012', '45000');
ERROR: inserted partition key does not map to any partition

The following example creates the same table, but adds a DEFAULT partition. The server
will store any rows that do not match a value specified in the partitioning rules for
europe, asia, or americas partitions in the others partition:

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY LIST(country)
(
 PARTITION europe VALUES('FRANCE', 'ITALY'),
 PARTITION asia VALUES('INDIA', 'PAKISTAN'),
 PARTITION americas VALUES('US', 'CANADA'),
 PARTITION others VALUES (DEFAULT)
);

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

273

To test the DEFAULT partition, add row with a value in the country column that does
not match one of the countries specified in the partitioning constraints:

INSERT INTO sales VALUES
 (40, '3000x', 'IRELAND', '01-Mar-2012', '45000');

Querying the contents of the sales table confirms that the previously rejected row is
now stored in the sales_others partition:

acctg=# SELECT tableoid::regclass, * FROM sales;
 tableoid | dept_no | part_no | country | date | amount
----------------+---------+---------+----------+--------------------+--------
 sales_europe | 10 | 4519b | FRANCE | 17-JAN-12 00:00:00 | 45000
 sales_europe | 10 | 9519b | ITALY | 07-JUL-12 00:00:00 | 15000
 sales_europe | 10 | 9519a | FRANCE | 18-AUG-12 00:00:00 | 650000
 sales_europe | 10 | 9519b | FRANCE | 18-AUG-12 00:00:00 | 650000
 sales_asia | 20 | 3788a | INDIA | 01-MAR-12 00:00:00 | 75000
 sales_asia | 20 | 3788a | PAKISTAN | 04-JUN-12 00:00:00 | 37500
 sales_asia | 20 | 3788b | INDIA | 21-SEP-12 00:00:00 | 5090
 sales_asia | 20 | 4519a | INDIA | 18-OCT-12 00:00:00 | 650000
 sales_asia | 20 | 4519b | INDIA | 02-DEC-12 00:00:00 | 5090
 sales_americas | 40 | 9519b | US | 12-APR-12 00:00:00 | 145000
 sales_americas | 40 | 4577b | US | 11-NOV-12 00:00:00 | 25000
 sales_americas | 30 | 7588b | CANADA | 14-DEC-12 00:00:00 | 50000
 sales_americas | 30 | 9519b | CANADA | 01-FEB-12 00:00:00 | 75000
 sales_americas | 30 | 4519b | CANADA | 08-APR-12 00:00:00 | 120000
 sales_americas | 40 | 3788a | US | 12-MAY-12 00:00:00 | 4950
 sales_americas | 40 | 4788a | US | 23-SEP-12 00:00:00 | 4950
 sales_americas | 40 | 4788b | US | 09-OCT-12 00:00:00 | 15000
 sales_others | 40 | 3000x | IRELAND | 01-MAR-12 00:00:00 | 45000
(18 rows)

Please note that Advanced Server does not have a way to re-assign the contents of a
DEFAULT partition or subpartition:

x You cannot use the ALTER TABLE… ADD PARTITION command to add a
partition to a table with a DEFAULT rule, but you can use the ALTER TABLE…
SPLIT PARTITION command to split an existing partition.

x You cannot use the ALTER TABLE… ADD SUBPARTITION command to add a
subpartition to a table with a DEFAULT rule, but you can use the ALTER TABLE…
SPLIT SUBPARTITION command to split an existing subpartition.

Defining a MAXVALUE Partition

A MAXVALUE partition (or subpartition) will capture any rows that do not fit into any
other partition in a range-partitioned (or subpartitioned) table. If you do not include a
MAXVALUE rule, any row that exceeds the maximum limit specified by the partitioning
rules will result in an error. Each partition or subpartition may have its own MAXVALUE
partition.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

274

The syntax of a MAXVALUE rule is:

PARTITION [partition_name] VALUES LESS THAN (MAXVALUE)

Where partition_name specifies the name of the partition that will store any rows that
do not match the rules specified for other partititions.

The last example created a range-partitioned table in which the data was partitioned
based upon the value of the date column. If you attempt to add a row with a date that
exceeds a date listed in the partitioning constraints, Advanced Server reports an error:

acctg=# INSERT INTO sales VALUES
acctg-# (40, '3000x', 'IRELAND', '01-Mar-2013', '45000');
ERROR: inserted partition key does not map to any partition

The following CREATE TABLE command creates the same table, but with a MAXVALUE
partition. Instead of throwing an error, the server will store any rows that do not match
the previous partitioning constraints in the others partition:

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY RANGE(date)
(
 PARTITION q1_2012 VALUES LESS THAN('2012-Apr-01'),
 PARTITION q2_2012 VALUES LESS THAN('2012-Jul-01'),
 PARTITION q3_2012 VALUES LESS THAN('2012-Oct-01'),
 PARTITION q4_2012 VALUES LESS THAN('2013-Jan-01')
 PARTITION others VALUES LESS THAN (MAXVALUE)
);

To test the MAXVALUE partition, add a row with a value in the date column that exceeds
the last date value listed in a partitioning rule. The server will store the row in the
others partition:

INSERT INTO sales VALUES
 (40, '3000x', 'IRELAND', '01-Mar-2013', '45000');

Querying the contents of the sales table confirms that the previously rejected row is
now stored in the sales_others partition :

acctg=# SELECT tableoid::regclass, * FROM sales;
 tableoid | dept_no | part_no | country | date | amount

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

275

---------------+---------+---------+----------+--------------------+---------
 sales_q1_2012 | 10 | 4519b | FRANCE | 17-JAN-12 00:00:00 | 45000
 sales_q1_2012 | 20 | 3788a | INDIA | 01-MAR-12 00:00:00 | 75000
 sales_q1_2012 | 30 | 9519b | CANADA | 01-FEB-12 00:00:00 | 75000
 sales_q2_2012 | 40 | 9519b | US | 12-APR-12 00:00:00 | 145000
 sales_q2_2012 | 20 | 3788a | PAKISTAN | 04-JUN-12 00:00:00 | 37500
 sales_q2_2012 | 30 | 4519b | CANADA | 08-APR-12 00:00:00 | 120000
 sales_q2_2012 | 40 | 3788a | US | 12-MAY-12 00:00:00 | 4950
 sales_q3_2012 | 10 | 9519b | ITALY | 07-JUL-12 00:00:00 | 15000
 sales_q3_2012 | 10 | 9519a | FRANCE | 18-AUG-12 00:00:00 | 650000
 sales_q3_2012 | 10 | 9519b | FRANCE | 18-AUG-12 00:00:00 | 650000
 sales_q3_2012 | 20 | 3788b | INDIA | 21-SEP-12 00:00:00 | 5090
 sales_q3_2012 | 40 | 4788a | US | 23-SEP-12 00:00:00 | 4950
 sales_q4_2012 | 40 | 4577b | US | 11-NOV-12 00:00:00 | 25000
 sales_q4_2012 | 30 | 7588b | CANADA | 14-DEC-12 00:00:00 | 50000
 sales_q4_2012 | 40 | 4788b | US | 09-OCT-12 00:00:00 | 15000
 sales_q4_2012 | 20 | 4519a | INDIA | 18-OCT-12 00:00:00 | 650000
 sales_q4_2012 | 20 | 4519b | INDIA | 02-DEC-12 00:00:00 | 5090
 sales_others | 40 | 3000x | IRELAND | 01-MAR-13 00:00:00 | 45000
(18 rows)

Please note that Advanced Server does not have a way to re-assign the contents of a
MAXVALUE partition or subpartition:

x You cannot use the ALTER TABLE… ADD PARTITION statement to add a partition
to a table with a MAXVALUE rule, but you can use the ALTER TABLE… SPLIT
PARTITION statement to split an existing partition.

x You cannot use the ALTER TABLE… ADD SUBPARTITION statement to add a
subpartition to a table with a MAXVALUE rule , but you can split an existing
subpartition with the ALTER TABLE… SPLIT SUBPARTITION statement.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

276

3.7 Specifying Multiple Partitioning Keys in a RANGE
Partitioned Table

You can often improve performance by specifying multiple key columns for a RANGE
partitioned table. If you often select rows using comparison operators (based on a
greater-than or less-than value) on a small set of columns, consider using those columns
in RANGE partitioning rules.

Specifying Multiple Keys in a Range-Partitioned Table

Range-partitioned table definitions may include multiple columns in the partitioning key.
To specify multiple partitioning keys for a range-partitioned table, include the column
names in a comma-separated list after the PARTITION BY RANGE clause:

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 sale_year number,
 sale_month number,
 sale_day number,
 amount number
)
PARTITION BY RANGE(sale_year, sale_month)
(
 PARTITION q1_2012
 VALUES LESS THAN(2012, 4),
 PARTITION q2_2012
 VALUES LESS THAN(2012, 7),
 PARTITION q3_2012
 VALUES LESS THAN(2012, 10),
 PARTITION q4_2012
 VALUES LESS THAN(2013, 1)
);

If a table is created with multiple partitioning keys, you must specify multiple key values
when querying the table to take full advantage of partition pruning:

acctg=# EXPLAIN SELECT * FROM sales WHERE sale_year = 2012 AND sale_month =
8;
 QUERY PLAN

Result (cost=0.00..14.35 rows=2 width=250)
 -> Append (cost=0.00..14.35 rows=2 width=250)
 -> Seq Scan on sales (cost=0.00..0.00 rows=1 width=250)
 Filter: ((sale_year = 2012::numeric) AND (sale_month =
8::numeric))
 -> Seq Scan on sales_q3_2012 sales (cost=0.00..14.35 rows=1
width=250)

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

277

 Filter: ((sale_year = 2012::numeric) AND (sale_month =
8::numeric))
(6 rows)

Since all rows with a value of 8 in the sale_month column and a value of 2012 in the
sale_year column will be stored in the q3_2012 partition, Advanced Server searches
only that partition.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

278

3.8 Retrieving Information about a Partitioned Table

Advanced Server provides five system catalog views that you can use to view
information about the structure of partitioned tables.

Querying the Partitioning Views

You can query the following views to retrieve information about partitioned and
subpartitioned tables:

x ALL_PART_TABLES

x ALL_TAB_PARTITIONS

x ALL_TAB_SUBPARTITIONS

x ALL_PART_KEY_COLUMNS

x ALL_SUBPART_KEY_COLUMNS

The structure of each view is explained in Section 13.5.1, Table Partitioning Views. If
you are using the EDB-PSQL client, you can also discover the structure of a view by
entering:

\d view_name

Where view_name specifies the name of the table partitioning view.

Querying a view can provide information about the structure of a partitioned or
subpartitioned table. For example, the following code snippit displays the system-
assigned names of a subpartitioned table:

acctg=# SELECT subpartition_name, partition_name FROM ALL_TAB_SUBPARTITIONS;
 subpartition_name | partition_name
-------------------+----------------
 SYS_SUBP107 | americas
 SYS_SUBP104 | asia
 SYS_SUBP101 | europe
 SYS_SUBP108 | americas
 SYS_SUBP105 | asia
 SYS_SUBP102 | europe
 SYS_SUBP109 | americas
 SYS_SUBP106 | asia
 SYS_SUBP103 | europe
(9 rows)

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

279

3.8.1 Table Partitioning Views - Reference

Query the following catalog views to review detailed information about your partitioned
tables.

3.8.1.1 ALL_PART_TABLES

The following table lists the information available in the ALL_PART_TABLES view:

Column Type Description
 owner name The owner of the table.
 table_name name The name of the table.
 schema_name name The schema in which the table resides.
 partitioning_type text RANGE, LIST or HASH
 subpartitioning_type text RANGE, LIST, HASH, or NONE
 partition_count bigint The number of partitions.
 def_subpartition_count integer The default subpartition count - this will

always be 0.
 partitioning_key_count integer The number of columns listed in the partition

by clause.
 subpartitioning_key_count integer The number of columns in the subpartition by

clause.
 status character

varying(8)
This column will always be VALID.

 def_tablespace_name character
varying(30)

This column will always be NULL.

 def_pct_free numeric This column will always be NULL.
 def_pct_used numeric This column will always be NULL.
 def_ini_trans numeric This column will always be NULL.
 def_max_trans numeric This column will always be NULL.
 def_initial_extent character

varying(40)
This column will always be NULL.

 def_next_extent character
varying(40)

This column will always be NULL.

 def_min_extents character
varying(40)

This column will always be NULL.

 def_max_extents character
varying(40)

This column will always be NULL.

 def_pct_increase character
varying(40)

This column will always be NULL.

 def_freelists numeric This column will always be NULL.
 def_freelist_groups numeric This column will always be NULL.
 def_logging character

varying(7)
This column will always be YES

 def_compression character
varying(8)

This column will always be NONE

 def_buffer_pool character
varying(7)

This column will always be DEFAULT

 ref_ptn_constraint_name character
varying(30)

This column will always be NULL.

 interval character
varying(1000)

This column will always be NULL.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

280

3.8.1.2 ALL_TAB_PARTITIONS

The following table lists the information available in the ALL_TAB_PARTITIONS view:

Column Type Description
 table_owner name The owner of the table.
 table_name name The name of the table.
 schema_name name The schema in which the table resides.
 composite text YES if the table is subpartioned; NO if it is

not subpartitioned.
 partition_name name The name of the partition.
 subpartition_count bigint The number of subpartitions for this partition.
 high_value text The partition limit for RANGE partitions, or

the partition value for LIST partitions.
 high_value_length integer The length of high_value.
 partition_position integer The ordinal position of this partition.
 tablespace_name name The tablespace in which this partition resides.
 pct_free numeric This column will always be 0.
 pct_used numeric This column will always be 0.
 ini_trans numeric This column will always be 0.
 max_trans numeric This column will always be 0.
 initial_extent numeric This column will always be NULL.
 next_extent numeric This column will always be NULL.
 min_extent numeric This column will always be 0.
 max_extent numeric This column will always be 0.
 pct_increase numeric This column will always be 0.
 freelists numeric This column will always be NULL.
 freelist_groups numeric This column will always be NULL.
 logging character

varying(7)
This column will always be YES.

 compression character
varying(8)

This column will always be NONE.

 num_rows numeric The approx. number of rows in this partition.
 blocks integer The approx. number of blocks in this partition.
 empty_blocks numeric This column will always be NULL.
 avg_space numeric This column will always be NULL.
 chain_cnt numeric This column will always be NULL.
 avg_row_len numeric This column will always be NULL.
 sample_size numeric This column will always be NULL.
 last_analyzed timestamp

without time
zone

This column will always be NULL.

 buffer_pool character
varying(7)

This column will always be NULL.
 global_stats character

varying(3)
This column will always be YES.

 user_stats character
varying(3)

This column will always be NO.

 backing_table regclass OID of the backing table for this partition.
 server_name name The name of the server on which the partition

resides.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

281

3.8.1.3 ALL_TAB_SUBPARTITIONS

The following table lists the information available in the ALL_TAB_SUBPARTITIONS
view:

Column Type Description
 table_owner name The name of the owner of the table.
 table_name name The name of the table.
 schema_name name The name of the schema in which the table

resides.
 partition_name name The name of the partition.
 high_value text The subpartition limit for RANGE, or the

subpartition value for LIST subpartitions.
 high_value_length integer The length of high_value.
 subpartition_name name The name of the subpartition.
 subpartition_position integer The ordinal position of this subpartition.
 tablespace_name name The tablespace in which this subpartition

resides.
 pct_free numeric This column will always be 0.
 pct_used numeric This column will always be 0.
 ini_trans numeric This column will always be 0.
 max_trans numeric This column will always be 0.
 initial_extent numeric This column will always be NULL.
 next_extent numeric This column will always be NULL.
 min_extent numeric This column will always be 0.
 max_extent numeric This column will always be 0.
 pct_increase numeric This column will always be 0.
 freelists numeric This column will always be NULL.
 freelist_groups numeric This column will always be NULL.
 logging character

varying(7)
This column will always be YES.

 compression character
varying(8)

This column will always be NONE.

 num_rows numeric The approx. number of rows in this
subpartition.

 blocks integer The approx. number of blocks in this
subpartition.

 empty_blocks numeric This column will always be NULL.
 avg_space numeric This column will always be NULL.
 chain_cnt numeric This column will always be NULL.
 avg_row_len numeric This column will always be NULL.
 sample_size numeric This column will always be NULL.
 last_analyzed timestamp

without time
zone

This column will always be NULL.

 buffer_pool character
varying(7)

This column will always be NULL.

 global_stats character
varying(3)

This column will always be YES.

 user_stats character
varying(3)

Thiscolumn will always be NO.

 backing_table regclass OID of the backing table for this subpartition.
 server_name name The name of the server on which the

subpartition resides.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

282

3.8.1.4 ALL_PART_KEY_COLUMNS

The following table lists the information available in the ALL_PART_KEY_COLUMNS
view:

 Column Type Description
 owner name The name of the table owner.
 name name The name of the table.
 schema name The name of the schema on which the table

resides.
 object_type character(5) This column will always be TABLE.
 column_name name The name of the partitioning key column.
 column_position integer The position of this column within the

partitioning key (the first column has a column
position of 1, the second column has a column
position of 2...)

3.8.1.5 ALL_SUBPART_KEY_COLUMNS

The following table lists the information available in the ALL_SUBPART_KEY_COLUMNS
view:

 Column Type Description
 owner name The name of the table owner.
 name name The name of the table.
 schema name The name of the schema on which the table

resides.
 object_type character(5) This column will always be TABLE.
 column_name name The name of the partitioning key column.
 column_position integer The position of this column within the

subpartitioning key (the first column has a
column position of 1, the second column has a
column position of 2...)

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

283

4 Security
The chapter describes various features providing for added security.

4.1 Protecting Against SQL Injection Attacks

Postgres Plus Advanced Server provides protection against SQL injection attacks. A SQL
injection attack is an attempt to compromise a database by running SQL statements
whose results provide clues to the attacker as to the content, structure, or security of that
database.

Preventing a SQL injection attack is normally the responsibility of the application
developer. The database administrator typically has little or no control over the potential
threat. The difficulty for database administrators is that the application must have access
to the data to function properly.

SQL/Protect is a module that allows a database administrator to protect a database from
SQL injection attacks. SQL/Protect provides a layer of security in addition to the normal
database security policies by examining incoming queries for common SQL injection
profiles.

SQL/Protect gives the control back to the database administrator by alerting the
administrator to potentially dangerous queries and by blocking these queries.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

284

4.1.1 SQL/Protect Overview

This section contains an introduction to the different types of SQL injection attacks and
describes how SQL/Protect guards against them.

4.1.1.1 Types of SQL Injection Attacks

There are a number of different techniques used to perpetrate SQL injection attacks. Each
technique is characterized by a certain signature. SQL/Protect examines queries for the
following signatures:

Unauthorized Relations

While Postgres Plus Advanced Server allows administrators to restrict access to relations
(tables, views, etc.), many administrators do not perform this tedious task. SQL/Protect
provides a learn mode that tracks the relations a user accesses.

This allows administrators to examine the workload of an application, and for
SQL/Protect to learn which relations an application should be allowed to access for a
given user or group of users in a role.

When SQL/Protect is switched to either passive or active mode, the incoming queries are
checked against the list of learned relations.

Utility Commands

A common technique used in SQL injection attacks is to run utility commands, which are
typically SQL Data Definition Language (DDL) statements. An example is creating a
user-defined function that has the ability to access other system resources.

SQL/Protect can block the running of all utility commands, which are not normally
needed during standard application processing.

SQL Tautology

The most frequent technique used in SQL injection attacks is issuing a tautological
WHERE clause condition (that is, using a condition that is always true).

The following is an example:

WHERE password = 'x' OR 'x'='x'

Attackers will usually start identifying security weaknesses using this technique.
SQL/Protect can block queries that use a tautological conditional clause.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

285

Unbounded DML Statements

A dangerous action taken during SQL injection attacks is the running of unbounded DML
statements. These are UPDATE and DELETE statements with no WHERE clause. For
example, an attacker may update all users‟ passwords to a known value or initiate a
denial of service attack by deleting all of the data in a key table.

4.1.1.2 Monitoring SQL Injection Attacks

This section describes how SQL/Protect monitors and reports on SQL injection attacks.

4.1.1.2.1 Protected Roles

Monitoring for SQL injection attacks involves analyzing SQL statements originating in
database sessions where the current user of the session is a protected role. A protected
role is a Postgres Plus Advanced Server user or group that the database administrator has
chosen to monitor using SQL/Protect. (In Postgres Plus Advanced Server, users and
groups are collectively referred to as roles.)

Each protected role can be customized for the types of SQL injection attacks (discussed
in Section 4.1.1.1) for which it is to be monitored, thus providing different levels of
protection by role and significantly reducing the user maintenance load for DBAs.

Note: A role with the superuser privilege cannot be made a protected role. If a protected
non-superuser role is subsequently altered to become a superuser, certain behaviors are
exhibited whenever an attempt is made by that superuser to issue any command:

x A warning message is issued by SQL/Protect on every command issued by the
protected superuser.

x The statistic in column superusers of edb_sql_protect_stats is
incremented with every command issued by the protected superuser. See Section
4.1.1.2.2 for information on the edb_sql_protect_stats view.

x When SQL/Protect is in active mode, all commands issued by the protected
superuser are prevented from running.

A protected role that has the superuser privilege should either be altered so that it is no
longer a superuser, or it should be reverted back to an unprotected role.

4.1.1.2.2 Attack Attempt Statistics

Each usage of a command by a protected role that is considered an attack by SQL/Protect
is recorded. Statistics are collected by type of SQL injection attack as discussed in
Section 4.1.1.1.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

286

These statistics are accessible from view edb_sql_protect_stats that can be easily
monitored to identify the start of a potential attack.

The columns in edb_sql_protect_stats monitor the following:

x username. Name of the protected role.
x superusers. Number of SQL statements issued when the protected role is a

superuser. In effect, any SQL statement issued by a protected superuser increases
this statistic. See Section 4.1.1.2.1 for information on protected superusers.

x relations. Number of SQL statements issued referencing relations that were not
learned by a protected role. (That is, relations that are not in a role‟s protected
relations list.)

x commands. Number of DDL statements issued by a protected role.
x tautology. Number of SQL statements issued by a protected role that contained a

tautological condition.
x dml. Number of UPDATE and DELETE statements issued by a protected role that

did not contain a WHERE clause.

This gives database administrators the opportunity to react proactively in preventing theft
of valuable data or other malicious actions.

If a role is protected in more than one database, the role‟s statistics for attacks in each
database are maintained separately and are viewable only when connected to the
respective database.

Note: SQL/Protect statistics are maintained in memory while the database server is
running. When the database server is shut down, the statistics are saved to a binary file
named edb_sqlprotect.stat in the data/global subdirectory of the Postgres Plus
Advanced Server home directory.

4.1.1.2.3 Attack Attempt Queries

Each usage of a command by a protected role that is considered an attack by SQL/Protect
is recorded in view edb_sql_protect_queries.

View edb_sql_protect_queries contains the following columns:

x username. Database user name of the attacker used to log into the database
server.

x ip_address. IP address of the machine from which the attack was initiated.
x port. Port number from which the attack originated.
x machine_name. Name of the machine, if known, from which the attack

originated.
x date_time. Date and time at which the query was received by the database server.

The time is stored to the precision of a minute.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

287

x query. The query string sent by the attacker.

The maximum number of offending queries that are saved in
edb_sql_protect_queries is controlled by configuration parameter
edb_sql_protect.max_queries_to_save.

If a role is protected in more than one database, the role‟s queries for attacks in each
database are maintained separately and are viewable only when connected to the
respective database.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

288

4.1.2 Configuring SQL/Protect

The library file (sqlprotect.so on Linux, sqlprotect.dll on Windows) necessary
to run SQL/Protect should already be installed in the lib subdirectory of your Postgres
Plus Advanced Server home directory.

You will also need the SQL script file sqlprotect.sql located in the
share/contrib subdirectory of your Postgres Plus Advanced Server home directory.

You must configure the database server to use SQL/Protect, and you must configure each
database that you want SQL/Protect to monitor:

x The database server configuration file, postgresql.conf, must be modified by
adding and enabling configuration parameters used by SQL/Protect.

x Database objects used by SQL/Protect must be installed in each database that you
want SQL/Protect to monitor.

Step 1: Edit the following configuration parameters in the postgresql.conf file
located in the data subdirectory of your Postgres Plus Advanced Server home directory.

x shared_preload_libraries. Add $libdir/sqlprotect to the list of libraries.
x edb_sql_protect.enabled. Controls whether or not SQL/Protect is actively

monitoring protected roles by analyzing SQL statements issued by those roles and
reacting according to the setting of edb_sql_protect.level. When you are
ready to begin monitoring with SQL/Protect set this parameter to on. If this
parameter is omitted, the default is off.

x edb_sql_protect.level. Sets the action taken by SQL/Protect when a SQL
statement is issued by a protected role. If this parameter is omitted, the default
behavior is passive. Initially, set this parameter to learn. See Section 4.1.2.1.2
for further explanation of this parameter.

x edb_sql_protect.max_protected_roles. Sets the maximum number of roles that
can be protected. If this parameter is omitted, the default setting is 64. See
Section 2.1.3.12.8 for information on the maximum range of this parameter.

x edb_sql_protect.max_protected_relations. Sets the maximum number of
relations that can be protected per role. If this parameter is omitted, the default
setting is 1024.
Please note the total number of protected relations for the server will be the
number of protected relations times the number of protected roles. Every
protected relation consumes space in shared memory. The space for the maximum
possible protected relations is reserved during database server startup.
See Section 2.1.3.12.7 for information about the maximum range of this
parameter.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

289

x edb_sql_protect.max_queries_to_save. Sets the maximum number of offending
queries to save in the edb_sql_protect_queries view. If this parameter is
omitted, the default setting is 5000. If the number of offending queries reaches
the limit, additional queries are not saved in the view, but are accessible in the
database server log file. Note: The minimum valid value for this parameter is
100. If a value less than 100 is specified, the database server starts using the
default setting of 5000. A warning message is recorded in the database server log
file. See Section 2.1.3.12.9 for information on the maximum range of this
parameter.

The following example shows the settings of these parameters in the postgresql.conf
file:

shared_preload_libraries = '$libdir/dbms_pipe,$libdir/edb_gen,$libdir/sqlprotect'
 # (change requires restart)
 .
 .
 .
edb_sql_protect.enabled = off
edb_sql_protect.level = learn
edb_sql_protect.max_protected_roles = 64
edb_sql_protect.max_protected_relations = 1024
edb_sql_protect.max_queries_to_save = 5000

Step 2: Restart the database server after you have modified the postgresql.conf file.

For Linux only: Run the /etc/init.d/ppas-9.4 script with the restart option as
shown by the following:

$ su root
Password:
$ /etc/init.d/ppas-9.4 restart
Restarting Postgres Plus Advanced Server 9.4:
waiting for server to shut down.... done
server stopped
waiting for server to start.... done
server started
Postgres Plus Advanced Server 9.4 restarted successfully

For Windows only: Open Control Panel, Administrative Tools, and then
Services. Restart the service named ppas-9.4.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

290

Figure 4.2 - Starting the ppas-9.4 service.

Step 3: For each database that you want to protect from SQL injection attacks, connect to
the database as a superuser (either enterprisedb or postgres, depending upon your
installation options) and run the script sqlprotect.sql located in the
share/contrib subdirectory of your Postgres Plus Advanced Server home directory.

The script creates the SQL/Protect database objects in a schema named sqlprotect.

The following example shows this process to set up protection for a database named edb:

$ /opt/PostgresPlus/9.4AS/bin/psql -d edb -U enterprisedb
Password for user enterprisedb:
psql.bin (9.4.0.0)
Type "help" for help.

edb=# \i /opt/PostgresPlus/9.4AS/share/contrib/sqlprotect.sql
CREATE SCHEMA
GRANT
SET
CREATE TABLE
GRANT
CREATE TABLE
GRANT
CREATE FUNCTION
CREATE FUNCTION
CREATE FUNCTION
CREATE FUNCTION
CREATE FUNCTION
CREATE FUNCTION
CREATE FUNCTION
DO
CREATE FUNCTION
CREATE FUNCTION

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

291

DO
CREATE VIEW
GRANT
DO
CREATE VIEW
GRANT
CREATE VIEW
GRANT
CREATE FUNCTION
CREATE FUNCTION
SET

4.1.2.1 Selecting Roles to Protect

After the SQL/Protect database objects have been created in a database, you select the
roles for which SQL queries are to be monitored for protection, and the level of
protection.

4.1.2.1.1 Setting the Protected Roles List

For each database that you want to protect, you must determine the roles you want to
monitor and then add those roles to the protected roles list of that database.

Step 1: Connect as a superuser to a database that you wish to protect using either psql or
Postgres Enterprise Manager Client.

$ /opt/PostgresPlus/9.4AS/bin/psql -d edb -U enterprisedb
Password for user enterprisedb:
psql.bin (9.4.0.0)
Type "help" for help.

edb=#

Step 2: Since the SQL/Protect tables, functions, and views are built under the
sqlprotect schema, use the SET search_path command to include the
sqlprotect schema in your search path. This eliminates the need to schema-qualify
any operation or query involving SQL/Protect database objects.

edb=# SET search_path TO sqlprotect;
SET

Step 3: Each role that you wish to protect must be added to the protected roles list. This
list is maintained in the table edb_sql_protect.

To add a role, use the function protect_role('rolename').

The following example protects a role named appuser.

edb=# SELECT protect_role('appuser');
 protect_role

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

292

(1 row)

You can list the roles that have been added to the protected roles list by issuing the
following query:

edb=# SELECT * FROM edb_sql_protect;
 dbid | roleid | protect_relations | allow_utility_cmds | allow_tautology | allow_empty_dml
-------+--------+-------------------+--------------------+-----------------+-----------------
 13917 | 16671 | t | f | f | f
(1 row)

A view is also provided that gives the same information using the object names instead of
the Object Identification numbers (OIDs).

edb=# \x
Expanded display is on.
edb=# SELECT * FROM list_protected_users;
-[RECORD 1]------+--------
dbname | edb
username | appuser
protect_relations | t
allow_utility_cmds | f
allow_tautology | f
allow_empty_dml | f

4.1.2.1.2 Setting the Protection Level

Configuration parameter edb_sql_protect.level sets the protection level, which
defines the behavior of SQL/Protect when a protected role issues a SQL statement. The
defined behavior applies to all roles in the protected roles lists of all databases
configured with SQL/Protect in the database server.

In the postgresql.conf file the edb_sql_protect.level configuration parameter
can be set to one of the following values to use either learn mode, passive mode, or active
mode:

x learn. Tracks the activities of protected roles and records the relations used by the
roles. This is used when initially configuring SQL/Protect so the expected
behaviors of the protected applications are learned.

x passive. Issues warnings if protected roles are breaking the defined rules, but does
not stop any SQL statements from executing. This is the next step after
SQL/Protect has learned the expected behavior of the protected roles. This
essentially behaves in intrusion detection mode and can be run in production
when properly monitored.

x active. Stops all invalid statements for a protected role. This behaves as a SQL
firewall preventing dangerous queries from running. This is particularly effective
against early penetration testing when the attacker is trying to determine the
vulnerability point and the type of database behind the application. Not only does
SQL/Protect close those vulnerability points, but it tracks the blocked queries

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

293

allowing administrators to be alerted before the attacker finds an alternate method
of penetrating the system.

If the edb_sql_protect.level parameter is not set or is omitted from the
configuration file, the default behavior of SQL/Protect is passive.

If you are using SQL/Protect for the first time, set edb_sql_protect.level to
learn.

4.1.2.2 Monitoring Protected Roles

Once you have configured SQL/Protect in a database, added roles to the protected roles
list, and set the desired protection level, you can then activate SQL/Protect in one of learn
mode, passive mode, or active mode. You can then start running your applications.

With a new SQL/Protect installation, the first step is to determine the relations that
protected roles should be permitted to access during normal operation. Learn mode
allows a role to run applications during which time SQL/Protect is recording the relations
that are accessed. These are added to the role‟s protected relations list stored in table
edb_sql_protect_rel.

Monitoring for protection against attack begins when SQL/Protect is run in passive or
active mode. In passive and active modes, the role is permitted to access the relations in
its protected relations list as these were determined to be the relations the role should be
able to access during typical usage.

However, if a role attempts to access a relation that is not in its protected relations list, a
WARNING or ERROR severity level message is returned by SQL/Protect. The role‟s
attempted action on the relation may or may not be carried out depending upon whether
the mode is passive or active.

4.1.2.2.1 Learn Mode

Step 1: To activate SQL/Protect in learn mode, set the following parameters in the
postgresql.conf file as shown below:

edb_sql_protect.enabled = on
edb_sql_protect.level = learn

Step 2: Reload the postgresql.conf file.

Choose Expert Configuration, then Reload Configuration from the Postgres Plus
Advanced Server application menu.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

294

Note: For an alternative method of reloading the configuration file, use the
pg_reload_conf function. Be sure you are connected to a database as a superuser and
execute function pg_reload_conf as shown by the following example:

edb=# SELECT pg_reload_conf();
 pg_reload_conf

 t
(1 row)

Step 3: Allow the protected roles to run their applications.

As an example the following queries are issued in the psql application by protected role
appuser:

edb=> SELECT * FROM dept;
NOTICE: SQLPROTECT: Learned relation: 16384
 deptno | dname | loc
--------+------------+----------
 10 | ACCOUNTING | NEW YORK
 20 | RESEARCH | DALLAS
 30 | SALES | CHICAGO
 40 | OPERATIONS | BOSTON
(4 rows)

edb=> SELECT empno, ename, job FROM emp WHERE deptno = 10;
NOTICE: SQLPROTECT: Learned relation: 16391
 empno | ename | job
-------+--------+-----------
 7782 | CLARK | MANAGER
 7839 | KING | PRESIDENT
 7934 | MILLER | CLERK
(3 rows)

SQL/Protect generates a NOTICE severity level message indicating the relation has been
added to the role‟s protected relations list.

In SQL/Protect learn mode, SQL statements that are cause for suspicion are not prevented
from executing, but a message is issued to alert the user to potentially dangerous
statements as shown by the following example:

edb=> CREATE TABLE appuser_tab (f1 INTEGER);
NOTICE: SQLPROTECT: This command type is illegal for this user
CREATE TABLE
edb=> DELETE FROM appuser_tab;
NOTICE: SQLPROTECT: Learned relation: 16672
NOTICE: SQLPROTECT: Illegal Query: empty DML
DELETE 0

Step 4: As a protected role runs applications, the SQL/Protect tables can be queried to
observe the addition of relations to the role‟s protected relations list.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

295

Connect as a superuser to the database you are monitoring and set the search path to
include the sqlprotect schema.

edb=# SET search_path TO sqlprotect;
SET

Query the edb_sql_protect_rel table to see the relations added to the protected
relations list:

edb=# SELECT * FROM edb_sql_protect_rel;
 dbid | roleid | relid
-------+--------+-------
 13917 | 16671 | 16384
 13917 | 16671 | 16391
 13917 | 16671 | 16672
(3 rows)

The view list_protected_rels is provided that gives more comprehensive
information along with the object names instead of the OIDs.

edb=# SELECT * FROM list_protected_rels;
 Database | Protected User | Schema | Name | Type | Owner
----------+----------------+--------+-------------+-------+--------------
 edb | appuser | public | dept | Table | enterprisedb
 edb | appuser | public | emp | Table | enterprisedb
 edb | appuser | public | appuser_tab | Table | appuser
(3 rows)

4.1.2.2.2 Passive Mode

Once you have determined that a role‟s applications have accessed all relations they will
need, you can now change the protection level so that SQL/Protect can actively monitor
the incoming SQL queries and protect against SQL injection attacks.

Passive mode is the less restrictive of the two protection modes, passive and active.

Step 1: To activate SQL/Protect in passive mode, set the following parameters in the
postgresql.conf file as shown below:

edb_sql_protect.enabled = on
edb_sql_protect.level = passive

Step 2: Reload the configuration file as shown in Step 2 of Section 4.1.2.2.1.

Now SQL/Protect is in passive mode. For relations that have been learned such as the
dept and emp tables of the prior examples, SQL statements are permitted with no special
notification to the client by SQL/Protect as shown by the following queries run by user
appuser:

edb=> SELECT * FROM dept;
 deptno | dname | loc

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

296

--------+------------+----------
 10 | ACCOUNTING | NEW YORK
 20 | RESEARCH | DALLAS
 30 | SALES | CHICAGO
 40 | OPERATIONS | BOSTON
(4 rows)

edb=> SELECT empno, ename, job FROM emp WHERE deptno = 10;
 empno | ename | job
-------+--------+-----------
 7782 | CLARK | MANAGER
 7839 | KING | PRESIDENT
 7934 | MILLER | CLERK
(3 rows)

SQL/Protect does not prevent any SQL statement from executing, but issues a message of
WARNING severity level for SQL statements executed against relations that were not
learned, or for SQL statements that contain a prohibited signature as shown in the
following example:

edb=> CREATE TABLE appuser_tab_2 (f1 INTEGER);
WARNING: SQLPROTECT: This command type is illegal for this user
CREATE TABLE
edb=> INSERT INTO appuser_tab_2 VALUES (1);
WARNING: SQLPROTECT: Illegal Query: relations
INSERT 0 1
edb=> INSERT INTO appuser_tab_2 VALUES (2);
WARNING: SQLPROTECT: Illegal Query: relations
INSERT 0 1
edb=> SELECT * FROM appuser_tab_2 WHERE 'x' = 'x';
WARNING: SQLPROTECT: Illegal Query: relations
WARNING: SQLPROTECT: Illegal Query: tautology
 f1

 1
 2
(2 rows)

Step 3: Monitor the statistics for suspicious activity.

By querying the view edb_sql_protect_stats, you can see the number of times
SQL statements were executed that referenced relations that were not in a role‟s protected
relations list, or contained SQL injection attack signatures. See Section 4.1.1.2.2 for more
information on view edb_sql_protect_stats.

The following is a query on edb_sql_protect_stats:

edb=# SET search_path TO sqlprotect;
SET
edb=# SELECT * FROM edb_sql_protect_stats;
 username | superusers | relations | commands | tautology | dml
----------+------------+-----------+----------+-----------+-----
 appuser | 0 | 3 | 1 | 1 | 0
(1 row)

Step 4: View information on specific attacks.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

297

By querying the view edb_sql_protect_queries, you can see the SQL statements
that were executed that referenced relations that were not in a role‟s protected relations
list, or contained SQL injection attack signatures. See Section 4.1.1.2.3 for more
information on view edb_sql_protect_queries.

The following is a query on edb_sql_protect_queries:

edb=# SELECT * FROM edb_sql_protect_queries;
-[RECORD 1]+---
 username | appuser
 ip_address |
 port |
 machine_name |
 date_time | 20-JUN-14 13:21:00 -04:00
 query | INSERT INTO appuser_tab_2 VALUES (1);
-[RECORD 2]+---
 username | appuser
 ip_address |
 port |
 machine_name |
 date_time | 20-JUN-14 13:21:00 -04:00
 query | CREATE TABLE appuser_tab_2 (f1 INTEGER);
-[RECORD 3]+---
 username | appuser
 ip_address |
 port |
 machine_name |
 date_time | 20-JUN-14 13:22:00 -04:00
 query | INSERT INTO appuser_tab_2 VALUES (2);
-[RECORD 4]+---
 username | appuser
 ip_address |
 port |
 machine_name |
 date_time | 20-JUN-14 13:22:00 -04:00
 query | SELECT * FROM appuser_tab_2 WHERE 'x' = 'x';

Note: The ip_address and port columns do not return any information if the attack
originated on the same host as the database server using the Unix-domain socket (that is,
pg_hba.conf connection type local).

4.1.2.2.3 Active Mode

In active mode, disallowed SQL statements are prevented from executing. Also, the
message issued by SQL/Protect has a higher severity level of ERROR instead of WARNING.

Step 1: To activate SQL/Protect in active mode, set the following parameters in the
postgresql.conf file as shown below:

edb_sql_protect.enabled = on
edb_sql_protect.level = active

Step 2: Reload the configuration file as shown in Step 2 of Section 4.1.2.2.1.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

298

The following example illustrates SQL statements similar to those given in the examples
of Step 2 in Section 4.1.2.2.2, but executed by user appuser when
edb_sql_protect.level is set to active:

edb=> CREATE TABLE appuser_tab_3 (f1 INTEGER);
ERROR: SQLPROTECT: This command type is illegal for this user
edb=> INSERT INTO appuser_tab_2 VALUES (1);
ERROR: SQLPROTECT: Illegal Query: relations
edb=> SELECT * FROM appuser_tab_2 WHERE 'x' = 'x';
ERROR: SQLPROTECT: Illegal Query: relations

The following shows the resulting statistics:

edb=# SELECT * FROM sqlprotect.edb_sql_protect_stats;
 username | superusers | relations | commands | tautology | dml
----------+------------+-----------+----------+-----------+-----
 appuser | 0 | 5 | 2 | 1 | 0
(1 row)

The following is a query on edb_sql_protect_queries:

edb=# SELECT * FROM sqlprotect.edb_sql_protect_queries;
-[RECORD 1]+---
 username | appuser
 ip_address |
 port |
 machine_name |
 date_time | 20-JUN-14 13:21:00 -04:00
 query | CREATE TABLE appuser_tab_2 (f1 INTEGER);
-[RECORD 2]+---
 username | appuser
 ip_address |
 port |
 machine_name |
 date_time | 20-JUN-14 13:22:00 -04:00
 query | INSERT INTO appuser_tab_2 VALUES (2);
-[RECORD 3]+---
 username | appuser
 ip_address | 192.168.2.6
 port | 50098
 machine_name |
 date_time | 20-JUN-14 13:39:00 -04:00
 query | CREATE TABLE appuser_tab_3 (f1 INTEGER);
-[RECORD 4]+---
 username | appuser
 ip_address | 192.168.2.6
 port | 50098
 machine_name |
 date_time | 20-JUN-14 13:39:00 -04:00
 query | INSERT INTO appuser_tab_2 VALUES (1);
-[RECORD 5]+---
 username | appuser
 ip_address | 192.168.2.6
 port | 50098
 machine_name |
 date_time | 20-JUN-14 13:39:00 -04:00
 query | SELECT * FROM appuser_tab_2 WHERE 'x' = 'x';

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

299

4.1.3 Common Maintenance Operations

The following describes how to perform other common operations.

You must be connected as a superuser to perform these operations and have included
schema sqlprotect in your search path.

4.1.3.1 Adding a Role to the Protected Roles List

To add a role to the protected roles list run protect_role('rolename').

protect_role('rolename')

This is shown by the following example:

edb=# SELECT protect_role('newuser');
 protect_role

(1 row)

4.1.3.2 Removing a Role From the Protected Roles List

To remove a role from the protected roles list use either of the following functions:

unprotect_role('rolename')
unprotect_role(roleoid)

Note: The variation of the function using the OID is useful if you remove the role using
the DROP ROLE or DROP USER SQL statement before removing the role from the
protected roles list. If a query on a SQL/Protect relation returns a value such as unknown
(OID=16458) for the user name, use the unprotect_role(roleoid) form of the
function to remove the entry for the deleted role from the protected roles list.

Removing a role using these functions also removes the role‟s protected relations list.

The statistics for a role that has been removed are not deleted until you use the
drop_stats function as described in Section 4.1.3.5.

The offending queries for a role that has been removed are not deleted until you use the
drop_queries function as described in Section 4.1.3.6.

The following is an example of the unprotect_role function:

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

300

edb=# SELECT unprotect_role('newuser');
 unprotect_role

(1 row)

Alternatively, the role could be removed by giving its OID of 16693:

edb=# SELECT unprotect_role(16693);
 unprotect_role

(1 row)

4.1.3.3 Setting the Types of Protection for a Role

You can change whether or not a role is protected from a certain type of SQL injection
attack.

Change the Boolean value for the column in edb_sql_protect corresponding to the
type of SQL injection attack for which protection of a role is to be disabled or enabled.

Be sure to qualify the following columns in your WHERE clause of the statement that
updates edb_sql_protect:

x dbid. OID of the database for which you are making the change
x roleid. OID of the role for which you are changing the Boolean settings

For example, to allow a given role to issue utility commands, update the
allow_utility_cmds column as follows:

UPDATE edb_sql_protect SET allow_utility_cmds = TRUE WHERE dbid = 13917 AND
roleid = 16671;

You can verify the change was made by querying edb_sql_protect or
list_protected_users. In the following query note that column
allow_utility_cmds now contains t.

edb=# SELECT dbid, roleid, allow_utility_cmds FROM edb_sql_protect;
 dbid | roleid | allow_utility_cmds
-------+--------+--------------------
 13917 | 16671 | t
(1 row)

The updated rules take effect on new sessions started by the role since the change was
made.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

301

4.1.3.4 Removing a Relation From the Protected Relations List

If SQL/Protect has learned that a given relation is accessible for a given role, you can
subsequently remove that relation from the role‟s protected relations list.

Delete its entry from the edb_sql_protect_rel table using any of the following
functions:

unprotect_rel('rolename', 'relname')
unprotect_rel('rolename', 'schema', 'relname')
unprotect_rel(roleoid, reloid)

If the relation given by relname is not in your current search path, specify the relation‟s
schema using the second function format.

The third function format allows you to specify the OIDs of the role and relation,
respectively, instead of their text names.

The following example illustrates the removal of the public.emp relation from the
protected relations list of the role appuser.

edb=# SELECT unprotect_rel('appuser', 'public', 'emp');
 unprotect_rel

(1 row)

The following query shows there is no longer an entry for the emp relation.

edb=# SELECT * FROM list_protected_rels;
 Database | Protected User | Schema | Name | Type | Owner
----------+----------------+--------+-------------+-------+--------------
 edb | appuser | public | dept | Table | enterprisedb
 edb | appuser | public | appuser_tab | Table | appuser
(2 rows)

SQL/Protect will now issue a warning or completely block access (depending upon the
setting of edb_sql_protect.level) whenever the role attempts to utilize that
relation.

4.1.3.5 Deleting Statistics

You can delete statistics from view edb_sql_protect_stats using either of the two
following functions:

drop_stats('rolename')
drop_stats(roleoid)

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

302

Note: The variation of the function using the OID is useful if you remove the role using
the DROP ROLE or DROP USER SQL statement before deleting the role‟s statistics using
drop_stats('rolename'). If a query on edb_sql_protect_stats returns a value
such as unknown (OID=16458) for the user name, use the drop_stats(roleoid)
form of the function to remove the deleted role‟s statistics from
edb_sql_protect_stats.

The following is an example of the drop_stats function:

edb=# SELECT drop_stats('appuser');
 drop_stats

(1 row)

edb=# SELECT * FROM edb_sql_protect_stats;
 username | superusers | relations | commands | tautology | dml
----------+------------+-----------+----------+-----------+-----
(0 rows)

The following is an example of using the drop_stats(roleoid) form of the function
when a role is dropped before deleting its statistics:

edb=# SELECT * FROM edb_sql_protect_stats;
 username | superusers | relations | commands | tautology | dml
---------------------+------------+-----------+----------+-----------+-----
 unknown (OID=16693) | 0 | 5 | 3 | 1 | 0
 appuser | 0 | 5 | 2 | 1 | 0
(2 rows)

edb=# SELECT drop_stats(16693);
 drop_stats

(1 row)

edb=# SELECT * FROM edb_sql_protect_stats;
 username | superusers | relations | commands | tautology | dml
----------+------------+-----------+----------+-----------+-----
 appuser | 0 | 5 | 2 | 1 | 0
(1 row)

4.1.3.6 Deleting Offending Queries

You can delete offending queries from view edb_sql_protect_queries using either
of the two following functions:

drop_queries('rolename')
drop_queries(roleoid)

Note: The variation of the function using the OID is useful if you remove the role using
the DROP ROLE or DROP USER SQL statement before deleting the role‟s offending

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

303

queries using drop_queries('rolename'). If a query on
edb_sql_protect_queries returns a value such as unknown (OID=16454) for the
user name, use the drop_queries(roleoid) form of the function to remove the
deleted role‟s offending queries from edb_sql_protect_queries.

The following is an example of the drop_queries function:

edb=# SELECT drop_queries('appuser');
 drop_queries

 5
(1 row)

edb=# SELECT * FROM edb_sql_protect_queries;
 username | ip_address | port | machine_name | date_time | query
----------+------------+------+--------------+-----------+-------
(0 rows)

The following is an example of using the drop_queries(roleoid) form of the
function when a role is dropped before deleting its queries:

edb=# SELECT username, query FROM edb_sql_protect_queries;
 username | query
---------------------+--
 unknown (OID=16454) | CREATE TABLE appuser_tab_2 (f1 INTEGER);
 unknown (OID=16454) | INSERT INTO appuser_tab_2 VALUES (2);
 unknown (OID=16454) | CREATE TABLE appuser_tab_3 (f1 INTEGER);
 unknown (OID=16454) | INSERT INTO appuser_tab_2 VALUES (1);
 unknown (OID=16454) | SELECT * FROM appuser_tab_2 WHERE 'x' = 'x';
(5 rows)

edb=# SELECT drop_queries(16454);
 drop_queries

 5
(1 row)

edb=# SELECT * FROM edb_sql_protect_queries;
 username | ip_address | port | machine_name | date_time | query
----------+------------+------+--------------+-----------+-------
(0 rows)

4.1.3.7 Disabling and Enabling Monitoring

If you wish to turn off SQL/Protect monitoring once you have enabled it, perform the
following steps:

Step 1: Set the configuration parameter edb_sql_protect.enabled to off in the
postgresql.conf file.

The entry for edb_sql_protect.enabled should look like the following:

edb_sql_protect.enabled = off

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

304

Step 2: Reload the configuration file as shown in Step 2 of Section 4.1.2.2.1.

To re-enable SQL/Protect monitoring perform the following steps:

Step 1: Set the configuration parameter edb_sql_protect.enabled to on in the
postgresql.conf file.

The entry for edb_sql_protect.enabled should look like the following:

edb_sql_protect.enabled = on

Step 2: Reload the configuration file as shown in Step 2 of Section 4.1.2.2.1.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

305

4.1.4 Backing Up and Restoring a SQL/Protect Database

Backing up a database that is configured with SQL/Protect, and then restoring the backup
file to a new database require additional considerations to what is normally associated
with backup and restore procedures. This is primarily due to the use of Object
Identification numbers (OIDs) in the SQL/Protect tables as explained in this section.

Note: This section is applicable if your backup and restore procedures result in the re-
creation of database objects in the new database with new OIDs such as is the case when
using the pg_dump backup program.

If you are backing up your Postgres Plus Advanced Server database server by simply
using the operating system‟s copy utility to create a binary image of the Postgres Plus
Advanced Server data files (file system backup method), then this section does not apply.

4.1.4.1 Object Identification Numbers in SQL/Protect Tables

SQL/Protect uses two tables, edb_sql_protect and edb_sql_protect_rel, to store
information on database objects such as databases, roles, and relations. References to
these database objects in these tables are done using the objects‟ OIDs, and not the
objects‟ text names. The OID is a numeric data type used by Postgres Plus Advanced
Server to uniquely identify each database object.

When a database object is created, Postgres Plus Advanced Server assigns an OID to the
object, which is then used whenever a reference is needed to the object in the database
catalogs. If you create the same database object in two databases, such as a table with the
same CREATE TABLE statement, each table is assigned a different OID in each database.

In a backup and restore operation that results in the re-creation of the backed up database
objects, the restored objects end up with different OIDs in the new database than what
they were assigned in the original database. As a result, the OIDs referencing databases,
roles, and relations stored in the edb_sql_protect and edb_sql_protect_rel
tables are no longer valid when these tables are simply dumped to a backup file and then
restored to a new database.

The following sections describe two functions, export_sqlprotect and
import_sqlprotect, that are used specifically for backing up and restoring
SQL/Protect tables in order to ensure the OIDs in the SQL/Protect tables reference the
correct database objects after the SQL/Protect tables are restored.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

306

4.1.4.2 Backing Up the Database

The following are the steps to back up a database that has been configured with
SQL/Protect.

Step 1: Create a backup file using pg_dump.

The following example shows a plain-text backup file named /tmp/edb.dmp created
from database edb using the pg_dump utility program:

$ cd /opt/PostgresPlus/9.4AS/bin
$./pg_dump -U enterprisedb -Fp -f /tmp/edb.dmp edb
Password:
$

Step 2: Connect to the database as a superuser and export the SQL/Protect data using the
export_sqlprotect('sqlprotect_file') function where sqlprotect_file is
the fully qualified path to a file where the SQL/Protect data is to be saved.

The enterprisedb operating system account (postgres if you installed Postgres Plus
Advanced Server in PostgreSQL compatibility mode) must have read and write access to
the directory specified in sqlprotect_file.

edb=# SELECT sqlprotect.export_sqlprotect('/tmp/sqlprotect.dmp');
 export_sqlprotect

(1 row)

The files /tmp/edb.dmp and /tmp/sqlprotect.dmp comprise your total database
backup.

4.1.4.3 Restoring From the Backup Files

Step 1: Restore the backup file to the new database.

The following example uses the psql utility program to restore the plain-text backup file
/tmp/edb.dmp to a newly created database named newdb:

$ /opt/PostgresPlus/9.4AS/bin/psql -d newdb -U enterprisedb -f /tmp/edb.dmp
Password for user enterprisedb:
SET
SET
SET
SET
SET
COMMENT
CREATE SCHEMA
 .
 .
 .

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

307

Step 2: Connect to the new database as a superuser and delete all rows from the
edb_sql_protect_rel table.

This step removes any existing rows in the edb_sql_protect_rel table that were
backed up from the original database. These rows do not contain the correct OIDs
relative to the database where the backup file has been restored.

$ /opt/PostgresPlus/9.4AS/bin/psql -d newdb -U enterprisedb
Password for user enterprisedb:
psql.bin (9.4.0.0)
Type "help" for help.

newdb=# DELETE FROM sqlprotect.edb_sql_protect_rel;
DELETE 2

Step 3: Delete all rows from the edb_sql_protect table.

This step removes any existing rows in the edb_sql_protect table that were backed
up from the original database. These rows do not contain the correct OIDs relative to the
database where the backup file has been restored.

newdb=# DELETE FROM sqlprotect.edb_sql_protect;
DELETE 1

Step 4: Delete any statistics that may exist for the database.

This step removes any existing statistics that may exist for the database to which you are
restoring the backup. The following query displays any existing statistics:

newdb=# SELECT * FROM sqlprotect.edb_sql_protect_stats;
 username | superusers | relations | commands | tautology | dml
----------+------------+-----------+----------+-----------+-----
(0 rows)

For each row that appears in the preceding query, use the drop_stats function
specifying the role name of the entry.

For example, if a row appeared with appuser in the username column, issue the
following command to remove it:

newdb=# SELECT sqlprotect.drop_stats('appuser');
 drop_stats

(1 row)

Step 5: Delete any offending queries that may exist for the database.

This step removes any existing queries that may exist for the database to which you are
restoring the backup. The following query displays any existing queries:

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

308

edb=# SELECT * FROM sqlprotect.edb_sql_protect_queries;
 username | ip_address | port | machine_name | date_time | query
----------+------------+------+--------------+-----------+-------
(0 rows)

For each row that appears in the preceding query, use the drop_queries function
specifying the role name of the entry.

For example, if a row appeared with appuser in the username column, issue the
following command to remove it:

edb=# SELECT sqlprotect.drop_queries('appuser');
 drop_queries

(1 row)

Step 6: Make sure the role names that were protected by SQL/Protect in the original
database exist in the database server where the new database resides.

If the original and new databases reside in the same database server, then nothing needs
to be done assuming you have not deleted any of these roles from the database server.

Step 7: Run the function import_sqlprotect('sqlprotect_file') where
sqlprotect_file is the fully qualified path to the file you created in Step 2 of Section
4.1.4.2.

newdb=# SELECT sqlprotect.import_sqlprotect('/tmp/sqlprotect.dmp');
 import_sqlprotect

(1 row)

Tables edb_sql_protect and edb_sql_protect_rel are now populated with
entries containing the OIDs of the database objects as assigned in the new database. The
statistics view edb_sql_protect_stats also now displays the statistics imported
from the original database.

The SQL/Protect tables and statistics are now properly restored for this database. This is
verified by the following queries on the Postgres Plus Advanced Server system catalogs:

newdb=# SELECT datname, oid FROM pg_database;
 datname | oid
-----------+-------
 template1 | 1
 template0 | 13909
 edb | 13917
 newdb | 16679
(4 rows)

newdb=# SELECT rolname, oid FROM pg_roles;
 rolname | oid
--------------+-------
 enterprisedb | 10

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

309

 appuser | 16671
 newuser | 16678
(3 rows)

newdb=# SELECT relname, oid FROM pg_class WHERE relname IN ('dept','emp','appuser_tab');
 relname | oid
-------------+-------
 appuser_tab | 16803
 dept | 16809
 emp | 16812
(3 rows)

newdb=# SELECT * FROM sqlprotect.edb_sql_protect;
 dbid | roleid | protect_relations | allow_utility_cmds | allow_tautology | allow_empty_dml
-------+--------+-------------------+--------------------+-----------------+-----------------
 16679 | 16671 | t | t | f | f
(1 row)

newdb=# SELECT * FROM sqlprotect.edb_sql_protect_rel;
 dbid | roleid | relid
-------+--------+-------
 16679 | 16671 | 16809
 16679 | 16671 | 16803
(2 rows)

newdb=# SELECT * FROM sqlprotect.edb_sql_protect_stats;
 username | superusers | relations | commands | tautology | dml
----------+------------+-----------+----------+-----------+-----
 appuser | 0 | 5 | 2 | 1 | 0
(1 row)

newedb=# \x
Expanded display is on.
nwedb=# SELECT * FROM sqlprotect.edb_sql_protect_queries;
-[RECORD 1]+---
 username | appuser
 ip_address |
 port |
 machine_name |
 date_time | 20-JUN-14 13:21:00 -04:00
 query | CREATE TABLE appuser_tab_2 (f1 INTEGER);
-[RECORD 2]+---
 username | appuser
 ip_address |
 port |
 machine_name |
 date_time | 20-JUN-14 13:22:00 -04:00
 query | INSERT INTO appuser_tab_2 VALUES (2);
-[RECORD 3]+---
 username | appuser
 ip_address | 192.168.2.6
 port | 50098
 machine_name |
 date_time | 20-JUN-14 13:39:00 -04:00
 query | CREATE TABLE appuser_tab_3 (f1 INTEGER);
-[RECORD 4]+---
 username | appuser
 ip_address | 192.168.2.6
 port | 50098
 machine_name |
 date_time | 20-JUN-14 13:39:00 -04:00
 query | INSERT INTO appuser_tab_2 VALUES (1);
-[RECORD 5]+---
 username | appuser
 ip_address | 192.168.2.6
 port | 50098
 machine_name |
 date_time | 20-JUN-14 13:39:00 -04:00
 query | SELECT * FROM appuser_tab_2 WHERE 'x' = 'x';

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

310

Note the following about the columns in tables edb_sql_protect and
edb_sql_protect_rel:

x dbid. Matches the value in the oid column from pg_database for newdb
x roleid. Matches the value in the oid column from pg_roles for appuser

Also note that in table edb_sql_protect_rel, the values in the relid column match
the values in the oid column of pg_class for relations dept and appuser_tab.

Step 8: Verify that the SQL/Protect configuration parameters are set as desired in the
postgresql.conf file for the database server running the new database as described
throughout sections 0, 4.1.2.1, and 4.1.2.2. Restart the database server or reload the
configuration file as appropriate.

You can now monitor the database using SQL/Protect.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

311

4.2 EDB*Wrap

The EDB*Wrap utility protects proprietary source code and programs (functions, stored
procedures, triggers, and packages) from unauthorized scrutiny. The EDB*Wrap
program translates a file that contains SPL or PL/pgSQL source code (the plaintext) into
a file that contains the same code in a form that is nearly impossible to read. Once you
have the obfuscated form of the code, you can send that code to Advanced Server and it
will store those programs in obfuscated form. While EDB*Wrap does obscure code,
table definitions are still exposed.

Everything you wrap is stored in obfuscated form. If you wrap an entire package, the
package body source, as well as the prototypes contained in the package header and the
functions and procedures contained in the package body are stored in obfuscated form.

If you wrap a CREATE PACKAGE statement, you hide the package API from other
developers. You may want to wrap the package body, but not the package header so
users can see the package prototypes and other public variables that are defined in the
package body. To allow users to see what prototypes the package contains, use
EDB*Wrap to obfuscate only the 'CREATE PACKAGE BODY' statement in the edbwrap
input file, omitting the 'CREATE PACKAGE' statement. The package header source will
be stored plaintext, while the package body source and package functions and procedures
will be stored obfuscated.

Once wrapped, source code and programs cannot be unwrapped or debugged. Reverse
engineering is possible, but would be very difficult.

The entire source file is wrapped into one unit. Any psql meta-commands included in
the wrapped file will not be recognized when the file is executed; executing an
obfuscated file that contains a psql meta-command will cause a syntax error. edbwrap
does not validate SQL source code - if the plaintext form contains a syntax error,
edbwrap will not complain. Instead, the server will report an error and abort the entire
file when you try to execute the obfuscated form.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

312

4.2.1 Using EDB*Wrap to Obfuscate Source Code

EDB*Wrap is a command line utility; it accepts a single input source file, obfuscates the
contents and returns a single output file. When you invoke the edbwrap utility, you
must provide the name of the file that contains the source code to obfuscate. You may
also specify the name of the file where edbwrap will write the obfuscated form of the
code. edbwrap offers three different command-line styles. The first style is shown by
the following:

edbwrap iname=input_file [oname=output_file]

The iname=input_file argument specifies the name of the input file; if input_file
does not contain an extension, edbwrap will search for a file named input_file.sql

The oname=output_file argument (which is optional) specifies the name of the output
file; if output_file does not contain an extension, edbwrap will append .plb to the
name.

If you do not specify an output file name, edbwrap writes to a file whose name is
derived from the input file name: edbwrap strips the suffix (typically .sql) from the
input file name and adds .plb.

edbwrap offers two other command-line styles that may feel more familiar:

edbwrap --iname input_file [--oname output_file]
edbwrap -i input_file [-o output_file]

You may mix command-line styles; the rules for deriving input and output file names are
identical regardless of which style you use.

Once edbwrap has produced a file that contains obfuscated code, you typically feed that
file into Advanced Server using a client application such as edb-psql. The server
executes the obfuscated code line by line and stores the source code for SPL and
PL/pgSQL programs in wrapped form.

In summary, to obfuscate code with EDB*Wrap, you:

x Create the source code file.
x Invoke EDB*Wrap to obfuscate the code.
x Import the file as if it were in plaintext form.

The following sequence demonstrates edbwrap functionality.

First, create the source code for the list_emp function (in plaintext form):

$ cat listemp.sql

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

313

CREATE OR REPLACE FUNCTION list_emp() RETURNS VOID
AS $$
DECLARE
 v_empno NUMERIC(4);
 v_ename VARCHAR(10);
 emp_cur CURSOR FOR
 SELECT empno, ename FROM emp ORDER BY empno;
BEGIN
 OPEN emp_cur;
 RAISE INFO 'EMPNO ENAME';
 RAISE INFO '----- -------';
 LOOP
 FETCH emp_cur INTO v_empno, v_ename;
 EXIT WHEN NOT FOUND;
 RAISE INFO '% %', v_empno, v_ename;
 END LOOP;
 CLOSE emp_cur;
 RETURN;
END;
$$ LANGUAGE 'plpgsql';

You can import the list_emp function with a client application such as psql:

$ psql -d edb -U enterprisedb
Password for user enterprisedb:
psql.bin (9.4.0.0)
Type "help" for help.

edb=# \i listemp.sql
CREATE FUNCTION

You can view the plaintext source code (stored in the server) by examining the
pg_function system table:

edb=# SELECT funsrc FROM pg_function WHERE funname = 'list_emp';
 funsrc
--
 +
 DECLARE +
 v_empno NUMERIC(4); +
 v_ename VARCHAR(10); +
 emp_cur CURSOR FOR +
 SELECT empno, ename FROM emp ORDER BY empno;+
 BEGIN +
 OPEN emp_cur; +
 RAISE INFO 'EMPNO ENAME'; +
 RAISE INFO '----- -------'; +
 LOOP +
 FETCH emp_cur INTO v_empno, v_ename; +
 EXIT WHEN NOT FOUND; +
 RAISE INFO '% %', v_empno, v_ename; +
 END LOOP; +
 CLOSE emp_cur; +
 RETURN; +
 END; +

(1 row)

Next, obfuscate the plaintext file with EDB*Wrap:

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

314

$ edbwrap -i listemp.sql

EDB*Wrap Utility: Release 9.4.0.0

Copyright (c) 2004-2016, EnterpriseDB Corporation. All Rights Reserved.

Using encoding UTF8 for input
Processing listemp.sql to listemp.plb
$
$ cat listemp.plb
$__EDBwrapped__$
UTF8
d6UEwTa69kFnCNAFVOgJqNyQMH7HwCn8dPPFJlkMFSb6YB4meTCGpIIoBnhYpcnxtAU+ZJMAu0Xe
WOTKG5iU9jpjqlwuioYVNa4EHFrf5JtNRTSL8tWhbi78li8ET5SWdU9eSGZiOfSVGi43b21ZWuGc
F8a342iMTy0bozbdl0r1dYku/f2kHnMYoBCi6EukmHik3j/iO1mJp06GHH71FG7BCOgCSW6L4B4x
BDje0MMVbBJveYyHWxBH12Bi8p4KDGy1HDLC8MK9S9EbfKPJbwKPZK37J8Ci9fhWBorfrTtz1k2f
vO1UKaTZGkYH0MIFvcZw6BG24dFL1kH5E2Rk5x4RzRsV2Hm+2LwTuDexs8hgleA3sPB/oZF9umb2
hZYkT5v1Ja7cKBnowdJrJNj/DOFoJcI1pFgG3DgJ
$__EDBwrapped__$

You may notice that the second line of the wrapped file contains an encoding name (in
this case, the encoding is UTF8). When you obfuscate a file, edbwrap infers the
encoding of the input file by examining the locale. For example, if you are running
edbwrap while your locale is set to en_US.utf8, edbwrap assumes that the input file is
encoded in UTF8. Be sure to examine the output file after running edbwrap; if the locale
contained in the wrapped file does not match the encoding of the input file, you should
change your locale and rewrap the input file.

You can import the obfuscated code into Advanced Server using the same tools that work
with plaintext code:

$ psql -d edb -U enterprisedb
Password for user enterprisedb:
psql.bin (9.4.0.0)
Type "help" for help.

edb=# \i listemp.plb
CREATE FUNCTION
edb=# SELECT funsrc FROM pg_function WHERE funname = 'list_emp';
 funsrc
--
 +
 $__EDBwrapped__$ +
 UTF8 +
 d6UNH3OTrROsTCLF6NKWq5gWsZxi5giSpg6SmNgWDqHutT8OqqpJZnL5wNtaBxs4B6+inA6qeWCA+
 QsTKvmcDNHk3yFneWI33Jeo/DsdVqkIEMrlUsu2ogymEJedHcM1YQFARyx+l0mWBI+yqixE4BNZw+
 jSeqiVKAhAckek8JzL9pf0QLFT8TTzzTG61KN7iFQQii0B6C4/GpDlZCmC5oDXt94PR15YcZ5fJq+
 p+UThN/uahwIaDu+FQ2AhSxNCxJH1aqjJEnwE9S7jsRvQXQ/yRt4zc7WbfeQMhhLA0E9w+hOy3aS+
 CKb6bHF3pVVQLiG6tWpjdWwgTZ7neG+T1EounZC8bKwn +
 $__EDBwrapped__$
(1 row)

Invoke the obfuscated code in the same way that you would invoke the plaintext form:

edb=# SELECT list_emp();
INFO: EMPNO ENAME
INFO: ----- -------
INFO: 7369 SMITH
INFO: 7499 ALLEN

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

315

INFO: 7521 WARD
INFO: 7566 JONES
INFO: 7654 MARTIN
INFO: 7698 BLAKE
INFO: 7782 CLARK
INFO: 7788 SCOTT
INFO: 7839 KING
INFO: 7844 TURNER
INFO: 7876 ADAMS
INFO: 7900 JAMES
INFO: 7902 FORD
INFO: 7934 MILLER
 list_emp

(1 row)

When you use pg_dump to back up a database, wrapped programs remain obfuscated in
the archive file.

Be aware that audit logs produced by Advanced Server will show wrapped programs in
plaintext form. Source code is also displayed in plaintext in SQL error messages
generated during the execution of a program.

Note: At this time, the bodies of the objects created by the following statements will not
be stored in obfuscated form:

CREATE [OR REPLACE] TYPE type_name AS OBJECT
CREATE [OR REPLACE] TYPE type_name UNDER type_name
CREATE [OR REPLACE] TYPE BODY type_name

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

316

4.3 Virtual Private Database

Virtual Private Database is a type of fine-grained access control using security policies.
Fine-grained access control in Virtual Private Database means that access to data can be
controlled down to specific rows as defined by the security policy.

The rules that encode a security policy are defined in a policy function, which is an SPL
function with certain input parameters and return value. The security policy is the named
association of the policy function to a particular database object, typically a table.

Note: In Advanced Server, the policy function can be written in any language supported
by Advanced Server such as SQL and PL/pgSQL in addition to SPL.

Note: The database objects currently supported by Advanced Server Virtual Private
Database are tables. Policies cannot be applied to views or synonyms.

The advantages of using Virtual Private Database are the following:

x Provides a fine-grained level of security. Database object level privileges given by
the GRANT command determine access privileges to the entire instance of a
database object, while Virtual Private Database provides access control for the
individual rows of a database object instance.

x A different security policy can be applied depending upon the type of SQL
command (INSERT, UPDATE, DELETE, or SELECT).

x The security policy can vary dynamically for each applicable SQL command
affecting the database object depending upon factors such as the session user of
the application accessing the database object.

x Invocation of the security policy is transparent to all applications that access the
database object and thus, individual applications do not have to be modified to
apply the security policy.

x Once a security policy is enabled, it is not possible for any application (including
new applications) to circumvent the security policy except by the system privilege
noted by the following.

x Even superusers cannot circumvent the security policy except by the system
privilege noted by the following.

Note: The only way security policies can be circumvented is if the EXEMPT ACCESS
POLICY system privilege has been granted to a user. The EXEMPT ACCESS POLICY
privilege should be granted with extreme care as a user with this privilege is exempted
from all policies in the database.

The DBMS_RLS package provides procedures to create policies, remove policies, enable
policies, and disable policies. See Section 9.11 for details on using the DBMS_RLS
package.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

317

5 EDB Resource Manager
EDB Resource Manager is an Advanced Server feature that provides the capability to
control the usage of operating system resources used by Advanced Server processes.

This capability allows you to protect the system from processes that may uncontrollably
overuse and monopolize certain system resources.

The following are some key points about using EDB Resource Manager.

x The basic component of EDB Resource Manager is a resource group. A resource
group is a named, global group, available to all databases in an Advanced Server
instance, on which various resource usage limits can be defined. Advanced Server
processes that are assigned as members of a given resource group are then
controlled by EDB Resource Manager so that the aggregate resource usage of all
processes in the group is kept near the limits defined on the group.

x Data definition language commands are used to create, alter, and drop resource
groups. These commands can only be used by a database user with superuser
privileges.

x The desired, aggregate consumption level of all processes belonging to a resource
group is defined by resource type parameters. There are different resource type
parameters for the different types of system resources currently supported by
EDB Resource Manager.

x Multiple resource groups can be created, each with different settings for its
resource type parameters, thus defining different consumption levels for each
resource group.

x EDB Resource Manager throttles processes in a resource group to keep resource
consumption near the limits defined by the resource type parameters. If there are
multiple resource type parameters with defined settings in a resource group, the
actual resource consumption may be significantly lower for certain resource types
than their defined resource type parameter settings. This is because EDB
Resource Manager throttles processes attempting to keep all resources with
defined resource type settings within their defined limits.

x The definition of available resource groups and their resource type settings are
stored in a shared global system catalog. Thus, resource groups can be utilized by
all databases in a given Advanced Server instance.

x The edb_max_resource_groups configuration parameter sets the maximum
number of resource groups that can be active simultaneously with running
processes. The default setting is 16 resource groups. Changes to this parameter
take effect on database server restart.

x Use the SET edb_resource_group TO group_name command to assign the
current process to a specified resource group. Use the RESET
edb_resource_group command or SET edb_resource_group TO
DEFAULT to remove the current process from a resource group.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

318

x A default resource group can be assigned to a role using the ALTER ROLE ...
SET command, or to a database by the ALTER DATABASE ... SET command.
The entire database server instance can be assigned a default resource group by
setting the parameter in the postgresql.conf file.

x In order to include resource groups in a backup file of the database server
instance, use the pg_dumpall backup utility with default settings (That is, do not
specify any of the --globals-only, --roles-only, or --tablespaces-
only options.)

5.1 Creating and Managing Resource Groups

The data definition language commands described in this section provide for the creation
and management of resource groups.

5.1.1 CREATE RESOURCE GROUP

Use the CREATE RESOURCE GROUP command to create a new resource group.

CREATE RESOURCE GROUP group_name;

Description

The CREATE RESOURCE GROUP command creates a resource group with the specified
name. Resource limits can then be defined on the group with the ALTER RESOURCE
GROUP command. The resource group is accessible from all databases in the Advanced
Server instance.

To use the CREATE RESOURCE GROUP command you must have superuser privileges.

Parameters

group_name

The name of the resource group.

Example

The following example results in the creation of three resource groups named resgrp_a,
resgrp_b, and resgrp_c.

edb=# CREATE RESOURCE GROUP resgrp_a;
CREATE RESOURCE GROUP
edb=# CREATE RESOURCE GROUP resgrp_b;
CREATE RESOURCE GROUP

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

319

edb=# CREATE RESOURCE GROUP resgrp_c;
CREATE RESOURCE GROUP

The following query shows the entries for the resource groups in the
edb_resource_group catalog.

edb=# SELECT * FROM edb_resource_group;
 rgrpname | rgrpcpuratelimit | rgrpdirtyratelimit
----------+------------------+--------------------
 resgrp_a | 0 | 0
 resgrp_b | 0 | 0
 resgrp_c | 0 | 0
(3 rows)

5.1.2 ALTER RESOURCE GROUP

Use the ALTER RESOURCE GROUP command to change the attributes of an existing
resource group. The command syntax comes in three forms.

The first form renames the resource group:

ALTER RESOURCE GROUP group_name RENAME TO new_name;

The second form assigns a resource type to the resource group:

ALTER RESOURCE GROUP group_name SET
 resource_type { TO | = } { value | DEFAULT };

The third form resets the assignment of a resource type to its default within the group:

ALTER RESOURCE GROUP group_name RESET resource_type;

Description

The ALTER RESOURCE GROUP command changes certain attributes of an existing
resource group.

The first form with the RENAME TO clause assigns a new name to an existing resource
group.

The second form with the SET resource_type TO clause either assigns the specified
literal value to a resource type, or resets the resource type when DEFAULT is specified.
Resetting or setting a resource type to DEFAULT means that the resource group has no
defined limit on that resource type.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

320

The third form with the RESET resource_type clause resets the resource type for the
group as described previously.

To use the ALTER RESOURCE GROUP command you must have superuser privileges.

Parameters

group_name

The name of the resource group to be altered.

new_name

The new name to be assigned to the resource group.

resource_type

The resource type parameter specifying the type of resource to which a usage
value is to be set.

value | DEFAULT

When value is specified, the literal value to be assigned to resource_type.
When DEFAULT is specified, the assignment of resource_type is reset for the
resource group.

Example

The following are examples of the ALTER RESOURCE GROUP command.

edb=# ALTER RESOURCE GROUP resgrp_a RENAME TO newgrp;
ALTER RESOURCE GROUP
edb=# ALTER RESOURCE GROUP resgrp_b SET cpu_rate_limit = .5;
ALTER RESOURCE GROUP
edb=# ALTER RESOURCE GROUP resgrp_b SET dirty_rate_limit = 6144;
ALTER RESOURCE GROUP
edb=# ALTER RESOURCE GROUP resgrp_c RESET cpu_rate_limit;
ALTER RESOURCE GROUP

The following query shows the results of the ALTER RESOURCE GROUP commands to
the entries in the edb_resource_group catalog.

edb=# SELECT * FROM edb_resource_group;
 rgrpname | rgrpcpuratelimit | rgrpdirtyratelimit
----------+------------------+--------------------
 newgrp | 0 | 0
 resgrp_b | 0.5 | 6144
 resgrp_c | 0 | 0
(3 rows)

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

321

5.1.3 DROP RESOURCE GROUP

Use the DROP RESOURCE GROUP command to remove a resource group.

DROP RESOURCE GROUP [IF EXISTS] group_name;

Description

The DROP RESOURCE GROUP command removes a resource group with the specified
name.

To use the DROP RESOURCE GROUP command you must have superuser privileges.

Parameters

group_name

The name of the resource group to be removed.

IF EXISTS

Do not throw an error if the resource group does not exist. A notice is issued in
this case.

Example

The following example removes resource group newgrp.

edb=# DROP RESOURCE GROUP newgrp;
DROP RESOURCE GROUP

5.1.4 Assigning a Process to a Resource Group

Use the SET edb_resource_group TO group_name command to assign the current
process to a specified resource group as shown by the following.

edb=# SET edb_resource_group TO resgrp_b;
SET
edb=# SHOW edb_resource_group;
 edb_resource_group

 resgrp_b
(1 row)

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

322

The resource type settings of the group immediately take effect on the current process. If
the command is used to change the resource group assigned to the current process, the
resource type settings of the newly assigned group immediately take effect.

Processes can be included by default in a resource group by assigning a default resource
group to roles, databases, or an entire database server instance.

A default resource group can be assigned to a role using the ALTER ROLE ... SET
command. For more information about the ALTER ROLE command, see the PostgreSQL
core documentation, available at:

http://www.enterprisedb.com/docs/en/9.4/pg/sql-alterrole.html

A default resource group can be assigned to a database by the ALTER DATABASE ...
SET command. For more information about the ALTER DATABASE command, see the
PostgreSQL core documentation, available at:

http://www.enterprisedb.com/docs/en/9.4/pg/sql-alterdatabase.html

The entire database server instance can be assigned a default resource group by setting
the edb_resource_group configuration parameter in the postgresql.conf file as
shown by the following.

- EDB Resource Manager -
#edb_max_resource_groups = 16 # 0-65536 (change requires restart)
edb_resource_group = 'resgrp_b'

A change to edb_resource_group in the postgresql.conf file requires a
configuration file reload before it takes effect on the database server instance.

5.1.5 Removing a Process from a Resource Group

Set edb_resource_group to DEFAULT or use RESET edb_resource_group to
remove the current process from a resource group as shown by the following.

edb=# SET edb_resource_group TO DEFAULT;
SET
edb=# SHOW edb_resource_group;
 edb_resource_group

(1 row)

For removing a default resource group from a role, use the ALTER ROLE ... RESET
form of the ALTER ROLE command.

http://www.enterprisedb.com/docs/en/9.4/pg/sql-alterrole.html
http://www.enterprisedb.com/docs/en/9.4/pg/sql-alterdatabase.html

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

323

For removing a default resource group from a database, use the ALTER DATABASE ...
RESET form of the ALTER DATABASE command.

For removing a default resource group from the database server instance, set the
edb_resource_group configuration parameter to an empty string in the
postgresql.conf file and reload the configuration file.

5.1.6 Monitoring Processes in Resource Groups

After resource groups have been created, the number of processes actively using these
resource groups can be obtained from the view edb_all_resource_groups.

The columns in edb_all_resource_groups are the following:

x group_name. Name of the resource group.
x active_processes. Number of active processes in the resource group.
x cpu_rate_limit. The value of the CPU rate limit resource type assigned to the

resource group.
x per_process_cpu_rate_limit. The CPU rate limit applicable to an individual,

active process in the resource group.
x dirty_rate_limit. The value of the dirty rate limit resource type assigned to the

resource group.
x per_process_dirty_rate_limit. The dirty rate limit applicable to an individual,

active process in the resource group.

Note: Columns per_process_cpu_rate_limit and
per_process_dirty_rate_limit do not show the actual resource consumption used
by the processes, but indicate how EDB Resource Manager sets the resource limit for an
individual process based upon the number of active processes in the resource group.

The following shows edb_all_resource_groups when resource group resgrp_a
contains no active processes, resource group resgrp_b contains two active processes,
and resource group resgrp_c contains one active process.

edb=# SELECT * FROM edb_all_resource_groups ORDER BY group_name;
-[RECORD 1]----------------+------------------
 group_name | resgrp_a
 active_processes | 0
 cpu_rate_limit | 0.5
 per_process_cpu_rate_limit |
 dirty_rate_limit | 12288
 per_process_dirty_rate_limit |
-[RECORD 2]----------------+------------------
 group_name | resgrp_b
 active_processes | 2
 cpu_rate_limit | 0.4

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

324

 per_process_cpu_rate_limit | 0.195694289022895
 dirty_rate_limit | 6144
 per_process_dirty_rate_limit | 3785.92924684337
-[RECORD 3]----------------+------------------
 group_name | resgrp_c
 active_processes | 1
 cpu_rate_limit | 0.3
 per_process_cpu_rate_limit | 0.292342129631091
 dirty_rate_limit | 3072
 per_process_dirty_rate_limit | 3072

The CPU rate limit and dirty rate limit settings that are assigned to these resource groups
are as follows.

edb=# SELECT * FROM edb_resource_group;
 rgrpname | rgrpcpuratelimit | rgrpdirtyratelimit
----------+------------------+--------------------
 resgrp_a | 0.5 | 12288
 resgrp_b | 0.4 | 6144
 resgrp_c | 0.3 | 3072
(3 rows)

In the edb_all_resource_groups view, note that the
per_process_cpu_rate_limit and per_process_dirty_rate_limit values are
roughly the corresponding CPU rate limit and dirty rate limit divided by the number of
active processes.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

325

5.2 CPU Usage Throttling

CPU usage of a resource group is controlled by setting the cpu_rate_limit resource
type parameter.

Set the cpu_rate_limit parameter to the fraction of CPU time over wall-clock time to
which the combined, simultaneous CPU usage of all processes in the group should not
exceed. Thus, the value assigned to cpu_rate_limit should typically be less than or
equal to 1.

The valid range of the cpu_rate_limit parameter is 0 to 1.67772e+07. A setting of 0
means no CPU rate limit has been set for the resource group.

When multiplied by 100, the cpu_rate_limit can also be interpreted as the CPU usage
percentage for a resource group.

EDB Resource Manager utilizes CPU throttling to keep the aggregate CPU usage of all
processes in the group within the limit specified by the cpu_rate_limit parameter. A
process in the group may be interrupted and put into sleep mode for a short interval of
time to maintain the defined limit. When and how such interruptions occur is defined by a
proprietary algorithm used by EDB Resource Manager.

5.2.1 Setting the CPU Rate Limit for a Resource Group

The ALTER RESOURCE GROUP command with the SET cpu_rate_limit clause is
used to set the CPU rate limit for a resource group.

In the following example the CPU usage limit is set to 50% for resgrp_a, 40% for
resgrp_b and 30% for resgrp_c. This means that the combined CPU usage of all
processes assigned to resgrp_a is maintained at approximately 50%. Similarly, for all
processes in resgrp_b, the combined CPU usage is kept to approximately 40%, etc.

edb=# ALTER RESOURCE GROUP resgrp_a SET cpu_rate_limit TO .5;
ALTER RESOURCE GROUP
edb=# ALTER RESOURCE GROUP resgrp_b SET cpu_rate_limit TO .4;
ALTER RESOURCE GROUP
edb=# ALTER RESOURCE GROUP resgrp_c SET cpu_rate_limit TO .3;
ALTER RESOURCE GROUP

The following query shows the settings of cpu_rate_limit in the catalog.

edb=# SELECT rgrpname, rgrpcpuratelimit FROM edb_resource_group;
 rgrpname | rgrpcpuratelimit
----------+------------------
 resgrp_a | 0.5
 resgrp_b | 0.4

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

326

 resgrp_c | 0.3
(3 rows)

Changing the cpu_rate_limit of a resource group not only affects new processes that
are assigned to the group, but any currently running processes that are members of the
group are immediately affected by the change. That is, if the cpu_rate_limit is
changed from .5 to .3, currently running processes in the group would be throttled
downward so that the aggregate group CPU usage would be near 30% instead of 50%.

To illustrate the effect of setting the CPU rate limit for resource groups, the following
examples use a CPU-intensive calculation of 20000 factorial (multiplication of 20000 *
19999 * 19998, etc.) performed by the query SELECT 20000!; run in the psql
command line utility.

The resource groups with the CPU rate limit settings shown in the previous query are
used in these examples.

5.2.2 Example – Single Process in a Single Group

The following shows that the current process is set to use resource group resgrp_b. The
factorial calculation is then started.

edb=# SET edb_resource_group TO resgrp_b;
SET
edb=# SHOW edb_resource_group;
 edb_resource_group

 resgrp_b
(1 row)
edb=# SELECT 20000!;

In a second session, the Linux top command is used to display the CPU usage as shown
under the %CPU column. The following is a snapshot at an arbitrary point in time as the
top command output periodically changes.

$ top
top - 16:37:03 up 4:15, 7 users, load average: 0.49, 0.20, 0.38
Tasks: 202 total, 1 running, 201 sleeping, 0 stopped, 0 zombie
Cpu(s): 42.7%us, 2.3%sy, 0.0%ni, 55.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0
Mem: 1025624k total, 791160k used, 234464k free, 23400k buffers
Swap: 103420k total, 13404k used, 90016k free, 373504k cached

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
28915 enterpri 20 0 195m 5900 4212 S 39.9 0.6 3:36.98 edb-postgres
 1033 root 20 0 171m 77m 2960 S 1.0 7.8 3:43.96 Xorg
 3040 user 20 0 278m 22m 14m S 1.0 2.2 3:41.72 knotify4
 .
 .
 .

The psql session performing the factorial calculation is shown by the row where edb-
postgres appears under the COMMAND column. The CPU usage of the session shown

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

327

under the %CPU column shows 39.9, which is close to the 40% CPU limit set for resource
group resgrp_b.

By contrast, if the psql session is removed from the resource group and the factorial
calculation is performed again, the CPU usage is much higher.

edb=# SET edb_resource_group TO DEFAULT;
SET
edb=# SHOW edb_resource_group;
 edb_resource_group

(1 row)

edb=# SELECT 20000!;

Under the %CPU column for edb-postgres, the CPU usage is now 93.6, which is
significantly higher than the 39.9 when the process was part of the resource group.

$ top
top - 16:43:03 up 4:21, 7 users, load average: 0.66, 0.33, 0.37
Tasks: 202 total, 5 running, 197 sleeping, 0 stopped, 0 zombie
Cpu(s): 96.7%us, 3.3%sy, 0.0%ni, 0.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0
Mem: 1025624k total, 791228k used, 234396k free, 23560k buffers
Swap: 103420k total, 13404k used, 90016k free, 373508k cached

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
28915 enterpri 20 0 195m 5900 4212 R 93.6 0.6 5:01.56 edb-postgres
 1033 root 20 0 171m 77m 2960 S 1.0 7.8 3:48.15 Xorg
 2907 user 20 0 98.7m 11m 9100 S 0.3 1.2 0:46.51 vmware-user-lo
 .
 .
 .

5.2.3 Example – Multiple Processes in a Single Group

As stated previously, the CPU rate limit applies to the aggregate of all processes in the
resource group. This concept is illustrated in the following example.

The factorial calculation is performed simultaneously in two separate psql sessions,
each of which has been added to resource group resgrp_b that has cpu_rate_limit
set to .4 (CPU usage of 40%).

Session 1:

edb=# SET edb_resource_group TO resgrp_b;
SET
edb=# SHOW edb_resource_group;
 edb_resource_group

 resgrp_b
(1 row)

edb=# SELECT 20000!;

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

328

Session 2:

edb=# SET edb_resource_group TO resgrp_b;
SET
edb=# SHOW edb_resource_group;
 edb_resource_group

 resgrp_b
(1 row)

edb=# SELECT 20000!;

A third session monitors the CPU usage.

$ top
top - 16:53:03 up 4:31, 7 users, load average: 0.31, 0.19, 0.27
Tasks: 202 total, 1 running, 201 sleeping, 0 stopped, 0 zombie
Cpu(s): 41.2%us, 3.0%sy, 0.0%ni, 55.8%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0
Mem: 1025624k total, 792020k used, 233604k free, 23844k buffers
Swap: 103420k total, 13404k used, 90016k free, 373508k cached

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
29857 enterpri 20 0 195m 4708 3312 S 19.9 0.5 0:57.35 edb-postgres
28915 enterpri 20 0 195m 5900 4212 S 19.6 0.6 5:35.49 edb-postgres
 3040 user 20 0 278m 22m 14m S 1.0 2.2 3:54.99 knotify4
 1033 root 20 0 171m 78m 2960 S 0.3 7.8 3:55.71 Xorg
 .
 .
 .

There are now two processes named edb-postgres with %CPU values of 19.9 and 19.6,
whose sum is close to the 40% CPU usage set for resource group resgrp_b.

The following command sequence displays the sum of all edb-postgres processes
sampled over half second time intervals. This shows how the total CPU usage of the
processes in the resource group changes over time as EDB Resource Manager throttles
the processes to keep the total resource group CPU usage near 40%.

$ while [[1 -eq 1]]; do top -d0.5 -b -n2 | grep edb-postgres | awk '{ SUM
+= $9} END { print SUM / 2 }'; done
37.2
39.1
38.9
38.3
44.7
39.2
42.5
39.1
39.2
39.2
41
42.85
46.1
 .
 .
 .

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

329

5.2.4 Example – Multiple Processes in Multiple Groups

In this example, two additional psql sessions are used along with the previous two
sessions. The third and fourth sessions perform the same factorial calculation within
resource group resgrp_c with a cpu_rate_limit of .3 (30% CPU usage).

Session 3:

edb=# SET edb_resource_group TO resgrp_c;
SET
edb=# SHOW edb_resource_group;
 edb_resource_group

 resgrp_c
(1 row)

edb=# SELECT 20000!;

Session 4:

edb=# SET edb_resource_group TO resgrp_c;
SET
edb=# SHOW edb_resource_group;
 edb_resource_group

 resgrp_c
(1 row)

edb=# SELECT 20000!;

The top command displays the following output.

$ top
top - 17:45:09 up 5:23, 8 users, load average: 0.47, 0.17, 0.26
Tasks: 203 total, 4 running, 199 sleeping, 0 stopped, 0 zombie
Cpu(s): 70.2%us, 0.0%sy, 0.0%ni, 29.8%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0
Mem: 1025624k total, 806140k used, 219484k free, 25296k buffers
Swap: 103420k total, 13404k used, 90016k free, 374092k cached

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
29857 enterpri 20 0 195m 4820 3324 S 19.9 0.5 4:25.02 edb-postgres
28915 enterpri 20 0 195m 5900 4212 R 19.6 0.6 9:07.50 edb-postgres
29023 enterpri 20 0 195m 4744 3248 R 16.3 0.5 4:01.73 edb-postgres
11019 enterpri 20 0 195m 4120 2764 R 15.3 0.4 0:04.92 edb-postgres
 2907 user 20 0 98.7m 12m 9112 S 1.3 1.2 0:56.54 vmware-user-lo
 3040 user 20 0 278m 22m 14m S 1.3 2.2 4:38.73 knotify4

The two resource groups in use have CPU usage limits of 40% and 30%. The sum of the
%CPU column for the first two edb-postgres processes is 39.5 (approximately 40%,
which is the limit for resgrp_b) and the sum of the %CPU column for the third and
fourth edb-postgres processes is 31.6 (approximately 30%, which is the limit for
resgrp_c).

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

330

The sum of the CPU usage limits of the two resource groups to which these processes
belong is 70%. The following output shows that the sum of the four processes borders
around 70%.

$ while [[1 -eq 1]]; do top -d0.5 -b -n2 | grep edb-postgres | awk '{ SUM
+= $9} END { print SUM / 2 }'; done
61.8
76.4
72.6
69.55
64.55
79.95
68.55
71.25
74.85
62
74.85
76.9
72.4
65.9
74.9
68.25

By contrast, if three sessions are processing where two sessions remain in resgrp_b, but
the third session does not belong to any resource group, the top command shows the
following output.

$ top
top - 17:24:55 up 5:03, 7 users, load average: 1.00, 0.41, 0.38
Tasks: 199 total, 3 running, 196 sleeping, 0 stopped, 0 zombie
Cpu(s): 99.7%us, 0.3%sy, 0.0%ni, 0.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0
Mem: 1025624k total, 797692k used, 227932k free, 24724k buffers
Swap: 103420k total, 13404k used, 90016k free, 374068k cached

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
29023 enterpri 20 0 195m 4744 3248 R 58.6 0.5 2:53.75 edb-postgres
28915 enterpri 20 0 195m 5900 4212 S 18.9 0.6 7:58.45 edb-postgres
29857 enterpri 20 0 195m 4820 3324 S 18.9 0.5 3:14.85 edb-postgres
 1033 root 20 0 174m 81m 2960 S 1.7 8.2 4:26.50 Xorg
 3040 user 20 0 278m 22m 14m S 1.0 2.2 4:21.20 knotify4

The second and third edb-postgres processes belonging to the resource group where
the CPU usage is limited to 40%, have a total CPU usage of 37.8. However, the first
edb-postgres process has a 58.6% CPU usage as it is not within a resource group, and
basically utilizes the remaining, available CPU resources on the system.

Likewise, the following output shows the sum of all three sessions is around 95% since
one of the sessions has no set limit on its CPU usage.

$ while [[1 -eq 1]]; do top -d0.5 -b -n2 | grep edb-postgres | awk '{ SUM
+= $9} END { print SUM / 2 }'; done
96
90.35
92.55
96.4
94.1

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

331

90.7
95.7
95.45
93.65
87.95
96.75
94.25
95.45
97.35
92.9
96.05
96.25
94.95
 .
 .
 .

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

332

5.3 Dirty Buffer Throttling

Writing to shared buffers is controlled by setting the dirty_rate_limit resource type
parameter.

Set the dirty_rate_limit parameter to the number of kilobytes per second for the
combined rate at which all the processes in the group should write to or “dirty” the shared
buffers. An example setting would be 3072 kilobytes per seconds.

The valid range of the dirty_rate_limit parameter is 0 to 1.67772e+07. A setting of
0 means no dirty rate limit has been set for the resource group.

EDB Resource Manager utilizes dirty buffer throttling to keep the aggregate, shared
buffer writing rate of all processes in the group near the limit specified by the
dirty_rate_limit parameter. A process in the group may be interrupted and put into
sleep mode for a short interval of time to maintain the defined limit. When and how such
interruptions occur is defined by a proprietary algorithm used by EDB Resource
Manager.

5.3.1 Setting the Dirty Rate Limit for a Resource Group

The ALTER RESOURCE GROUP command with the SET dirty_rate_limit clause is
used to set the dirty rate limit for a resource group.

In the following example the dirty rate limit is set to 12288 kilobytes per second for
resgrp_a, 6144 kilobytes per second for resgrp_b and 3072 kilobytes per second for
resgrp_c. This means that the combined writing rate to the shared buffer of all
processes assigned to resgrp_a is maintained at approximately 12288 kilobytes per
second. Similarly, for all processes in resgrp_b, the combined writing rate to the shared
buffer is kept to approximately 6144 kilobytes per second, etc.

edb=# ALTER RESOURCE GROUP resgrp_a SET dirty_rate_limit TO 12288;
ALTER RESOURCE GROUP
edb=# ALTER RESOURCE GROUP resgrp_b SET dirty_rate_limit TO 6144;
ALTER RESOURCE GROUP
edb=# ALTER RESOURCE GROUP resgrp_c SET dirty_rate_limit TO 3072;
ALTER RESOURCE GROUP

The following query shows the settings of dirty_rate_limit in the catalog.

edb=# SELECT rgrpname, rgrpdirtyratelimit FROM edb_resource_group;
 rgrpname | rgrpdirtyratelimit
----------+--------------------
 resgrp_a | 12288
 resgrp_b | 6144
 resgrp_c | 3072
(3 rows)

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

333

Changing the dirty_rate_limit of a resource group not only affects new processes
that are assigned to the group, but any currently running processes that are members of
the group are immediately affected by the change. That is, if the dirty_rate_limit is
changed from 12288 to 3072, currently running processes in the group would be throttled
downward so that the aggregate group dirty rate would be near 3072 kilobytes per second
instead of 12288 kilobytes per second.

To illustrate the effect of setting the dirty rate limit for resource groups, the following
examples use the following table for intensive I/O operations.

CREATE TABLE t1 (c1 INTEGER, c2 CHARACTER(500)) WITH (FILLFACTOR = 10);

The FILLFACTOR = 10 clause results in INSERT commands packing rows up to only
10% per page. This results in a larger sampling of dirty shared blocks for the purpose of
these examples.

The pg_stat_statements module is used to display the number of shared buffer
blocks that are dirtied by a SQL command and the amount of time the command took to
execute. This provides the information to calculate the actual kilobytes per second
writing rate for the SQL command, and thus compare it to the dirty rate limit set for a
resource group.

In order to use the pg_stat_statements module, perform the following steps.

Step 1: In the postgresql.conf file, add $libdir/pg_stat_statements to the
shared_preload_libraries configuration parameter as shown by the following.

shared_preload_libraries = '$libdir/dbms_pipe,$libdir/edb_gen,$libdir/pg_stat_statements'

Step 2: Restart the database server.

Step 3: Use the CREATE EXTENSION command to complete the creation of the
pg_stat_statements module.

edb=# CREATE EXTENSION pg_stat_statements SCHEMA public;
CREATE EXTENSION

The pg_stat_statements_reset() function is used to clear out the
pg_stat_statements view for clarity of each example.

The resource groups with the dirty rate limit settings shown in the previous query are
used in these examples.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

334

5.3.2 Example – Single Process in a Single Group

The following sequence of commands shows the creation of table t1. The current process
is set to use resource group resgrp_b. The pg_stat_statements view is cleared out
by running the pg_stat_statements_reset() function.

Finally, the INSERT command generates a series of integers from 1 to 10,000 to populate
the table, and dirty approximately 10,000 blocks.

edb=# CREATE TABLE t1 (c1 INTEGER, c2 CHARACTER(500)) WITH (FILLFACTOR = 10);
CREATE TABLE
edb=# SET edb_resource_group TO resgrp_b;
SET
edb=# SHOW edb_resource_group;
 edb_resource_group

 resgrp_b
(1 row)

edb=# SELECT pg_stat_statements_reset();
 pg_stat_statements_reset

(1 row)

edb=# INSERT INTO t1 VALUES (generate_series (1,10000), 'aaa');
INSERT 0 10000

The following shows the results from the INSERT command.

edb=# SELECT query, rows, total_time, shared_blks_dirtied FROM
pg_stat_statements;
-[RECORD 1]-------+--
 query | INSERT INTO t1 VALUES (generate_series (?,?), ?);
 rows | 10000
 total_time | 13496.184
 shared_blks_dirtied | 10003

The actual dirty rate is calculated as follows.

x The number of blocks dirtied per millisecond (ms) is 10003 blocks / 13496.184
ms, which yields 0.74117247 blocks per millisecond.

x Multiply the result by 1000 to give the number of shared blocks dirtied per second
(1 second = 1000 ms), which yields 741.17247 blocks per second.

x Multiply the result by 8.192 to give the number of kilobytes dirtied per second (1
block = 8.192 kilobytes), which yields approximately 6072 kilobytes per second.

Note that the actual dirty rate of 6072 kilobytes per second is close to the dirty rate limit
for the resource group, which is 6144 kilobytes per second.

By contrast, if the steps are repeated again without the process belonging to any resource
group, the dirty buffer rate is much higher.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

335

edb=# CREATE TABLE t1 (c1 INTEGER, c2 CHARACTER(500)) WITH (FILLFACTOR = 10);
CREATE TABLE
edb=# SHOW edb_resource_group;
 edb_resource_group

(1 row)

edb=# SELECT pg_stat_statements_reset();
 pg_stat_statements_reset

(1 row)

edb=# INSERT INTO t1 VALUES (generate_series (1,10000), 'aaa');
INSERT 0 10000

The following shows the results from the INSERT command without the usage of a
resource group.

edb=# SELECT query, rows, total_time, shared_blks_dirtied FROM
pg_stat_statements;
-[RECORD 1]-------+--
 query | INSERT INTO t1 VALUES (generate_series (?,?), ?);
 rows | 10000
 total_time | 2432.165
 shared_blks_dirtied | 10003

First, note the total time was only 2432.165 milliseconds as compared to 13496.184
milliseconds when a resource group with a dirty rate limit set to 6144 kilobytes per
second was used.

The actual dirty rate without the use of a resource group is calculated as follows.

x The number of blocks dirtied per millisecond (ms) is 10003 blocks / 2432.165 ms,
which yields 4.112797 blocks per millisecond.

x Multiply the result by 1000 to give the number of shared blocks dirtied per second
(1 second = 1000 ms), which yields 4112.797 blocks per second.

x Multiply the result by 8.192 to give the number of kilobytes dirtied per second (1
block = 8.192 kilobytes), which yields approximately 33692 kilobytes per second.

Note that the actual dirty rate of 33692 kilobytes per second is significantly higher than
when the resource group with a dirty rate limit of 6144 kilobytes per second was used.

5.3.3 Example – Multiple Processes in a Single Group

As stated previously, the dirty rate limit applies to the aggregate of all processes in the
resource group. This concept is illustrated in the following example.

For this example the inserts are performed simultaneously on two different tables in two
separate psql sessions, each of which has been added to resource group resgrp_b that
has a dirty_rate_limit set to 6144 kilobytes per second.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

336

Session 1:

edb=# CREATE TABLE t1 (c1 INTEGER, c2 CHARACTER(500)) WITH (FILLFACTOR = 10);
CREATE TABLE
edb=# SET edb_resource_group TO resgrp_b;
SET
edb=# SHOW edb_resource_group;
 edb_resource_group

 resgrp_b
(1 row)

edb=# INSERT INTO t1 VALUES (generate_series (1,10000), 'aaa');
INSERT 0 10000

Session 2:

edb=# CREATE TABLE t2 (c1 INTEGER, c2 CHARACTER(500)) WITH (FILLFACTOR = 10);
CREATE TABLE
edb=# SET edb_resource_group TO resgrp_b;
SET
edb=# SHOW edb_resource_group;
 edb_resource_group

 resgrp_b
(1 row)

edb=# SELECT pg_stat_statements_reset();
 pg_stat_statements_reset

(1 row)

edb=# INSERT INTO t2 VALUES (generate_series (1,10000), 'aaa');
INSERT 0 10000

Note: The INSERT commands in session 1 and session 2 were started after the SELECT
pg_stat_statements_reset() command in session 2 was run.

The following shows the results from the INSERT commands in the two sessions.
RECORD 3 shows the results from session 1. RECORD 2 shows the results from session 2.

edb=# SELECT query, rows, total_time, shared_blks_dirtied FROM
pg_stat_statements;
-[RECORD 1]-------+--
 query | SELECT pg_stat_statements_reset();
 rows | 1
 total_time | 0.43
 shared_blks_dirtied | 0
-[RECORD 2]-------+--
 query | INSERT INTO t2 VALUES (generate_series (?,?), ?);
 rows | 10000
 total_time | 30591.551
 shared_blks_dirtied | 10003
-[RECORD 3]-------+--
 query | INSERT INTO t1 VALUES (generate_series (?,?), ?);
 rows | 10000
 total_time | 33215.334

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

337

 shared_blks_dirtied | 10003

First, note the total time was 33215.334 milliseconds for session 1 and 30591.551
milliseconds for session 2. When only one session was active in the same resource group
as shown in the first example, the time was 13496.184 milliseconds. Thus more active
processes in the resource group result in a slower dirty rate for each active process in the
group. This is shown in the following calculations.

The actual dirty rate for session 1 is calculated as follows.

x The number of blocks dirtied per millisecond (ms) is 10003 blocks / 33215.334
ms, which yields 0.30115609 blocks per millisecond.

x Multiply the result by 1000 to give the number of shared blocks dirtied per second
(1 second = 1000 ms), which yields 301.15609 blocks per second.

x Multiply the result by 8.192 to give the number of kilobytes dirtied per second (1
block = 8.192 kilobytes), which yields approximately 2467 kilobytes per second.

The actual dirty rate for session 2 is calculated as follows.

x The number of blocks dirtied per millisecond (ms) is 10003 blocks / 30591.551
ms, which yields 0.32698571 blocks per millisecond.

x Multiply the result by 1000 to give the number of shared blocks dirtied per second
(1 second = 1000 ms), which yields 326.98571 blocks per second.

x Multiply the result by 8.192 to give the number of kilobytes dirtied per second (1
block = 8.192 kilobytes), which yields approximately 2679 kilobytes per second.

The combined dirty rate from session 1 (2467 kilobytes per second) and from session 2
(2679 kilobytes per second) yields 5146 kilobytes per second, which is below the set
dirty rate limit of the resource group (6144 kilobytes per seconds).

5.3.4 Example – Multiple Processes in Multiple Groups

In this example, two additional psql sessions are used along with the previous two
sessions. The third and fourth sessions perform the same INSERT command in resource
group resgrp_c with a dirty_rate_limit of 3072 kilobytes per second.

Sessions 1 and 2 are repeated as illustrated in the prior example using resource group
resgrp_b. with a dirty_rate_limit of 6144 kilobytes per second.

Session 3:

edb=# CREATE TABLE t3 (c1 INTEGER, c2 CHARACTER(500)) WITH (FILLFACTOR = 10);
CREATE TABLE
edb=# SET edb_resource_group TO resgrp_c;
SET
edb=# SHOW edb_resource_group;
 edb_resource_group

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

338

 resgrp_c
(1 row)

edb=# INSERT INTO t3 VALUES (generate_series (1,10000), 'aaa');
INSERT 0 10000

Session 4:

edb=# CREATE TABLE t4 (c1 INTEGER, c2 CHARACTER(500)) WITH (FILLFACTOR = 10);
CREATE TABLE
edb=# SET edb_resource_group TO resgrp_c;
SET
edb=# SHOW edb_resource_group;
 edb_resource_group

 resgrp_c
(1 row)

edb=# SELECT pg_stat_statements_reset();
 pg_stat_statements_reset

(1 row)

edb=# INSERT INTO t4 VALUES (generate_series (1,10000), 'aaa');
INSERT 0 10000

Note: The INSERT commands in all four sessions were started after the SELECT
pg_stat_statements_reset() command in session 4 was run.

The following shows the results from the INSERT commands in the four sessions.
RECORD 3 shows the results from session 1. RECORD 2 shows the results from session 2.
RECORD 4 shows the results from session 3. RECORD 5 shows the results from session 4.

edb=# SELECT query, rows, total_time, shared_blks_dirtied FROM
pg_stat_statements;
-[RECORD 1]-------+--
 query | SELECT pg_stat_statements_reset();
 rows | 1
 total_time | 0.467
 shared_blks_dirtied | 0
-[RECORD 2]-------+--
 query | INSERT INTO t2 VALUES (generate_series (?,?), ?);
 rows | 10000
 total_time | 31343.458
 shared_blks_dirtied | 10003
-[RECORD 3]-------+--
 query | INSERT INTO t1 VALUES (generate_series (?,?), ?);
 rows | 10000
 total_time | 28407.435
 shared_blks_dirtied | 10003
-[RECORD 4]-------+--
 query | INSERT INTO t3 VALUES (generate_series (?,?), ?);
 rows | 10000
 total_time | 52727.846
 shared_blks_dirtied | 10003
-[RECORD 5]-------+--

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

339

 query | INSERT INTO t4 VALUES (generate_series (?,?), ?);
 rows | 10000
 total_time | 56063.697
 shared_blks_dirtied | 10003

First note that the times of session 1 (28407.435) and session 2 (31343.458) are close to
each other as they are both in the same resource group with dirty_rate_limit set to
6144, as compared to the times of session 3 (52727.846) and session 4 (56063.697),
which are in the resource group with dirty_rate_limit set to 3072. The latter group
has a slower dirty rate limit so the expected processing time is longer as is the case for
sessions 3 and 4.

The actual dirty rate for session 1 is calculated as follows.

x The number of blocks dirtied per millisecond (ms) is 10003 blocks / 28407.435
ms, which yields 0.35212612 blocks per millisecond.

x Multiply the result by 1000 to give the number of shared blocks dirtied per second
(1 second = 1000 ms), which yields 352.12612 blocks per second.

x Multiply the result by 8.192 to give the number of kilobytes dirtied per second (1
block = 8.192 kilobytes), which yields approximately 2885 kilobytes per second.

The actual dirty rate for session 2 is calculated as follows.

x The number of blocks dirtied per millisecond (ms) is 10003 blocks / 31343.458
ms, which yields 0.31914156 blocks per millisecond.

x Multiply the result by 1000 to give the number of shared blocks dirtied per second
(1 second = 1000 ms), which yields 319.14156 blocks per second.

x Multiply the result by 8.192 to give the number of kilobytes dirtied per second (1
block = 8.192 kilobytes), which yields approximately 2614 kilobytes per second.

The combined dirty rate from session 1 (2885 kilobytes per second) and from session 2
(2614 kilobytes per second) yields 5499 kilobytes per second, which is near the set dirty
rate limit of the resource group (6144 kilobytes per seconds).

The actual dirty rate for session 3 is calculated as follows.

x The number of blocks dirtied per millisecond (ms) is 10003 blocks / 52727.846
ms, which yields 0.18971001 blocks per millisecond.

x Multiply the result by 1000 to give the number of shared blocks dirtied per second
(1 second = 1000 ms), which yields 189.71001 blocks per second.

x Multiply the result by 8.192 to give the number of kilobytes dirtied per second (1
block = 8.192 kilobytes), which yields approximately 1554 kilobytes per second.

The actual dirty rate for session 4 is calculated as follows.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

340

x The number of blocks dirtied per millisecond (ms) is 10003 blocks / 56063.697
ms, which yields 0.17842205 blocks per millisecond.

x Multiply the result by 1000 to give the number of shared blocks dirtied per second
(1 second = 1000 ms), which yields 178.42205 blocks per second.

x Multiply the result by 8.192 to give the number of kilobytes dirtied per second (1
block = 8.192 kilobytes), which yields approximately 1462 kilobytes per second.

The combined dirty rate from session 3 (1554 kilobytes per second) and from session 4
(1462 kilobytes per second) yields 3016 kilobytes per second, which is near the set dirty
rate limit of the resource group (3072 kilobytes per seconds).

Thus, this demonstrates how EDB Resource Manager keeps the aggregate dirty rate of
the active processes in its groups close to the dirty rate limit set for each group.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

341

5.4 System Catalogs

This section describes the system catalogs that store the resource group information used
by EDB Resource Manager.

5.4.1 edb_all_resource_groups

The following table lists the information available in the edb_all_resource_groups
catalog:

Column Type Description
 group_name name The name of the resource group.
 active_processes integer Number of currently active processes in the

resource group.
 cpu_rate_limit float8 Maximum CPU rate limit for the resource

group. 0 means no limit.
 per_process_cpu_rate_limit float8 Maximum CPU rate limit per currently active

process in the resource group.
 dirty_rate_limit float8 Maximum dirty rate limit for a resource

group. 0 means no limit.
 per_process_dirty_rate_limit float8 Maximum dirty rate limit per currently active

process in the resource group.

5.4.2 edb_resource_group

The following table lists the information available in the edb_resource_group
catalog:

Column Type Description
 rgrpname name The name of the resource group.
 rgrpcpuratelimit float8 Maximum CPU rate limit for a resource

group. 0 means no limit.
 rgrpdirtyratelimit float8 Maximum dirty rate limit for a resource group.

0 means no limit.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

342

6 Database Utilities
This chapter describes various database utilities that provide many usage benefits with
Postgres Plus Advanced Server.

6.1 EDB*Loader

EDB*Loader is a high-performance bulk data loader that provides an Oracle compatible
interface for Postgres Plus Advanced Server. The EDB*Loader command line utility
loads data from an input source, typically a file, into one or more tables using a subset of
the parameters offered by Oracle SQL*Loader.

EDB*Loader features include:

x Support for the Oracle SQL*Loader data loading methods - conventional path
load, direct path load, and parallel direct path load

x Oracle SQL*Loader compatible syntax for control file directives
x Input data with delimiter-separated or fixed-width fields
x Bad file for collecting rejected records
x Loading of multiple target tables
x Discard file for collecting records that do not meet the selection criteria of any

target table
x Log file for recording the EDB*Loader session and any error messages
x Data loading from standard input and remote loading, particularly useful for large

data sources on remote hosts

These features are explained in detail in the following sections.

Note: The following are important version compatibility restrictions between the
EDB*Loader client and the database server.

x Invoking EDB*Loader is done using a client program called edbldr, which is
used to pass parameters and directive information to the database server. It is
strongly recommended that the 9.5 EDB*Loader client (that is, the edbldr
program supplied with Postgres Plus Advanced Server 9.5) be used to load
data only into version 9.5 of the database server. In general, the EDB*Loader
client and database server should be the same version.

x It is possible to use a 9.5 EDB*Loader client to load data into a 9.5 database
server, but the new 9.5 EDB*Loader features may not be available under those
circumstances.

x Use of a 9.5, 9.4 or 9.3 EDB*Loader client is not supported for database servers
version 9.2 or earlier.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

343

6.1.1 Data Loading Methods

As with Oracle SQL*Loader, EDB*Loader supports three data loading methods:

x Conventional path load
x Direct path load
x Parallel direct path load

Conventional path load is the default method used by EDB*Loader. Basic insert
processing is used to add rows to the table.

The advantage of a conventional path load over the other methods is that table constraints
and database objects defined on the table such as primary keys, not null constraints,
check constraints, unique indexes, foreign key constraints, and triggers are enforced
during a conventional path load.

One exception is that Postgres Plus Advanced Server rules defined on the table are not
enforced. EDB*Loader can load tables on which rules are defined, but the rules are not
executed. As a consequence, partitioned tables implemented using rules cannot be loaded
using EDB*Loader.

Note: Postgres Plus Advanced Server rules are created by the CREATE RULE command.
Postgres Plus Advanced Server rules are not the same database objects as rules and rule
sets used in Oracle.

EDB*Loader also supports direct path loads. A direct path load is faster than a
conventional path load, but requires the removal of most types of constraints and triggers
from the table. See Section 6.1.5 for information on direct path loads.

Finally, EDB*Loader supports parallel direct path loads. A parallel direct path load
provides even greater performance improvement by permitting multiple EDB*Loader
sessions to run simultaneously to load a single table. See Section 6.1.6 for information on
parallel direct path loads.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

344

6.1.2 General Usage

EDB*Loader can load data files with either delimiter-separated or fixed-width fields, in
single-byte or multi-byte character sets. The delimiter can be a string consisting of one or
more single-byte or multi-byte characters. Data file encoding and the database encoding
may be different. Character set conversion of the data file to the database encoding is
supported.

Each EDB*Loader session runs as a single, independent transaction. If an error should
occur during the EDB*Loader session that aborts the transaction, all changes made
during the session are rolled back.

Generally, formatting errors in the data file do not result in an aborted transaction.
Instead, the badly formatted records are written to a text file called the bad file. The
reason for the error is recorded in the log file.

Records causing database integrity errors do result in an aborted transaction and rollback.
As with formatting errors, the record causing the error is written to the bad file and the
reason is recorded in the log file.

Note: EDB*Loader differs from Oracle SQL*Loader in that a database integrity error
results in a rollback in EDB*Loader. In Oracle SQL*Loader, only the record causing the
error is rejected. Records that were previously inserted into the table are retained and
loading continues after the rejected record.

The following are examples of types of formatting errors that do not abort the transaction:

x Attempt to load non-numeric value into a numeric column
x Numeric value is too large for a numeric column
x Character value is too long for the maximum length of a character column
x Attempt to load improperly formatted date value into a date column

The following are examples of types of database errors that abort the transaction and
result in the rollback of all changes made in the EDB*Loader session:

x Violation of a unique constraint such as a primary key or unique index
x Violation of a referential integrity constraint
x Violation of a check constraint
x Error thrown by a trigger fired as a result of inserting rows

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

345

6.1.3 Building the EDB*Loader Control File

When you invoke EDB*Loader, the list of arguments provided must include the name of
a control file. The control file includes the instructions that EDB*Loader uses to load the
table (or tables) from the input data file. The control file includes information such as:

x The name of the input data file containing the data to be loaded.
x The name of the table or tables to be loaded from the data file.
x Names of the columns within the table or tables and their corresponding field

placement in the data file.
x Specification of whether the data file uses a delimiter string to separate the fields,

or if the fields occupy fixed column positions.
x Optional selection criteria to choose which records from the data file to load into a

given table.
x The name of the file that will collect illegally formatted records.
x The name of the discard file that will collect records that do not meet the selection

criteria of any table.

The syntax for the EDB*Loader control file is as follows:

[OPTIONS (param=value [, param=value] ...)]
LOAD DATA
 [CHARACTERSET charset]
 [INFILE '{ data_file | stdin }']
 [BADFILE 'bad_file']
 [DISCARDFILE 'discard_file']
 [{ DISCARDMAX | DISCARDS } max_discard_recs]
[INSERT | APPEND | REPLACE | TRUNCATE]
[PRESERVE BLANKS]
{ INTO TABLE target_table
 [WHEN field_condition [AND field_condition] ...]
 [FIELDS TERMINATED BY 'termstring'
 [OPTIONALLY ENCLOSED BY 'enclstring']]
 [TRAILING NULLCOLS]
 (field_def [, field_def] ...)
} ...

where field_def defines a field in the specified data_file that describes the location,
data format, or value of the data to be inserted into column_name of the
target_table. The syntax of field_def is the following:

column_name {
 CONSTANT val |
 FILLER [POSITION (start:end)] [fieldtype] |
 [POSITION (start:end)] [fieldtype]

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

346

 [PRESERVE BLANKS] ["expr"]
}

where fieldtype is one of:

CHAR | DATE ["datemask"] | INTEGER EXTERNAL |
FLOAT EXTERNAL | DECIMAL EXTERNAL | ZONED EXTERNAL |
ZONED [(precision[,scale])]

Description

The specification of data_file, bad_file, and discard_file may include the full
directory path or a relative directory path to the file name. If the file name is specified
alone or with a relative directory path, the file is then assumed to exist (in the case of
data_file), or is created (in the case of bad_file or discard_file), relative to the
current working directory from which edbldr is invoked.

You can include references to environment variables within the EDB*Loader control file
when referring to a directory path and/or file name. Environment variable references are
formatted differently on Windows systems than on Linux systems:

x On Linux, the format is $ENV_VARIABLE or ${ENV_VARIABLE}

x On Windows, the format is %ENV_VARIABLE%

Where ENV_VARIABLE is the environment variable that is set to the directory path and/or
file name.

The EDBLDR_ENV_STYLE environment variable instructs Advanced Server to interpret
environment variable references as Windows-styled references or Linux-styled references
irregardless of the operating system on which EDB*Loader resides. You can use this
environment variable to create portable control files for EDB*Loader.

x On a Windows system, set EDBLDR_ENV_STYLE to linux or unix to instruct
Advanced Server to recognize Linux-style references within the control file.

x On a Linux system, set EDBLDR_ENV_STYLE to windows to instruct Advanced
Server to recognize Windows-style references within the control file.

The operating system account enterprisedb must have read permission on the
directory and file specified by data_file.

The operating system account enterprisedb must have write permission on the
directories where bad_file and discard_file are to be written.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

347

Note: It is suggested that the file names for data_file, bad_file, and
discard_file include extensions of .dat, .bad, and .dsc, respectively. If the
provided file name does not contain an extension, EDB*Loader assumes the actual file
name includes the appropriate aforementioned extension.

If an EDB*Loader session results in data format errors and the BADFILE clause is not
specified, nor is the BAD parameter given on the command line when edbldr is invoked,
a bad file is created with the name control_file_base.bad in the current working
directory from which edbldr is invoked. control_file_base is the base name of the
control file (that is, the file name without any extension) used in the edbldr session.

If all of the following conditions are true, the discard file is not created even if the
EDB*Loader session results in discarded records:

x The DISCARDFILE clause for specifying the discard file is not included in the
control file.

x The DISCARD parameter for specifying the discard file is not included on the
command line.

x The DISCARDMAX clause for specifying the maximum number of discarded
records is not included in the control file.

x The DISCARDS clause for specifying the maximum number of discarded records
is not included in the control file.

x The DISCARDMAX parameter for specifying the maximum number of discarded
records is not included on the command line.

If neither the DISCARDFILE clause nor the DISCARD parameter for explicitly specifying
the discard file name are specified, but DISCARDMAX or DISCARDS is specified, then the
EDB*Loader session creates a discard file using the data file name with an extension of
.dsc.

Note: There is a distinction between keywords DISCARD and DISCARDS. DISCARD is an
EDB*Loader command line parameter used to specify the discard file name (see Section
6.1.4). DISCARDS is a clause of the LOAD DATA directive that may only appear in the
control file. Keywords DISCARDS and DISCARDMAX provide the same functionality of
specifying the maximum number of discarded records allowed before terminating the
EDB*Loader session. Records loaded into the database before termination of the
EDB*Loader session due to exceeding the DISCARDS or DISCARDMAX settings are kept
in the database and are not rolled back.

If one of INSERT, APPEND, REPLACE, or TRUNCATE is specified, it establishes the
default action of how rows are to be added to target tables. If omitted, the default action
is as if INSERT had been specified.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

348

If the FIELDS TERMINATED BY clause is specified, then the POSITION (start:end)
clause may not be specified for any field_def. Alternatively if the FIELDS
TERMINATED BY clause is not specified, then every field_def must contain the
POSITION (start:end) clause, excluding those with the CONSTANT clause.

Parameters

OPTIONS param=value

Use the OPTIONS clause to specify param=value pairs that represent an
EDB*Loader directive. If a parameter is specified in both the OPTIONS clause
and on the command line when edbldr is invoked, the command line setting is
used.

Specify one or more of the following parameter/value pairs:

DIRECT= { FALSE | TRUE }

If DIRECT is set to TRUE EDB*Loader performs a direct path load instead
of a conventional path load. The default value of DIRECT is FALSE.

See Section 6.1.5 for information on direct path loads.

ERRORS=error_count

error_count specifies the number of errors permitted before aborting
the EDB*Loader session. The default is 50.

FREEZE= { FALSE | TRUE }

Set FREEZE to TRUE to indicate that the data should be copied with the
rows frozen. A tuple guaranteed to be visible to all current and future
transactions is marked as frozen to prevent transaction ID wrap-around.
For more information about frozen tuples, see the PostgreSQL core
documentation at:

http://www.enterprisedb.com/docs/en/9.4/pg/routine-vacuuming.html

You must specify a data-loading type of TRUNCATE in the control file
when using the FREEZE option. FREEZE is not supported for direct
loading.

By default, FREEZE is FALSE.

http://www.enterprisedb.com/docs/en/9.4/pg/routine-vacuuming.html

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

349

PARALLEL= { FALSE | TRUE }

Set PARALLEL to TRUE to indicate that this EDB*Loader session is one of
a number of concurrent EDB*Loader sessions participating in a parallel
direct path load. The default value of PARALLEL is FALSE.

When PARALLEL is TRUE, the DIRECT parameter must also be set to
TRUE . See Section 6.1.6 for more information about parallel direct path
loads.

ROWS=n

n specifies the number of rows that EDB*Loader will commit before
loading the next set of n rows.

If EDB*Loader encounters an invalid row during a load (in which the
ROWS parameter is specified), those rows committed prior to encountering
the error will remain in the destination table.

SKIP=skip_count

skip_count specifies the number of records at the beginning of the input
data file that should be skipped before loading begins. The default is 0.

SKIP_INDEX_MAINTENANCE={ FALSE | TRUE }

If SKIP_INDEX_MAINTENANCE is TRUE, index maintenance is not
performed as part of a direct path load, and indexes on the loaded table are
marked as invalid. The default value of SKIP_INDEX_MAINTENANCE is
FALSE.

Please note: During a parallel direct path load, target table indexes are not
updated, and are marked as invalid after the load is complete.

You can use the REINDEX command to rebuild an index. For more
information about the REINDEX command, see the PostgreSQL core
documentation, available at:

http://www.enterprisedb.com/docs/en/9.4/pg/sql-reindex.html

charset

Use the CHARACTERSET clause to identify the character set encoding of
data_file where charset is the character set name. This clause is required if

http://www.enterprisedb.com/docs/en/9.4/pg/sql-reindex.html

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

350

the data file encoding differs from the control file encoding. (The control file
encoding must always be in the encoding of the client where edbldr is invoked.)

Examples of charset settings are UTF8, SQL_ASCII, and SJIS.

For more information about client to database character set conversion, see the
PostgreSQL core documentation available at:

http://www.enterprisedb.com/docs/en/9.4/pg/multibyte.html

data_file

File containing the data to be loaded into target_table. Each record in the data
file corresponds to a row to be inserted into target_table.

If an extension is not provided in the file name, EDB*Loader assumes the file has
an extension of .dat, for example, mydatafile.dat.

Note: If the DATA parameter is specified on the command line when edbldr is
invoked, the file given by the command line DATA parameter is used instead.

If the INFILE clause is omitted as well as the command line DATA parameter,
then the data file name is assumed to be identical to the control file name, but
with an extension of .dat.

stdin

Specify stdin (all lowercase letters) if you want to use standard input to pipe the
data to be loaded directly to EDB*Loader. This is useful for data sources
generating a large number of records to be loaded.

bad_file

File that receives data_file records that cannot be loaded due to errors.

If an extension is not provided in the file name, EDB*Loader assumes the file has
an extension of .bad, for example, mybadfile.bad.

Note: If the BAD parameter is specified on the command line when edbldr is
invoked, the file given by the command line BAD parameter is used instead.

discard_file

File that receives input data records that are not loaded into any table because
none of the selection criteria are met for tables with the WHEN clause, and there are

http://www.enterprisedb.com/docs/en/9.4/pg/multibyte.html

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

351

no tables without a WHEN clause. (All records meet the selection criteria of a table
without a WHEN clause.)

If an extension is not provided in the file name, EDB*Loader assumes the file has
an extension of .dsc, for example, mydiscardfile.dsc.

Note: If the DISCARD parameter is specified on the command line when edbldr
is invoked, the file given by the command line DISCARD parameter is used
instead.

{ DISCARDMAX | DISCARDS } max_discard_recs

Maximum number of discarded records that may be encountered from the input
data records before terminating the EDB*Loader session. (A discarded record is
described in the preceding description of the discard_file parameter.) Either
keyword DISCARDMAX or DISCARDS may be used preceding the integer value
specified by max_discard_recs.

For example, if max_discard_recs is 0, then the EDB*Loader session is
terminated if and when a first discarded record is encountered. If
max_discard_recs is 1, then the EDB*Loader session is terminated if and
when a second discarded record is encountered.

When the EDB*Loader session is terminated due to exceeding
max_discard_recs, prior input data records that have been loaded into the
database are retained. They are not rolled back.

INSERT | APPEND | REPLACE | TRUNCATE

Specifies how data is to be loaded into the target tables. If one of INSERT,
APPEND, REPLACE, or TRUNCATE is specified, it establishes the default action for
all tables, overriding the default of INSERT.

INSERT

Data is to be loaded into an empty table. EDB*Loader throws an
exception and does not load any data if the table is not initially empty.

Note: If the table contains rows, the TRUNCATE command must be used
to empty the table prior to invoking EDB*Loader. EDB*Loader throws an
exception if the DELETE command is used to empty the table instead of
the TRUNCATE command. Oracle SQL*Loader allows the table to be
emptied by using either the DELETE or TRUNCATE command.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

352

APPEND

Data is to be added to any existing rows in the table. The table may be
initially empty as well.

REPLACE

The REPLACE keyword and TRUNCATE keywords are functionally
identical. The table is truncated by EDB*Loader prior to loading the new
data.

Note: Delete triggers on the table are not fired as a result of the REPLACE
operation.

TRUNCATE

The table is truncated by EDB*Loader prior to loading the new data.
Delete triggers on the table are not fired as a result of the TRUNCATE
operation.

PRESERVE BLANKS

For all target tables, retains leading white space when the optional enclosure
delimiters are not present and leaves trailing white space intact when fields are
specified with a predetermined size. When omitted, the default behavior is to trim
leading and trailing white space.

target_table

Name of the table into which data is to be loaded. The table name may be
schema-qualified (for example, enterprisedb.emp). The specified target must
not be a view.

field_condition

Conditional clause taking the following form:

[(] (start:end) { = | != | <> } 'val' [)]

start and end are positive integers specifying the column positions in
data_file that mark the beginning and end of a field that is to be compared
with the constant val. The first character in each record begins with a start
value of 1.

In the WHEN field_condition [AND field_condition] clause, if all
such conditions evaluate to true for a given record, then EDB*Loader attempts to

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

353

insert that record into target_table. If the insert operation fails, the record is
written to bad_file.

All characters used in the field_condition text (particularly in the val string)
must be valid in the database encoding. (For performing data conversion,
EDB*Loader first converts the characters in val string to the database encoding
and then to the data file encoding.)

If for a given record, none of the WHEN clauses evaluate to true for all INTO
TABLE clauses, the record is written to discard_file, if a discard file was
specified for the EDB*Loader session.

termstring

String of one or more characters that separates each field in data_file. The
characters may be single-byte or multi-byte as long as they are valid in the
database encoding. Two consecutive appearances of termstring with no
intervening character results in the corresponding column set to null.

enclstring

String of one or more characters used to enclose a field value in data_file. The
characters may be single-byte or multi-byte as long as they are valid in the
database encoding. Use enclstring on fields where termstring appears as
part of the data.

TRAILING NULLCOLS

If TRAILING NULLCOLS is specified, then the columns in the column list for
which there is no data in data_file for a given record, are set to null when the
row is inserted. This applies only to one or more consecutive columns at the end
of the column list.

If fields are omitted at the end of a record and TRAILING NULLCOLS is not
specified, EDB*Loader assumes the record contains formatting errors and writes
it to the bad file.

column_name

Name of a column in target_table into which a field value defined by
field_def is to be inserted.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

354

CONSTANT val

Specifies a constant that is type-compatible with the column data type to which it
is assigned in a field definition. Single or double quotes may enclose val. If val
contains white space, then enclosing quotation marks must be used.

The use of the CONSTANT clause completely determines the value to be assigned
to a column in each inserted row. No other clause may appear in the same field
definition.

If the TERMINATED BY clause is used to delimit the fields in data_file, there
must be no delimited field in data_file corresponding to any field definition
with a CONSTANT clause. In other words, EDB*Loader assumes there is no field
in data_file for any field definition with a CONSTANT clause.

FILLER

Specifies that the data in the field defined by the field definition is not to be
loaded into the associated column. The column is set to null.

A column name defined with the FILLER clause must not be referenced in a SQL
expression. See the discussion of the expr parameter.

POSITION (start:end)

Defines the location of the field in a record in a fixed-width field data file. start
and end are positive integers. The first character in the record has a start value of
1.

CHAR | DATE ["datemask"] | INTEGER EXTERNAL |
FLOAT EXTERNAL | DECIMAL EXTERNAL | ZONED EXTERNAL |
ZONED [(precision[,scale])]

Field type that describes the format of the data field in data_file.

Note: Specification of a field type is optional (for descriptive purposes only) and
has no effect on whether or not EDB*Loader successfully inserts the data in the
field into the table column. Successful loading depends upon the compatibility of
the column data type and the field value. For example, a column with data type
NUMBER(7,2) successfully accepts a field containing 2600, but if the field
contains a value such as 26XX, the insertion fails and the record is written to
bad_file.

Please note that ZONED data is not human-readable; ZONED data is stored in an
internal format where each digit is encoded in a separate nibble/nybble/4-bit field.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

355

In each ZONED value, the last byte contains a single digit (in the high-order 4 bits)
and the sign (in the low-order 4 bits).

precision

Use precision to specify the length of the ZONED value.

If the precision value specified for ZONED conflicts with the length calculated by
the server based on information provided with the POSITION clause,
EDB*Loader will use the value specified for precision.

scale

scale specifies the number of digits to the right of the decimal point in a ZONED
value.

datemask

Specifies the ordering and abbreviation of the day, month, and year components
of a date field.

Note: If the DATE field type is specified along with a SQL expression for the
column, then datemask must be specified after DATE and before the SQL
expression. See the following discussion of the expr parameter.

PRESERVE BLANKS

For the column on which this option appears, retains leading white space when
the optional enclosure delimiters are not present and leaves trailing white space
intact when fields are specified with a predetermined size. When omitted, the
default behavior is to trim leading and trailing white space.

expr

A SQL expression returning a scalar value that is type-compatible with the
column data type to which it is assigned in a field definition. Double quotes must
enclose expr. expr may contain a reference to any column in the field list
(except for fields with the FILLER clause) by prefixing the column name by a
colon character (:).

Examples

The following are some examples of control files and their corresponding data files.

The following control file uses a delimiter-separated data file that appends rows to the
emp table:

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

356

LOAD DATA
 INFILE 'emp.dat'
 BADFILE 'emp.bad'
 APPEND
 INTO TABLE emp
 FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
 TRAILING NULLCOLS
 (
 empno,
 ename,
 job,
 mgr,
 hiredate,
 sal,
 deptno,
 comm
)

In the preceding control file, the APPEND clause is used to allow the insertion of
additional rows into the emp table.

The following is the corresponding delimiter-separated data file:

9101,ROGERS,CLERK,7902,17-DEC-10,1980.00,20
9102,PETERSON,SALESMAN,7698,20-DEC-10,2600.00,30,2300.00
9103,WARREN,SALESMAN,7698,22-DEC-10,5250.00,30,2500.00
9104,"JONES, JR.",MANAGER,7839,02-APR-09,7975.00,20

The use of the TRAILING NULLCOLS clause allows the last field supplying the comm
column to be omitted from the first and last records. The comm column is set to null for
the rows inserted from these records.

The double quotation mark enclosure character surrounds the value JONES, JR. in the
last record since the comma delimiter character is part of the field value.

The following query displays the rows added to the table after the EDB*Loader session:

SELECT * FROM emp WHERE empno > 9100;

empno | ename | job | mgr | hiredate | sal | comm | deptno
-------+------------+----------+------+--------------------+---------+---------+-------
-
 9101 | ROGERS | CLERK | 7902 | 17-DEC-10 00:00:00 | 1980.00 | | 20
 9102 | PETERSON | SALESMAN | 7698 | 20-DEC-10 00:00:00 | 2600.00 | 2300.00 | 30
 9103 | WARREN | SALESMAN | 7698 | 22-DEC-10 00:00:00 | 5250.00 | 2500.00 | 30
 9104 | JONES, JR. | MANAGER | 7839 | 02-APR-09 00:00:00 | 7975.00 | | 20
(4 rows)

The following example is a control file that loads the same rows into the emp table, but
uses a data file containing fixed-width fields:

LOAD DATA
 INFILE 'emp_fixed.dat'
 BADFILE 'emp_fixed.bad'
 APPEND
 INTO TABLE emp

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

357

 TRAILING NULLCOLS
 (
 empno POSITION (1:4),
 ename POSITION (5:14),
 job POSITION (15:23),
 mgr POSITION (24:27),
 hiredate POSITION (28:38),
 sal POSITION (39:46),
 deptno POSITION (47:48),
 comm POSITION (49:56)
)

In the preceding control file, the FIELDS TERMINATED BY and OPTIONALLY
ENCLOSED BY clauses are absent. Instead, each field now includes the POSITION clause.

The following is the corresponding data file containing fixed-width fields:

9101ROGERS CLERK 790217-DEC-10 1980.0020
9102PETERSON SALESMAN 769820-DEC-10 2600.0030 2300.00
9103WARREN SALESMAN 769822-DEC-10 5250.0030 2500.00
9104JONES, JR.MANAGER 783902-APR-09 7975.0020

The following control file illustrates the use of the FILLER clause in the data fields for
the sal and comm columns. EDB*Loader ignores the values in these fields and sets the
corresponding columns to null.

LOAD DATA
 INFILE 'emp_fixed.dat'
 BADFILE 'emp_fixed.bad'
 APPEND
 INTO TABLE emp
 TRAILING NULLCOLS
 (
 empno POSITION (1:4),
 ename POSITION (5:14),
 job POSITION (15:23),
 mgr POSITION (24:27),
 hiredate POSITION (28:38),
 sal FILLER POSITION (39:46),
 deptno POSITION (47:48),
 comm FILLER POSITION (49:56)
)

Using the same fixed-width data file as in the prior example, the resulting rows in the
table appear as follows:

SELECT * FROM emp WHERE empno > 9100;

empno | ename | job | mgr | hiredate | sal | comm | deptno
-------+------------------+----------+------+--------------------+-----+------+--------
 9101 | ROGERS | CLERK | 7902 | 17-DEC-10 00:00:00 | | | 20
 9102 | PETERSON | SALESMAN | 7698 | 20-DEC-10 00:00:00 | | | 30
 9103 | WARREN | SALESMAN | 7698 | 22-DEC-10 00:00:00 | | | 30
 9104 | JONES, JR. | MANAGER | 7839 | 02-APR-09 00:00:00 | | | 20
(4 rows)

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

358

The following example illustrates the use of multiple INTO TABLE clauses. For this
example, two empty tables are created with the same data definition as the emp table. The
following CREATE TABLE commands create these two empty tables, while inserting no
rows from the original emp table:

CREATE TABLE emp_research AS SELECT * FROM emp WHERE deptno = 99;
CREATE TABLE emp_sales AS SELECT * FROM emp WHERE deptno = 99;

The following control file contains two INTO TABLE clauses. Also note that there is no
APPEND clause so the default operation of INSERT is used, which requires that tables
emp_research and emp_sales be empty.

LOAD DATA
 INFILE 'emp_multitbl.dat'
 BADFILE 'emp_multitbl.bad'
 DISCARDFILE 'emp_multitbl.dsc'
 INTO TABLE emp_research
 WHEN (47:48) = '20'
 TRAILING NULLCOLS
 (
 empno POSITION (1:4),
 ename POSITION (5:14),
 job POSITION (15:23),
 mgr POSITION (24:27),
 hiredate POSITION (28:38),
 sal POSITION (39:46),
 deptno CONSTANT '20',
 comm POSITION (49:56)
)
 INTO TABLE emp_sales
 WHEN (47:48) = '30'
 TRAILING NULLCOLS
 (
 empno POSITION (1:4),
 ename POSITION (5:14),
 job POSITION (15:23),
 mgr POSITION (24:27),
 hiredate POSITION (28:38),
 sal POSITION (39:46),
 deptno CONSTANT '30',
 comm POSITION (49:56) "ROUND(:comm + (:sal * .25), 0)"
)

The WHEN clauses specify that when the field designated by columns 47 thru 48 contains
20, the record is inserted into the emp_research table and when that same field
contains 30, the record is inserted into the emp_sales table. If neither condition is true,
the record is written to the discard file named emp_multitbl.dsc.

The CONSTANT clause is given for column deptno so the specified constant value is
inserted into deptno for each record. When the CONSTANT clause is used, it must be the
only clause in the field definition other than the column name to which the constant value
is assigned.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

359

Finally, column comm of the emp_sales table is assigned a SQL expression. Column
names may be referenced in the expression by prefixing the column name with a colon
character (:).

The following is the corresponding data file:

9101ROGERS CLERK 790217-DEC-10 1980.0020
9102PETERSON SALESMAN 769820-DEC-10 2600.0030 2300.00
9103WARREN SALESMAN 769822-DEC-10 5250.0030 2500.00
9104JONES, JR.MANAGER 783902-APR-09 7975.0020
9105ARNOLDS CLERK 778213-SEP-10 3750.0010
9106JACKSON ANALYST 756603-JAN-11 4500.0040

Since the records for employees ARNOLDS and JACKSON contain 10 and 40 in columns
47 thru 48, which do not satisfy any of the WHEN clauses, EDB*Loader writes these two
records to the discard file, emp_multitbl.dsc, whose content is shown by the
following:

9105ARNOLDS CLERK 778213-SEP-10 3750.0010
9106JACKSON ANALYST 756603-JAN-11 4500.0040

The following are the rows loaded into the emp_research and emp_sales tables:

SELECT * FROM emp_research;

empno | ename | job | mgr | hiredate | sal | comm | deptno
-------+------------+---------+------+--------------------+---------+------+--------
 9101 | ROGERS | CLERK | 7902 | 17-DEC-10 00:00:00 | 1980.00 | | 20.00
 9104 | JONES, JR. | MANAGER | 7839 | 02-APR-09 00:00:00 | 7975.00 | | 20.00
(2 rows)

SELECT * FROM emp_sales;

empno | ename | job | mgr | hiredate | sal | comm | deptno
-------+----------+----------+------+--------------------+---------+---------+--------
 9102 | PETERSON | SALESMAN | 7698 | 20-DEC-10 00:00:00 | 2600.00 | 2950.00 | 30.00
 9103 | WARREN | SALESMAN | 7698 | 22-DEC-10 00:00:00 | 5250.00 | 3813.00 | 30.00
(2 rows)

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

360

6.1.4 Invoking EDB*Loader

You must have superuser privileges to run EDB*Loader. Use the following command to
invoke EDB*Loader from the command line:

edbldr [-d dbname] [-p port] [-h host]
[USERID={ username/password | username/ | username | / }]
 CONTROL=control_file
[DATA=data_file]
[BAD=bad_file]
[DISCARD=discard_file]
[DISCARDMAX=max_discard_recs]
[LOG=log_file]
[PARFILE=param_file]
[DIRECT={ FALSE | TRUE }]
[FREEZE={ FALSE | TRUE }]
[ERRORS=error_count]
[PARALLEL={ FALSE | TRUE }]
[ROWS=n]
[SKIP=skip_count]
[SKIP_INDEX_MAINTENANCE={ FALSE | TRUE }]
[edb_resource_group=group_name]

Description

If the -d option, the -p option, or the -h option are omitted, the defaults for the database,
port, and host are determined according to the same rules as other Postgres Plus
Advanced Server utility programs such as edb-psql, for example.

Any parameter listed in the preceding syntax diagram except for the -d option, -p
option, -h option, and the PARFILE parameter may be specified in a parameter file. The
parameter file is specified on the command line when edbldr is invoked using
PARFILE=param_file. Some parameters may be specified in the OPTIONS clause in
the control file. See the description of the control file in Section 6.1.3.

The specification of control_file, data_file, bad_file, discard_file,
log_file, and param_file may include the full directory path or a relative directory
path to the file name. If the file name is specified alone or with a relative directory path,
the file is assumed to exist (in the case of control_file, data_file, or
param_file), or to be created (in the case of bad_file, discard_file, or
log_file) relative to the current working directory from which edbldr is invoked.

Note: The control file must exist in the character set encoding of the client where
edbldr is invoked. If the client is in a different encoding than the database encoding,
then the PGCLIENTENCODING environment variable must be set on the client to the

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

361

client‟s encoding prior to invoking edbldr. This must be done to ensure character set
conversion is properly done between the client and the database server.

The operating system account used to invoke edbldr must have read permission on the
directories and files specified by control_file, data_file, and param_file.

The operating system account enterprisedb must have write permission on the
directories where bad_file, discard_file, and log_file are to be written.

Note: It is suggested that the file names for control_file, data_file, bad_file,
discard_file, and log_file include extensions of .ctl, .dat, .bad, .dsc, and
.log, respectively. If the provided file name does not contain an extension, EDB*Loader
assumes the actual file name includes the appropriate aforementioned extension.

Parameters

dbname

Name of the database containing the tables to be loaded.

port

Port number on which the database server is accepting connections.

host

IP address of the host on which the database server is running.

USERID={ username/password | username/ | username | / }

EDB*Loader connects to the database with username. username must be a
superuser. password is the password for username.

If the USERID parameter is omitted, EDB*Loader prompts for username and
password. If USERID=username/ is specified, then EDB*Loader 1) uses the
password file specified by environment variable PGPASSFILE if PGPASSFILE is
set, or 2) uses the .pgpass password file (pgpass.conf on Windows systems)
if PGPASSFILE is not set. If USERID=username is specified, then EDB*Loader
prompts for password. If USERID=/ is specified, the connection is attempted
using the operating system account as the user name.

Note: The Postgres Plus Advanced Server connection environment variables
PGUSER and PGPASSWORD are ignored by EDB*Loader. See the PostgreSQL core
documentation for information on the PGPASSFILE environment variable and the
password file.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

362

CONTROL=control_file

control_file specifies the name of the control file containing EDB*Loader
directives. If a file extension is not specified, an extension of .ctl is assumed.
See Section 6.1.3 for a description of the control file.

DATA=data_file

data_file specifies the name of the file containing the data to be loaded into the
target table. If a file extension is not specified, an extension of .dat is assumed.
See Section 6.1.3 for a description of the data_file.

Note: Specifying a data_file on the command line overrides the INFILE
clause specified in the control file.

BAD=bad_file

bad_file specifies the name of a file that receives input data records that cannot
be loaded due to errors. See Section 6.1.3 for a description of the bad_file.

Note: Specifying a bad_file on the command line overrides any BADFILE
clause specified in the control file.

DISCARD=discard_file

discard_file is the name of the file that receives input data records that do not
meet any table‟s selection criteria. See the description of discard_file in
Section 6.1.3.

Note: Specifying a discard_file using the command line DISCARD parameter
overrides the DISCARDFILE clause in the control file.

DISCARDMAX=max_discard_recs

max_discard_recs is the maximum number of discarded records that may be
encountered from the input data records before terminating the EDB*Loader
session. See the description of max_discard_recs in Section 6.1.3.

Note: Specifying max_discard_recs using the command line DISCARDMAX
parameter overrides the DISCARDMAX or DISCARDS clause in the control file.

LOG=log_file

log_file specifies the name of the file in which EDB*Loader records the
results of the EDB*Loader session.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

363

If the LOG parameter is omitted, EDB*Loader creates a log file with the name
control_file_base.log in the directory from which edbldr is invoked.
control_file_base is the base name of the control file used in the
EDB*Loader session. The operating system account enterprisedb must have
write permission on the directory where the log file is to be written.

PARFILE=param_file

param_file specifies the name of the file that contains command line
parameters for the EDB*Loader session. Any command line parameter listed in
this section except for the -d, -p, and -h options, and the PARFILE parameter
itself, can be specified in param_file instead of on the command line.

Any parameter given in param_file overrides the same parameter supplied on
the command line before the PARFILE option. Any parameter given on the
command line that appears after the PARFILE option overrides the same
parameter given in param_file.

Note: Unlike other EDB*Loader files, there is no default file name or extension
assumed for param_file, though by Oracle SQL*Loader convention, .par is
typically used, but not required, as an extension.

DIRECT= { FALSE | TRUE }

If DIRECT is set to TRUE EDB*Loader performs a direct path load instead of a
conventional path load. The default value of DIRECT is FALSE.

See Section 6.1.5 for information on direct path loads.

FREEZE= { FALSE | TRUE }

Set FREEZE to TRUE to indicate that the data should be copied with the rows
frozen. A tuple guaranteed to be visible to all current and future transactions is
marked as frozen to prevent transaction ID wrap-around. For more information
about frozen tuples, see the PostgreSQL core documentation at:

http://www.enterprisedb.com/docs/en/9.4/pg/routine-vacuuming.html

You must specify a data-loading type of TRUNCATE in the control file when using
the FREEZE option. FREEZE is not supported for direct loading.

By default, FREEZE is FALSE.

ERRORS=error_count

http://www.enterprisedb.com/docs/en/9.4/pg/routine-vacuuming.html

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

364

error_count specifies the number of errors permitted before aborting the
EDB*Loader session. The default is 50.

PARALLEL= { FALSE | TRUE }

Set PARALLEL to TRUE to indicate that this EDB*Loader session is one of a
number of concurrent EDB*Loader sessions participating in a parallel direct path
load. The default value of PARALLEL is FALSE.

When PARALLEL is TRUE, the DIRECT parameter must also be set to TRUE . See
Section 6.1.6 for more information about parallel direct path loads.

ROWS=n

n specifies the number of rows that EDB*Loader will commit before loading the
next set of n rows.

SKIP=skip_count

Number of records at the beginning of the input data file that should be skipped
before loading begins. The default is 0.

SKIP_INDEX_MAINTENANCE= { FALSE | TRUE }

If set to TRUE, index maintenance is not performed as part of a direct path load,
and indexes on the loaded table are marked as invalid. The default value of
SKIP_INDEX_MAINTENANCE is FALSE.

Please note: During a parallel direct path load, target table indexes are not
updated, and are marked as invalid after the load is complete.

You can use the REINDEX command to rebuild an index. For more information
about the REINDEX command, see the PostgreSQL core documentation, available
at:

http://www.enterprisedb.com/docs/en/9.4/pg/sql-reindex.html

edb_resource_group=group_name

group_name specifies the name of an EDB Resource Manager resource group to
which the EDB*Loader session is to be assigned.

Any default resource group that may have been assigned to the session (for
example, a database user running the EDB*Loader session who had been assigned
a default resource group with the ALTER ROLE ... SET

http://www.enterprisedb.com/docs/en/9.4/pg/sql-reindex.html

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

365

edb_resource_group command) is overridden by the resource group given by
the edb_resource_group parameter specified on the edbldr command line.

For information about the EDB Resource Manager, see Chapter 5, “EDB
Resource Manager” in the Postgres Plus Enterprise Edition Guide, available at:

http://www.enterprisedb.com/docs/en/9.4/eeguide/Table%2520of%2520Contents.htm

Examples

In the following example EDB*Loader is invoked using a control file named emp.ctl
located in the current working directory to load a table in database edb:

$ /opt/PostgresPlus/9.4AS/bin/edbldr -d edb USERID=enterprisedb/password
CONTROL=emp.ctl
EDB*Loader: Copyright (c) 2007-2014, EnterpriseDB Corporation.

Successfully loaded (4) records

In the following example, EDB*Loader prompts for the user name and password since
they are omitted from the command line. In addition, the files for the bad file and log file
are specified with the BAD and LOG command line parameters.

$ /opt/PostgresPlus/9.4AS/bin/edbldr -d edb CONTROL=emp.ctl BAD=/tmp/emp.bad
LOG=/tmp/emp.log
Enter the user name : enterprisedb
Enter the password :
EDB*Loader: Copyright (c) 2007-2014, EnterpriseDB Corporation.

Successfully loaded (4) records

The following example runs EDB*Loader with the same parameters as shown in the
preceding example, but using a parameter file located in the current working directory.
The SKIP and ERRORS parameters are altered from their defaults in the parameter file as
well.

The parameter file, emp.par, contains the following:

CONTROL=emp.ctl
BAD=/tmp/emp.bad
LOG=/tmp/emp.log
SKIP=1
ERRORS=10

EDB*Loader is invoked with the parameter file as shown by the following:

$ /opt/PostgresPlus/9.4AS/bin/edbldr -d edb PARFILE=emp.par
Enter the user name : enterprisedb
Enter the password :

http://www.enterprisedb.com/docs/en/9.4/eeguide/Table%2520of%2520Contents.htm
http://www.enterprisedb.com/docs/en/9.4/eeguide/Table%2520of%2520Contents.htm

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

366

EDB*Loader: Copyright (c) 2007-2014, EnterpriseDB Corporation.

Successfully loaded (3) records

6.1.4.1 Exit Codes

When EDB*Loader exits, it will return one of the following codes:

Exit Code Description
0 Indicates that all rows loaded successfully.
1 Indicates that EDB*Loader encountered command line or

syntax errors, or aborted the load operation due to an
unrecoverable error.

2 Indicates that the load completed, but some (or all) rows were
rejected or discarded.

3 Indicates that EDB*Loader encountered fatal errors (such as OS
errors). This class of errors is equivalent to the FATAL or PANIC
severity levels of PostgreSQL errors.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

367

6.1.5 Direct Path Load

During a direct path load, EDB*Loader writes the data directly to the database pages,
which is then synchronized to disk. The insert processing associated with a conventional
path load is bypassed, thereby resulting in a performance improvement.

Bypassing insert processing reduces the types of constraints that may exist on the target
table. The following types of constraints are permitted on the target table of a direct path
load:

x Primary key
x Not null constraints
x Indexes (unique or non-unique)

The restrictions on the target table of a direct path load are the following:

x Triggers are not permitted
x Check constraints are not permitted
x Foreign key constraints on the target table referencing another table are not

permitted
x Foreign key constraints on other tables referencing the target table are not

permitted
x The table must not be partitioned
x Rules may exist on the target table, but they are not executed

Note: Currently, a direct path load in EDB*Loader is more restrictive than in Oracle
SQL*Loader. The preceding restrictions do not apply to Oracle SQL*Loader in most
cases. The following restrictions apply to a control file used in a direct path load:

x Multiple table loads are not supported. That is, only one INTO TABLE clause may
be specified in the control file.

x SQL expressions may not be used in the data field definitions of the INTO TABLE
clause.

x The FREEZE option is not supported for direct path loading.

To run a direct path load, add the DIRECT=TRUE option as shown by the following
example:

$ /opt/PostgresPlus/9.4AS/bin/edbldr -d edb USERID=enterprisedb/password
CONTROL=emp.ctl DIRECT=TRUE
EDB*Loader: Copyright (c) 2007-2014, EnterpriseDB Corporation.

Successfully loaded (4) records

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

368

6.1.6 Parallel Direct Path Load

The performance of a direct path load can be further improved by distributing the loading
process over two or more sessions running concurrently. Each session runs a direct path
load into the same table.

Since the same table is loaded from multiple sessions, the input records to be loaded into
the table must be divided amongst several data files so that each EDB*Loader session
uses its own data file and the same record is not loaded more than once into the table.

The target table of a parallel direct path load is under the same restrictions as a direct path
load run in a single session.

The restrictions on the target table of a direct path load are the following:

x Triggers are not permitted
x Check constraints are not permitted
x Foreign key constraints on the target table referencing another table are not

permitted
x Foreign key constraints on other tables referencing the target table are not

permitted
x The table must not be partitioned
x Rules may exist on the target table, but they are not executed

In addition, the APPEND clause must be specified in the control file used by each
EDB*Loader session.

To run a parallel direct path load, run EDB*Loader in a separate session for each
participant of the parallel direct path load. Invocation of each such EDB*Loader session
must include the DIRECT=TRUE and PARALLEL=TRUE parameters.

Each EDB*Loader session runs as an independent transaction so if one of the parallel
sessions aborts and rolls back its changes, the loading done by the other parallel sessions
are not affected.

Note: In a parallel direct path load, each EDB*Loader session reserves a fixed number of
blocks in the target table in a round-robin fashion. Some of the blocks in the last allocated
chunk may not be used, and those blocks remain uninitialized. A subsequent use of the
VACUUM command on the target table may show warnings regarding these uninitialized
blocks such as the following:

WARNING: relation "emp" page 98264 is uninitialized --- fixing

WARNING: relation "emp" page 98265 is uninitialized --- fixing

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

369

WARNING: relation "emp" page 98266 is uninitialized --- fixing

This is an expected behavior and does not indicate data corruption.

Indexes on the target table are not updated during a parallel direct path load and are
therefore marked as invalid after the load is complete. You must use the REINDEX
command to rebuild the indexes.

The following example shows the use of a parallel direct path load on the emp table.

Note: If you attempt a parallel direct path load on the sample emp table provided with
Postgres Plus Advanced Server, you must first remove the triggers and constraints
referencing the emp table. In addition the primary key column, empno, was expanded
from NUMBER(4) to NUMBER in this example to allow for the insertion of a larger number
of rows.

The following is the control file used in the first session:

LOAD DATA
 INFILE '/home/user/loader/emp_parallel_1.dat'
 APPEND
 INTO TABLE emp
 FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
 TRAILING NULLCOLS
 (
 empno,
 ename,
 job,
 mgr,
 hiredate,
 sal,
 deptno,
 comm
)

The APPEND clause must be specified in the control file for a parallel direct path load.

The following shows the invocation of EDB*Loader in the first session. The
DIRECT=TRUE and PARALLEL=TRUE parameters must be specified.

$ /opt/PostgresPlus/9.4AS/bin/edbldr -d edb USERID=enterprisedb/password
CONTROL=emp_parallel_1.ctl DIRECT=TRUE PARALLEL=TRUE
WARNING: index maintenance will be skipped with PARALLEL load
EDB*Loader: Copyright (c) 2007-2014, EnterpriseDB Corporation.

The control file used for the second session appears as follows. Note that it is the same as
the one used in the first session, but uses a different data file.

LOAD DATA
 INFILE '/home/user/loader/emp_parallel_2.dat'
 APPEND

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

370

 INTO TABLE emp
 FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
 TRAILING NULLCOLS
 (
 empno,
 ename,
 job,
 mgr,
 hiredate,
 sal,
 deptno,
 comm
)

The preceding control file is used in a second session as shown by the following:

$ /opt/PostgresPlus/9.4AS/bin/edbldr -d edb USERID=enterprisedb/password
CONTROL=emp_parallel_2.ctl DIRECT=TRUE PARALLEL=TRUE
WARNING: index maintenance will be skipped with PARALLEL load
EDB*Loader: Copyright (c) 2007-2014, EnterpriseDB Corporation.

EDB*Loader displays the following message in each session when its respective load
operation completes:

Successfully loaded (10000) records

The following query shows that the index on the emp table has been marked as INVALID:

SELECT index_name, status FROM user_indexes WHERE table_name = 'EMP';

 index_name | status
------------+---------
 EMP_PK | INVALID
(1 row)

Note: user_indexes is the Oracle compatible view of indexes owned by the current
user.

Queries on the emp table will not utilize the index unless it is rebuilt using the REINDEX
command as shown by the following:

REINDEX INDEX emp_pk;

A subsequent query on user_indexes shows that the index is now marked as VALID:

SELECT index_name, status FROM user_indexes WHERE table_name = 'EMP';

 index_name | status
------------+--------
 EMP_PK | VALID
(1 row)

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

371

6.1.7 Remote Loading

EDB*Loader supports a feature called remote loading. In remote loading, the database
containing the table to be loaded is running on a database server on a different host than
from where EDB*Loader is invoked with the input data source.

This feature is useful if you have a large amount of data to be loaded, and you do not
want to create a large data file on the host running the database server.

In addition, you can use the standard input feature to pipe the data from the data source
such as another program or script, directly to EDB*Loader, which then loads the table in
the remote database. This bypasses the process of having to create a data file on disk for
EDB*Loader.

Performing remote loading along with using standard input requires the following:

x The edbldr program must be installed on the client host on which it is to be
invoked with the data source for the EDB*Loader session.

x The control file must contain the clause INFILE 'stdin' so you can pipe the
data directly into EDB*Loader‟s standard input. See Section 6.1.3 for information
on the INFILE clause and the EDB*Loader control file.

x All files used by EDB*Loader such as the control file, bad file, discard file, and
log file must reside on, or are created on, the client host on which edbldr is
invoked.

x When invoking EDB*Loader, use the -h option to specify the IP address of the
remote database server. See Section 6.1.4 for information on invoking
EDB*Loader.

x Use the operating system pipe operator (|) or input redirection operator (<) to
supply the input data to EDB*Loader.

The following example loads a database running on a database server at 192.168.1.14
using data piped from a source named datasource.

datasource | ./edbldr -d edb -h 192.168.1.14 USERID=enterprisedb/password
CONTROL=remote.ctl

The following is another example of how standard input can be used:

./edbldr -d edb -h 192.168.1.14 USERID=enterprisedb/password
CONTROL=remote.ctl < datasource

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

372

6.1.8 Updating a Table with a Conventional Path Load

You can use EDB*Loader with a conventional path load to update the rows within a
table, merging new data with the existing data. When you invoke EDB*Loader to
perform an update, the server searches the table for an existing row with a matching
primary key:

x If the server locates a row with a matching key, it replaces the existing row with
the new row.

x If the server does not locate a row with a matching key, it adds the new row to the
table.

To use EDB*Loader to update a table, the table must have a primary key. Please note
that you cannot use EDB*Loader to UPDATE a partitioned table.

To perform an UPDATE, use the same steps as when performing a conventional path load:

1. Create a data file that contains the rows you wish to UPDATE or INSERT.

2. Define a control file that uses the INFILE keyword to specify the name of the
data file. For information about building the EDB*Loader control file, see
Section 6.1.3.

3. Invoke EDB*Loader, specifying the database name, connection information, and
the name of the control file. For information about invoking EDB*Loader, see
Section 6.1.4.

The following example uses the emp table that is distributed with the Advanced Server
sample data. By default, the table contains:

edb=# select * from emp;
empno|ename | job | mgr | hiredate | sal | comm | deptno
-----+------+---------+------+--------------------+---------+-------+--------
7369 |SMITH |CLERK | 7902 | 17-DEC-80 00:00:00 | 800.00 | | 20
7499 |ALLEN |SALESMAN | 7698 | 20-FEB-81 00:00:00 | 1600.00 |300.00 | 30
7521 |WARD |SALESMAN | 7698 | 22-FEB-81 00:00:00 | 1250.00 |500.00 | 30
7566 |JONES |MANAGER | 7839 | 02-APR-81 00:00:00 | 2975.00 | | 20
7654 |MARTIN|SALESMAN | 7698 | 28-SEP-81 00:00:00 | 1250.00 |1400.00| 30
7698 |BLAKE |MANAGER | 7839 | 01-MAY-81 00:00:00 | 2850.00 | | 30
7782 |CLARK |MANAGER | 7839 | 09-JUN-81 00:00:00 | 2450.00 | | 10
7788 |SCOTT |ANALYST | 7566 | 19-APR-87 00:00:00 | 3000.00 | | 20
7839 |KING |PRESIDENT| | 17-NOV-81 00:00:00 | 5000.00 | | 10
7844 |TURNER|SALESMAN | 7698 | 08-SEP-81 00:00:00 | 1500.00 | 0.00 | 30
7876 |ADAMS |CLERK | 7788 | 23-MAY-87 00:00:00 | 1100.00 | | 20
7900 |JAMES |CLERK | 7698 | 03-DEC-81 00:00:00 | 950.00 | | 30
7902 |FORD |ANALYST | 7566 | 03-DEC-81 00:00:00 | 3000.00 | | 20
7934 |MILLER|CLERK | 7782 | 23-JAN-82 00:00:00 | 1300.00 | | 10

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

373

(14 rows)

The following control file (emp_update.ctl) specifies the fields in the table in a
comma-delimited list. The control file performs an UPDATE on the emp table:

LOAD DATA
 INFILE 'emp_update.dat'
 BADFILE 'emp_update.bad'
 DISCARDFILE 'emp_update.dsc'
UPDATE INTO TABLE emp
FIELDS TERMINATED BY ","
(empno, ename, job, mgr, hiredate, sal, comm, deptno)

The data that is being updated or inserted is saved in the emp_update.dat file.
emp_update.dat contains:

7521,WARD,MANAGER,7839,22-FEB-81 00:00:00,3000.00,0.00,30
7566,JONES,MANAGER,7839,02-APR-81 00:00:00,3500.00,0.00,20
7903,BAKER,SALESMAN,7521,10-JUN-13 00:00:00,1800.00,500.00,20
7904,MILLS,SALESMAN,7839,13-JUN-13 00:00:00,1800.00,500.00,20
7654,MARTIN,SALESMAN,7698,28-SEP-81 00:00:00,1500.00,400.00,30

Invoke EDB*Loader, specifying the name of the database (edb), the name of a database
superuser (and their associated password) and the name of the control file
(emp_update.ctl):

edbldr -d edb userid=user_name/password control=emp_update.ctl

After performing the update, the emp table contains:

edb=# select * from emp;
empno|ename | job | mgr | hiredate | sal | comm | deptno
-----+------+---------+------+--------------------+---------+-------+--------
7369 |SMITH |CLERK | 7902 | 17-DEC-80 00:00:00 | 800.00 | | 20
7499 |ALLEN |SALESMAN | 7698 | 20-FEB-81 00:00:00 | 1600.00 |300.00 | 30
7521 |WARD |MANAGER | 7839 | 22-FEB-81 00:00:00 | 3000.00 |0.00 | 30
7566 |JONES |MANAGER | 7839 | 02-APR-81 00:00:00 | 3500.00 |0.00 | 20
7654 |MARTIN|SALESMAN | 7698 | 28-SEP-81 00:00:00 | 1500.00 |400.00 | 30
7698 |BLAKE |MANAGER | 7839 | 01-MAY-81 00:00:00 | 2850.00 | | 30
7782 |CLARK |MANAGER | 7839 | 09-JUN-81 00:00:00 | 2450.00 | | 10
7788 |SCOTT |ANALYST | 7566 | 19-APR-87 00:00:00 | 3000.00 | | 20
7839 |KING |PRESIDENT| | 17-NOV-81 00:00:00 | 5000.00 | | 10
7844 |TURNER|SALESMAN | 7698 | 08-SEP-81 00:00:00 | 1500.00 | 0.00 | 30
7876 |ADAMS |CLERK | 7788 | 23-MAY-87 00:00:00 | 1100.00 | | 20
7900 |JAMES |CLERK | 7698 | 03-DEC-81 00:00:00 | 950.00 | | 30
7902 |FORD |ANALYST | 7566 | 03-DEC-81 00:00:00 | 3000.00 | | 20
7903 |BAKER |SALESMAN |7521 | 10-JUN-13 00:00:00 | 1800.00 |500.00 | 20
7904 |MILLS |SALESMAN |7839 |13-JUN-13 00:00:00 |1800.00 |500.00 | 20
7934 |MILLER|CLERK | 7782 | 23-JAN-82 00:00:00 | 1300.00 | | 10
(16 rows)

The rows containing information for the three employees that are currently in the emp
table are updated, while rows are added for the new employees (BAKER and MILLS).

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

374

6.1.9 Loading Empty Strings with EDB*Loader

Advanced Server includes a configuration parameter that controls how EDB*Loader
handles a CSV (comma-separated value) file containing empty strings. An empty string
within a CSV file may take the form of:

x an unquoted empty string. For example:

9001, , 40

x a single-quoted, comma-delimited value. For example:

9001, '', 40

x a double-quoted, comma-delimited value. For example:

9001, "", 40

You can use the edbldr.empty_csv_field parameter to specify how EDB*Loader
will treat an empty string. The valid values for the edbldr.empty_csv_field
parameter are:

Parameter Setting EDB*Loader Behavior
NULL An empty field is treated as NULL.
empty_string An empty field is treated as a string of length zero.
pgsql An empty field is treated as a NULL if it does not contain quotes and as an empty

string if it contains quotes.

You can set the edbldr.empty_csv_field parameter in any context (i.e. with a SET
statement, or in the postgresql.conf file). You can also use the PGOPTIONS
environment variable to set the value of edbldr.empty_csv_field for an
EDB*Loader session. For example, before invoking EDB*Loader, enter the command:

$ export PGOPTIONS="-c edbldr.empty_csv_field=empty_string"

Then, invoke EDB*Loader, specifying command line options as required.

For more information about setting parameter values, see the PostgreSQL core
documentation, available at:

http://www.enterprisedb.com/documentation/english

http://www.enterprisedb.com/documentation/english

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

375

6.2 EDB*Plus

EDB*Plus is a utility program that provides a command line user interface to the Postgres
Plus Advanced Server. EDB*Plus accepts SQL commands, SPL anonymous blocks, and
EDB*Plus commands. EDB*Plus provides various capabilities including:

x Querying certain database objects
x Executing stored procedures
x Formatting output from SQL commands
x Executing batch scripts
x Executing OS commands
x Recording output

The following section describes how to connect to a Postgres Plus Advanced Server
database using EDB*Plus. The final section provides a summary of the EDB*Plus
commands.

6.2.1 Starting EDB*Plus

To open an EDB*Plus command line, navigate through the Applications (or Start)
menu to the Postgres Plus Advanced Server menu, to the Run SQL Command Line
menu, and select the EDB*Plus option. You can also invoke EDB*Plus from the
operating system command line with the following command:

edbplus [-S[ILENT]] [login | /NOLOG] [@scriptfile[.ext]]

-SILENT

If specified, the EDB*Plus sign-on banner is suppressed along with all prompts.

login

Login information for connecting to the database server and database. login
takes the following format. (There must be no white space within the login
information.)

username[/password][@{connectstring | variable }]

Where:

username is a database username with which to connect to the database.

password is the password associated with the specified username. If a
password is not provided, but a password is required for authentication,
EDB*Plus will prompt for the password.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

376

connectstring is the database connection string.

variable is a variable defined in the login.sql file that contains a database
connection string. The login.sql file can be found in the edbplus
subdirectory of the Postgres Plus Advanced Server home directory.

host[:port][/dbname]]

host is the hostname on which the database server resides. If neither
@connectstring nor @variable nor /NOLOG is specified, the default host is
assumed to be the localhost. port is the port number receiving connections on the
database server. If not specified, the default is 5444. dbname is the name of the
database to connect to. If not specified the default is edb.

/NOLOG

Specify /NOLOG to start EDB*Plus without establishing a database connection.
SQL commands and EDB*Plus commands that require a database connection
cannot be used in this mode. The CONNECT command can be subsequently given
to connect to a database after starting EDB*Plus with the /NOLOG option.

scriptfile[.ext]

scriptfile is the name of a file residing in the current working directory,
containing SQL and/or EDB*Plus commands that will be automatically executed
after startup of EDB*Plus. ext is the filename extension. If the filename
extension is sql, then the .sql extension may be omitted when specifying
scriptfile. When creating a script file, always name the file with an extension,
otherwise it will not be accessible by EDB*Plus. (EDB*Plus will always assume
a .sql extension on filenames that are specified with no extension.)

The following example shows user enterprisedb with password, password,
connecting to database edb running on a database server on the localhost at port 5444.

C:\Program Files (x86)\PostgresPlus\9.4AS\edbplus>edbplus
enterprisedb/password
Connected to EnterpriseDB 9.4.0.0 (localhost:5444/edb) AS enterprisedb

EDB*Plus: Release 9.4
Copyright (c) 2008-2016, EnterpriseDB Corporation. All rights reserved.

SQL>

The following example shows user enterprisedb with password, password,
connecting to database edb running on a database server on the localhost at port 5445.

C:\Program Files (x86)\PostgresPlus\9.4AS\edbplus>edbplus
enterprisedb/password@localhost:5445/edb

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

377

Connected to EnterpriseDB 9.4.0.0 (localhost:5445/edb) AS enterprisedb

EDB*Plus: Release 9.4
Copyright (c) 2008-2016, EnterpriseDB Corporation. All rights reserved.

SQL>

Using variable hr_5445 in the login.sql file, the following illustrates how it is used
to connect to database hr on localhost at port 5445.

C:\Program Files (x86)\PostgresPlus\9.4AS\edbplus>edbplus
enterprisedb/password@hr_5445
Connected to EnterpriseDB 9.4.0.0 (localhost:5445/hr) AS enterprisedb

EDB*Plus: Release 9.4 (Build 28)
Copyright (c) 2008-2016, EnterpriseDB Corporation. All rights reserved.

SQL>

The following is the content of the login.sql file used in the previous example.

define edb="localhost:5445/edb"
define hr_5445="localhost:5445/hr"

The following example executes a script file, dept_query.sql after connecting to
database edb on server localhost at port 5444.

C:\Program Files (x86)\PostgresPlus\9.4AS\edbplus>edbplus
enterprisedb/password @dept_query
Connected to EnterpriseDB 9.4.0.0 (localhost:5444/edb) AS enterprisedb

SQL> SELECT * FROM dept;

DEPTNO DNAME LOC
------ -------------- -------------
 10 ACCOUNTING NEW YORK
 20 RESEARCH DALLAS
 30 SALES CHICAGO
 40 OPERATIONS BOSTON

SQL> EXIT
Disconnected from EnterpriseDB Database.

The following is the content of file dept_query.sql used in the previous example.

SET PAGESIZE 9999
SET ECHO ON
SELECT * FROM dept;
EXIT

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

378

6.2.2 Command Summary

This section contains a summary of EDB*Plus commands.

6.2.2.1 ACCEPT

The ACCEPT command displays a prompt and waits for the user‟s keyboard input. The
value input by the user is placed in the specified variable.

ACC[EPT] variable

The following example creates a new variable named my_name, accepts a value of John
Smith, then displays the value using the DEFINE command.

SQL> ACCEPT my_name
Enter value for my_name: John Smith
SQL> DEFINE my_name
DEFINE MY_NAME = "John Smith"

6.2.2.2 APPEND

APPEND is a line editor command that appends the given text to the end of the current line
in the SQL buffer.

A[PPEND] text

In the following example, a SELECT command is built-in the SQL buffer using the
APPEND command. Note that two spaces are placed between the APPEND command and
the WHERE clause in order to separate dept and WHERE by one space in the SQL buffer.

SQL> APPEND SELECT * FROM dept
SQL> LIST
 1* SELECT * FROM dept
SQL> APPEND WHERE deptno = 10
SQL> LIST
 1* SELECT * FROM dept WHERE deptno = 10

6.2.2.3 CHANGE

CHANGE is a line editor command performs a search-and-replace on the current line in the
SQL buffer.

C[HANGE] /from/[to/]

If to/ is specified, the first occurrence of text from in the current line is changed to text
to. If to/ is omitted, the first occurrence of text from in the current line is deleted.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

379

The following sequence of commands makes line 3 the current line, then changes the
department number in the WHERE clause from 20 to 30.

SQL> LIST
 1 SELECT empno, ename, job, sal, comm
 2 FROM emp
 3 WHERE deptno = 20
 4* ORDER BY empno
SQL> 3
 3* WHERE deptno = 20
SQL> CHANGE /20/30/
 3* WHERE deptno = 30
SQL> LIST
 1 SELECT empno, ename, job, sal, comm
 2 FROM emp
 3 WHERE deptno = 30
 4* ORDER BY empno

6.2.2.4 CLEAR

The CLEAR command removes the contents of the SQL buffer, deletes all column
definitions set with the COLUMN command, or clears the screen.

CL[EAR] [BUFF[ER] | SQL | COL[UMNS] | SCR[EEN]]

BUFFER | SQL

Clears the SQL buffer.

COLUMNS

Removes column definitions.

SCREEN

Clears the screen. This is the default if no options are specified.

6.2.2.5 COLUMN

The COLUMN command controls output formatting. The formatting attributes set by using
the COLUMN command remain in effect only for the duration of the current session.

COL[UMN]
 [column
 { CLE[AR] |
 { FOR[MAT] spec |
 HEA[DING] text |
 { OFF | ON }
 } [...]
 }

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

380

]

If the COLUMN command is specified with no subsequent options, formatting options for
current columns in effect for the session are displayed.

If the COLUMN command is followed by a column name, then the column name may be
followed by one of the following:

x No other options
x CLEAR
x Any combination of FORMAT, HEADING, and one of OFF or ON

column

Name of a column in a table to which subsequent column formatting options are
to apply. If no other options follow column, then the current column formatting
options if any, of column are displayed.

CLEAR

The CLEAR option reverts all formatting options back to their defaults for
column. If the CLEAR option is specified, it must be the only option specified.

spec

Format specification to be applied to column. For character columns, spec takes
the following format:

n

n is a positive integer that specifies the column width in characters within which
to display the data. Data in excess of n will wrap around with the specified
column width.

For numeric columns, spec is comprised of the following elements.

Table 10-6-1 Numeric Column Format Elements

Element Description
$ Display a leading dollar sign.
, Display a comma in the indicated position.
. Marks the location of the decimal point.
0 Display leading zeros.
9 Number of significant digits to display.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

381

If loss of significant digits occurs due to overflow of the format, then all #‟s are
displayed.

text

Text to be used for the column heading of column.

OFF | ON

If OFF is specified, formatting options are reverted back to their defaults, but are
still available within the session. If ON is specified, the formatting options
specified by previous COLUMN commands for column within the session are re-
activated.

The following example shows the effect of changing the display width of the job
column.

SQL> SET PAGESIZE 9999
SQL> COLUMN job FORMAT A5
SQL> COLUMN job
COLUMN JOB ON
FORMAT A5
wrapped
SQL> SELECT empno, ename, job FROM emp;

EMPNO ENAME JOB
----- ---------- -----
 7369 SMITH CLERK
 7499 ALLEN SALES
 MAN

 7521 WARD SALES
 MAN

 7566 JONES MANAG
 ER

 7654 MARTIN SALES
 MAN

 7698 BLAKE MANAG
 ER

 7782 CLARK MANAG
 ER

 7788 SCOTT ANALY
 ST

 7839 KING PRESI
 DENT

 7844 TURNER SALES
 MAN

 7876 ADAMS CLERK

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

382

 7900 JAMES CLERK
 7902 FORD ANALY
 ST

 7934 MILLER CLERK

14 rows retrieved.

The following example applies a format to the sal column.

SQL> COLUMN sal FORMAT $99,999.00
SQL> COLUMN
COLUMN JOB ON
FORMAT A5
wrapped

COLUMN SAL ON
FORMAT $99,999.00
wrapped
SQL> SELECT empno, ename, job, sal FROM emp;

EMPNO ENAME JOB SAL
----- ---------- ----- -----------
 7369 SMITH CLERK $800.00
 7499 ALLEN SALES $1,600.00
 MAN

 7521 WARD SALES $1,250.00
 MAN

 7566 JONES MANAG $2,975.00
 ER

 7654 MARTIN SALES $1,250.00
 MAN

 7698 BLAKE MANAG $2,850.00
 ER

 7782 CLARK MANAG $2,450.00
 ER

 7788 SCOTT ANALY $3,000.00
 ST

 7839 KING PRESI $5,000.00
 DENT

 7844 TURNER SALES $1,500.00
 MAN

 7876 ADAMS CLERK $1,100.00
 7900 JAMES CLERK $950.00
 7902 FORD ANALY $3,000.00
 ST

 7934 MILLER CLERK $1,300.00

14 rows retrieved.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

383

6.2.2.6 CONNECT

Change the database connection to a different user and/or connect to a different database.
There must be no white space between any of the parameters following the CONNECT
command.

CON[NECT] username[/password][@{connectstring | variable }]

Where:

username is a database username with which to connect to the database.

password is the password associated with the specified username. If a
password is not provided, but a password is required for authentication,
EDB*Plus will prompt for the password.

connectstring is the database connection string.

variable is a variable defined in the login.sql file that contains a database
connection string. The login.sql file can be found in the edbplus
subdirectory of the Postgres Plus Advanced Server home directory.

In the following example, the database connection is changed to database edb on the
localhost at port 5445 with username, smith.

SQL> CONNECT smith/mypassword@localhost:5445/edb
Disconnected from EnterpriseDB Database.
Connected to EnterpriseDB 9.4.0.0 (localhost:5445/edb) AS smith

From within the session shown above, the connection is changed to username
enterprisedb. Also note that the host defaults to the localhost, the port defaults to
5444 (which is not the same as the port previously used), and the database defaults to
edb.

SQL> CONNECT enterprisedb/password
Disconnected from EnterpriseDB Database.
Connected to EnterpriseDB 9.4.0.0 (localhost:5444/edb) AS enterprisedb

6.2.2.7 DEFINE

The DEFINE command creates or replaces the value of a user variable (also called a
substitution variable).

DEF[INE] [variable [= text]]

If the DEFINE command is given without any parameters, all current variables and their
values are displayed.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

384

If DEFINE variable is given, only variable is displayed with its value.

DEFINE variable = text assigns text to variable. text may be optionally
enclosed within single or double quotation marks. Quotation marks must be used if text
contains space characters.

The following example defines two variables, dept and name.

SQL> DEFINE dept = 20
SQL> DEFINE name = 'John Smith'
SQL> DEFINE
DEFINE EDB = "localhost:5445/edb"
DEFINE DEPT = "20"
DEFINE NAME = "John Smith"

Note: The variable EDB is read from the login.sql file located in the edbplus
subdirectory of the Postgres Plus Advanced Server home directory.

6.2.2.8 DEL

DEL is a line editor command that deletes one or more lines from the SQL buffer.

DEL [n | n m | n * | n L[AST] | * | * n | * L[AST] |
 L[AST]]

The parameters specify which lines are to be deleted from the SQL buffer. Two
parameters specify the start and end of a range of lines to be deleted. If the DEL command
is given with no parameters, the current line is deleted.

n

n is an integer representing the nth line

n m

n and m are integers where m is greater than n representing the nth through the mth
lines

*

Current line

LAST

Last line

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

385

In the following example, the fifth and sixth lines containing columns sal and comm,
respectively, are deleted from the SELECT command in the SQL buffer.

SQL> LIST
 1 SELECT
 2 empno
 3 ,ename
 4 ,job
 5 ,sal
 6 ,comm
 7 ,deptno
 8* FROM emp
SQL> DEL 5 6
SQL> LIST
 1 SELECT
 2 empno
 3 ,ename
 4 ,job
 5 ,deptno
 6* FROM emp

6.2.2.9 DESCRIBE

The DESCRIBE command displays:

x A list of columns, column data types, and column lengths for a table or view
x A list of parameters for a procedure or function
x A list of procedures and functions and their respective parameters for a package.

The DESCRIBE command will also display the structure of the database object referred to
by a synonym. The syntax is:

DESC[RIBE] [schema.]object

schema

Name of the schema containing the object to be described.

object

Name of the table, view, procedure, function, or package to be displayed, or the
synonym of an object.

6.2.2.10 DISCONNECT

The DISCONNECT command closes the current database connection, but does not
terminate EDB*Plus.

DISC[ONNECT]

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

386

6.2.2.11 EDIT

The EDIT command invokes an external editor to edit the contents of an operating system
file or the SQL buffer.

ED[IT] [filename[.ext]]

filename[.ext]

filename is the name of the file to open with an external editor. ext is the
filename extension. If the filename extension is sql, then the .sql extension
may be omitted when specifying filename. EDIT always assumes a .sql
extension on filenames that are specified with no extension. If the filename
parameter is omitted from the EDIT command, the contents of the SQL buffer are
brought into the editor.

6.2.2.12 EXECUTE

The EXECUTE command executes an SPL procedure from EDB*Plus.

EXEC[UTE] spl_procedure [([parameters])]

spl_procedure

The name of the SPL procedure to be executed.

parameters

Comma-delimited list of parameters. If there are no parameters, then a pair of
empty parentheses may optionally be specified.

6.2.2.13 EXIT

The EXIT command terminates the EDB*Plus session and returns control to the
operating system. QUIT is a synonym for EXIT. Specifying no parameters is equivalent to
EXIT SUCCESS COMMIT.

{ EXIT | QUIT }
 [SUCCESS | FAILURE | WARNING | value |variable]
 [COMMIT | ROLLBACK]SUCCESS | FAILURE |WARNING

Returns an operating system dependent return code indicating successful operation,
failure, or warning for SUCCESS, FAILURE, and WARNING, respectively. The default is
SUCCESS.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

387

value

An integer value that is returned as the return code.

variable

A variable created with the DEFINE command whose value is returned as the
return code.

COMMIT | ROLLBACK

If COMMIT is specified, uncommitted updates are committed upon exit. If
ROLLBACK is specified, uncommitted updates are rolled back upon exit. The
default is COMMIT.

6.2.2.14 GET

The GET command loads the contents of the given file to the SQL buffer.

GET filename[.ext] [LIS[T] | NOL[IST]]

filename[.ext]

filename is the name of the file to load into the SQL buffer. ext is the filename
extension. If the filename extension is sql, then the .sql extension may be
omitted when specifying filename. GET always assumes a .sql extension on
filenames that are specified with no extension.

LIST | NOLIST

If LIST is specified, the content of the SQL buffer is displayed after the file is
loaded. If NOLIST is specified, no listing is displayed. The default is LIST.

6.2.2.15 HELP

The HELP command obtains an index of topics or help on a specific topic. The question
mark (?) is synonymous with specifying HELP.

{ HELP | ? } { INDEX | topic }

INDEX

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

388

Displays an index of available topics.

topic

The name of a specific topic – e.g., an EDB*Plus command, for which help is
desired.

6.2.2.16 HOST

The HOST command executes an operating system command from EDB*Plus.

HO[ST] [os_command]

os_command

The operating system command to be executed. If you do not provide an
operating system command, EDB*Plus pauses execution and opens a new shell
prompt. When the shell exits, EDB*Plus resumes execution.

6.2.2.17 INPUT

The INPUT line editor command adds a line of text to the SQL buffer after the current
line.

I[NPUT] text

The following sequence of INPUT commands constructs a SELECT command.

SQL> INPUT SELECT empno, ename, job, sal, comm
SQL> INPUT FROM emp
SQL> INPUT WHERE deptno = 20
SQL> INPUT ORDER BY empno
SQL> LIST
 1 SELECT empno, ename, job, sal, comm
 2 FROM emp
 3 WHERE deptno = 20
 4* ORDER BY empno

6.2.2.18 LIST

LIST is a line editor command that displays the contents of the SQL buffer.

L[IST] [n | n m | n * | n L[AST] | * | * n | * L[AST] |
 L[AST]]

The buffer does not include a history of the EDB*Plus commands.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

389

n

n represents the buffer line number.

n m

n m displays a list of lines between n and m.

n *

n * displays a list of lines that range between line n and the current line.

n L[AST]

n L[AST] displays a list of lines that range from line n through the last line in
the buffer.

*

* displays the current line.

* n

* n displays a list of lines that range from the current line through line n.

* L[AST]

* L[AST] displays a list of lines that range from the current line through the last
line.

L[AST]

L[AST] displays the last line.

6.2.2.19 PASSWORD

Use the PASSWORD command to change your database password.

PASSW[ORD] [user_name]

You must have sufficient privileges to use the PASSWORD command to change another
user's password. The following example demonstrates using the PASSWORD command to
change the password for a user named acctg:

SQL> PASSWORD acctg
Changing password for acctg
 New password:

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

390

 New password again:
Password successfully changed.

6.2.2.20 PAUSE

The PAUSE command displays a message, and waits for the user to press ENTER.

PAU[SE] [optional_text]

optional_text specifies the text that will be displayed to the user. If the
optional_text is omitted, Advanced Server will display two blank lines. If you
double quote the optional_text string, the quotes will be included in the output.

6.2.2.21 PRINT

The PRINT command displays the value of a bind variable.

PRI[NT] [bind_variable_name]

bind_variable_name specifies the name of a bind variable. Omit
bind_variable_name to generate a list that includes the values of all bind variables.

6.2.2.22 PROMPT

The PROMPT command displays a message to the user before continuing.

PRO[MPT] [message_text]

message_text specifies the text displayed to the user. Double quote the string to
include quotes in the output.

6.2.2.23 QUIT

The QUIT command terminates the session and returns control to the operating system.
QUIT is a synonym for EXIT.

QUIT
 [SUCCESS | FAILURE | WARNING | value | sub_variable]
 [COMMIT | ROLLBACK]

The default value is QUIT SUCCESS COMMIT.

6.2.2.24 REMARK

Use REMARK to include comments in a script.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

391

REM[ARK] [optional_text]

You may also use the following convention to include a comment:

/*
 * This is an example of a three line comment.
 */

6.2.2.25 SAVE

Use the SAVE command to write the SQL Buffer to an operating system file.

SAV[E] file_name
 [CRE[ATE] | REP[LACE] | APP[END]]

file_name

file_name specifies the name of the file (including the path) where the buffer
contents are written. If you do not provide a file extension, .sql is appended to
the end of the file name.

CREATE

Include the CREATE keyword to create a new file. A new file is created only if a
file with the specified name does not already exist. This is the default.

REPLACE

Include the REPLACE keyword to specify that Advanced Server should overwrite
an existing file.

APPEND

Include the APPEND keyword to specify that Advanced Server should append the
contents of the SQL buffer to the end of the specified file.

The following example saves the contents of the SQL buffer to a file named
example.sql, located in the temp directory:

SQL> SAVE C:\example.sql CREATE
File "example.sql" written.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

392

6.2.2.26 SET

Use the SET command to specify a value for a session level variable that controls
EDB*Plus behavior. The following forms of the SET command are valid:

SET AUTOCOMMIT

Use the SET AUTOCOMMIT command to specify COMMIT behavior for Advanced Server
transactions.

SET AUTO[COMMIT]
 {ON | OFF | IMMEDIATE | statement_count}

Please note that EDB*Plus always automatically commits DDL statements.

ON

Specify ON to turn AUTOCOMMIT behavior on.

OFF

Specify OFF to turn AUTOCOMMIT behavior off.

IMMEDIATE

IMMEDIATE has the same effect as ON.

statement_count

Include a value for statement_count to instruct EDB*Plus to issue a commit
after the specified count of successful SQL statements.

SET COLUMN SEPARATOR

Use the SET COLUMN SEPARATOR command to specify the text that Advanced Server
displays between columns.

SET COLSEP column_separator

The default value of column_separator is a single space.

SET ECHO

Use the SET ECHO command to specify if SQL and EDB*Plus script statements should be
displayed onscreen as they are executed.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

393

SET ECHO {ON | OFF}

The default value is OFF.

SET FEEDBACK

The SET FEEDBACK command controls the display of interactive information after a SQL
statement executes.

SET FEED[BACK] {ON | OFF | row_threshold}

row_threshold

Specify an integer value for row_threshold. Setting row_threshold to 0 is
same as setting FEEDBACK to OFF. Setting row_threshold equal 1 effectively
sets FEEDBACK to ON.

SET FLUSH

Use the SET FLUSH command to control display buffering.

SET FLU[SH] {ON | OFF}

Set FLUSH to OFF to enable display buffering. If you enable buffering, messages bound
for the screen may not appear until the script completes. Please note that setting FLUSH to
OFF will offer better performance.

Set FLUSH to ON to disable display buffering. If you disable buffering, messages bound
for the screen appear immediately.

SET HEADING

Use the SET HEADING variable to specify if Advanced Server should display column
headings for SELECT statements.

SET HEA[DING] {ON | OFF}

SET HEAD SEPARATOR

The SET HEADSEP command sets the new heading separator character used by the
COLUMN HEADING command. The default is '|'.

SET HEADS[EP]

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

394

SET LINESIZE

Use the SET LINESIZE command to specify the width of a line in characters.

SET LIN[ESIZE] width_of_line

width_of_line

The default value of width_of_line is 132.

SET NEWPAGE

Use the SET NEWPAGE command to specify how many blank lines are printed after a page
break.

SET NEWP[AGE] lines_per_page

lines_per_page

The default value of lines_per_page is 1.

SET NULL

Use the SET NULL command to specify a string that is displayed to the user when a NULL
column value is displayed in the output buffer.

SET NULL null_string

SET PAGESIZE

Use the SET PAGESIZE command to specify the number of printed lines that fit on a
page.

SET PAGES[IZE] line_count

Use the line_count parameter to specify the number of lines per page.

SET SQLCASE

The SET SQLCASE command specifies if SQL statements transmitted to the server should
be converted to upper or lower case.

SET SQLC[ASE] {MIX[ED] | UP[PER] | LO[WER]}

UPPER

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

395

Specify UPPER to convert the command text to uppercase.

LOWER

Specify LOWER to convert the command text to lowercase.

MIXED

Specify MIXED to leave the case of SQL commands unchanged. The default is
MIXED.

SET PAUSE

The SET PAUSE command is most useful when included in a script; the command
displays a prompt and waits for the user to press Return.

SET PAU[SE] {ON | OFF}

If SET PAUSE is ON, the message Hit ENTER to continue… will be displayed before
each command is executed.

SET SPACE

Use the SET SPACE command to specify the number of spaces to display between
columns:

SET SPACE number_of_spaces

SET SQLPROMPT

Use SET SQLPROMPT to set a value for a user-interactive prompt:

SET SQLP[ROMPT] "prompt"

By default, SQLPROMPT is set to "SQL> "

SQL TERMOUT

Use the SQL TERMOUT command to specify if command output should be displayed
onscreen.

SET TERM[OUT] {ON | OFF}

SQL TIMING

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

396

The SQL TIMING command specifies if Advanced Server should display the execution
time for each SQL statement after it is executed.

SET TIMI[NG] {ON | OFF}

SET VERIFY

Specifies if both the old and new values of a SQL statement are displayed when a
substitution variable is encountered.

SET VER[IFY] { ON | OFF }

6.2.2.27 SHOW

Use the SHOW command to display current parameter values.

SHO[W] {ALL | parameter_name}

Display the current parameter settings by including the ALL keyword:

SQL> SHOW ALL
autocommit OFF
colsep " "
define "&"
echo OFF
FEEDBACK ON for 6 row(s).
flush ON
heading ON
headsep "|"
linesize 78
newpage 1
null " "
pagesize 14
pause OFF
serveroutput OFF
spool OFF
sqlcase MIXED
sqlprompt "SQL> "
sqlterminator ";"
suffix ".sql"
termout ON
timing OFF
verify ON
USER is "enterprisedb"
HOST is "localhost"
PORT is "5444"
DATABASE is "edb"
VERSION is "9.4.0.0"

Or display a specific parameter setting by including the parameter_name in the SHOW
command:

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

397

SQL> SHOW VERSION
VERSION is "9.4.0.0"

6.2.2.28 SPOOL

The SPOOL command sends output from the display to a file.

SP[OOL] output_file | OFF

Use the output_file parameter to specify a path name for the output file.

6.2.2.29 START

Use the START command to run an EDB*Plus script file; START is an alias for @
command.

STA[RT] script_file

Specify the name of a script file in the script_file parameter.

6.2.2.30 UNDEFINE

The UNDEFINE command erases a user variable created by the DEFINE command.

UNDEF[INE] variable_name [variable_name...]

Use the variable_name parameter to specify the name of a variable or variables.

6.2.2.31 WHENEVER SQLERROR

The WHENEVER SQLERROR command provides error handling for SQL errors or PL/SQL
block errors. The syntax is:

WHENEVER SQLERROR
 {CONTINUE [COMMIT|ROLLBACK|NONE]
 |EXIT [SUCCESS|FAILURE|WARNING|n|sub_variable]
 [COMMIT|ROLLBACK]}

If Advanced Server encounters an error during the execution of a SQL command or
PL/SQL block, EDB*Plus performs the action specified in the WHENEVER SQLERROR
command:

Include the CONTINUE clause to instruct EDB*Plus to perform the specified
action before continuing.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

398

Include the COMMIT clause to instruct EDB*Plus to COMMIT the current
transaction before exiting or continuing.

Include the ROLLBACK clause to instruct EDB*Plus to ROLLBACK the current
transaction before exiting or continuing.

Include the NONE clause to instruct EDB*Plus to continue without committing or
rolling back the transaction.

Include the EXIT clause to instruct EDB*Plus to perform the specified action and
exit if it encounters an error.

Use the following options to specify a status code that EDB*Plus will
return before exiting:

[SUCCESS|FAILURE|WARNING|n|sub_variable]

Please note that EDB*Plus supports substitution variables, but does not
support bind variables.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

399

6.3 libpq C Library

libpq is the C application programmer‟s interface to Postgres Plus Advanced Server.
libpq is a set of library functions that allow client programs to pass queries to the Postgres
Plus Advanced Server and to receive the results of these queries.

libpq is also the underlying engine for several other EnterpriseDB application interfaces
including those written for C++, Perl, Python, Tcl and ECPG. So some aspects of libpq‟s
behavior will be important to the user if one of those packages is used.

Client programs that use libpq must include the header file libpq-fe.h and must link
with the libpq library.

6.3.1 Using libpq with EnterpriseDB SPL

The EnterpriseDB SPL language can be used with the libpq interface library, providing
support for:

x Procedures, functions, packages
x Prepared statements
x REFCURSORs
x Static cursors
x structs and typedefs
x Arrays
x DML and DDL operations
x IN/OUT/IN OUT parameters

6.3.2 REFCURSOR Support

In earlier releases, Advanced Server provided support for REFCURSORs through the
following libpq functions; these functions should now be considered deprecated:

x PQCursorResult()
x PQgetCursorResult()
x PQnCursor()

You may now use PQexec() and PQgetvalue() to retrieve a REFCURSOR returned by
an SPL (or PL/pgSQL) function. A REFCURSOR is returned in the form of a null-
terminated string indicating the name of the cursor. Once you have the name of the
cursor, you can execute one or more FETCH statements to retrieve the values exposed
through the cursor.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

400

Please note that the samples that follow do not include error-handling code that would be
required in a real-world client application.

Returning a Single REFCURSOR

The following example shows an SPL function that returns a value of type REFCURSOR:

CREATE OR REPLACE FUNCTION getEmployees(p_deptno NUMERIC)
RETURN REFCURSOR AS
 result REFCURSOR;
BEGIN
 OPEN result FOR SELECT * FROM emp WHERE deptno = p_deptno;

 RETURN result;
END;

This function expects a single parameter, p_deptno, and returns a REFCURSOR that
holds the result set for the SELECT query shown in the OPEN statement. The OPEN
statement executes the query and stores the result set in a cursor. The server constructs a
name for that cursor and stores the name in a variable (named result). The function
then returns the name of the cursor to the caller.

To call this function from a C client using libpq, you can use PQexec() and
PQgetvalue():

#include <stdio.h>
#include <stdlib.h>
#include "libpq-fe.h"

static void fetchAllRows(PGconn *conn,
 const char *cursorName,
 const char *description);
static void fail(PGconn *conn, const char *msg);

int
main(int argc, char *argv[])
{
 PGconn *conn = PQconnectdb(argv[1]);
 PGresult *result;

 if (PQstatus(conn) != CONNECTION_OK)
 fail(conn, PQerrorMessage(conn));

 result = PQexec(conn, "BEGIN TRANSACTION");

 if (PQresultStatus(result) != PGRES_COMMAND_OK)
 fail(conn, PQerrorMessage(conn));

 PQclear(result);

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

401

 result = PQexec(conn, "SELECT * FROM getEmployees(10)");

 if (PQresultStatus(result) != PGRES_TUPLES_OK)
 fail(conn, PQerrorMessage(conn));

 fetchAllRows(conn, PQgetvalue(result, 0, 0), "employees");

 PQclear(result);

 PQexec(conn, "COMMIT");

 PQfinish(conn);

 exit(0);
}

static void
fetchAllRows(PGconn *conn,
 const char *cursorName,
 const char *description)
{
 size_t commandLength = strlen("FETCH ALL FROM ") +
 strlen(cursorName) + 3;

 char *commandText = malloc(commandLength);
 PGresult *result;
 int row;

 sprintf(commandText, "FETCH ALL FROM \"%s\"", cursorName);

 result = PQexec(conn, commandText);

 if (PQresultStatus(result) != PGRES_TUPLES_OK)
 fail(conn, PQerrorMessage(conn));

 printf("-- %s --\n", description);

 for (row = 0; row < PQntuples(result); row++)
 {
 const char *delimiter = "\t";
 int col;

 for (col = 0; col < PQnfields(result); col++)
 {
 printf("%s%s", delimiter, PQgetvalue(result, row, col));
 delimiter = ",";
 }

 printf("\n");
 }

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

402

 PQclear(result);
 free(commandText);
}

static void
fail(PGconn *conn, const char *msg)
{
 fprintf(stderr, "%s\n", msg);

 if (conn != NULL)
 PQfinish(conn);

 exit(-1);
}

The code sample contains a line of code that calls the getEmployees() function, and
returns a result set that contains all of the employees in department 10:

result = PQexec(conn, "SELECT * FROM getEmployees(10)");

The PQexec() function returns a result set handle to the C program. The result set will
contain exactly one value; that value is the name of the cursor as returned by
getEmployees().

Once you have the name of the cursor, you can use the SQL FETCH statement to retrieve
the rows in that cursor. The function fetchAllRows() builds a FETCH ALL statement,
executes that statement, and then prints the result set of the FETCH ALL statement.

The output of this program is shown below:

-- employees --
 7782,CLARK,MANAGER,7839,09-JUN-81 00:00:00,2450.00,,10
 7839,KING,PRESIDENT,,17-NOV-81 00:00:00,5000.00,,10
 7934,MILLER,CLERK,7782,23-JAN-82 00:00:00,1300.00,,10

Returning Multiple REFCURSORs

The next example returns two REFCURSORs:

x The first REFCURSOR contains the name of a cursor (employees) that contains
all employees who work in a department within the range specified by the caller.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

403

x The second REFCURSOR contains the name of a cursor (departments) that
contains all of the departments in the range specified by the caller.

In this example, instead of returning a single REFCURSOR, the function returns a SETOF
REFCURSOR (which means 0 or more REFCURSORS). One other important difference is
that the libpq program should not expect a single REFCURSOR in the result set, but should
expect two rows, each of which will contain a single value (the first row contains the
name of the employees cursor, and the second row contains the name of the
departments cursor).

CREATE OR REPLACE FUNCTION getEmpsAndDepts(p_min NUMERIC,
 p_max NUMERIC)
RETURN SETOF REFCURSOR AS
 employees REFCURSOR;
 departments REFCURSOR;
BEGIN
 OPEN employees FOR
 SELECT * FROM emp WHERE deptno BETWEEN p_min AND p_max;
 RETURN NEXT employees;

 OPEN departments FOR
 SELECT * FROM dept WHERE deptno BETWEEN p_min AND p_max;
 RETURN NEXT departments;
END;

As in the previous example, you can use PQexec() and PQgetvalue() to call the SPL
function:

#include <stdio.h>
#include <stdlib.h>
#include "libpq-fe.h"

static void fetchAllRows(PGconn *conn,
 const char *cursorName,
 const char *description);
static void fail(PGconn *conn, const char *msg);

int
main(int argc, char *argv[])
{
 PGconn *conn = PQconnectdb(argv[1]);
 PGresult *result;

 if (PQstatus(conn) != CONNECTION_OK)
 fail(conn, PQerrorMessage(conn));

 result = PQexec(conn, "BEGIN TRANSACTION");

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

404

 if (PQresultStatus(result) != PGRES_COMMAND_OK)
 fail(conn, PQerrorMessage(conn));

 PQclear(result);

 result = PQexec(conn, "SELECT * FROM getEmpsAndDepts(20, 30)");

 if (PQresultStatus(result) != PGRES_TUPLES_OK)
 fail(conn, PQerrorMessage(conn));

 fetchAllRows(conn, PQgetvalue(result, 0, 0), "employees");
 fetchAllRows(conn, PQgetvalue(result, 1, 0), "departments");

 PQclear(result);

 PQexec(conn, "COMMIT");

 PQfinish(conn);

 exit(0);
}

static void
fetchAllRows(PGconn *conn,
 const char *cursorName,
 const char *description)
{
 size_t commandLength = strlen("FETCH ALL FROM ") +
 strlen(cursorName) + 3;
 char *commandText = malloc(commandLength);
 PGresult *result;
 int row;

 sprintf(commandText, "FETCH ALL FROM \"%s\"", cursorName);

 result = PQexec(conn, commandText);

 if (PQresultStatus(result) != PGRES_TUPLES_OK)
 fail(conn, PQerrorMessage(conn));

 printf("-- %s --\n", description);

 for (row = 0; row < PQntuples(result); row++)
 {
 const char *delimiter = "\t";
 int col;

 for (col = 0; col < PQnfields(result); col++)
 {
 printf("%s%s", delimiter, PQgetvalue(result, row, col));
 delimiter = ",";

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

405

 }

 printf("\n");
 }

 PQclear(result);
 free(commandText);
}

static void
fail(PGconn *conn, const char *msg)
{
 fprintf(stderr, "%s\n", msg);

 if (conn != NULL)
 PQfinish(conn);

 exit(-1);
}

If you call getEmpsAndDepts(20, 30), the server will return a cursor that contains all
employees who work in department 20 or 30, and a second cursor containing the
description of departments 20 and 30.

-- employees --
 7369,SMITH,CLERK,7902,17-DEC-80 00:00:00,800.00,,20
 7499,ALLEN,SALESMAN,7698,20-FEB-81 00:00:00,1600.00,300.00,30
 7521,WARD,SALESMAN,7698,22-FEB-81 00:00:00,1250.00,500.00,30
 7566,JONES,MANAGER,7839,02-APR-81 00:00:00,2975.00,,20
 7654,MARTIN,SALESMAN,7698,28-SEP-81 00:00:00,1250.00,1400.00,30
 7698,BLAKE,MANAGER,7839,01-MAY-81 00:00:00,2850.00,,30
 7788,SCOTT,ANALYST,7566,19-APR-87 00:00:00,3000.00,,20
 7844,TURNER,SALESMAN,7698,08-SEP-81 00:00:00,1500.00,0.00,30
 7876,ADAMS,CLERK,7788,23-MAY-87 00:00:00,1100.00,,20
 7900,JAMES,CLERK,7698,03-DEC-81 00:00:00,950.00,,30
 7902,FORD,ANALYST,7566,03-DEC-81 00:00:00,3000.00,,20
-- departments --
 20,RESEARCH,DALLAS
 30,SALES,CHICAGO

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

406

6.3.3 Array Binding

Advanced Server's array binding functionality allows you to send an array of data across
the network in a single round-trip. When the back end receives the bulk data, it can use
the data to perform insert or update operations.

Perform bulk operations with a prepared statement; use the following function to prepare
the statement:

PGresult *PQprepare(PGconn *conn,
 const char *stmtName,
 const char *query,
 int nParams,
 const Oid *paramTypes);

Details of PQprepare() can be found in the prepared statement section.

The following functions can be used to perform bulk operations:

x PQBulkStart
x PQexecBulk
x PQBulkFinish
x PQexecBulkPrepared

6.3.3.1 PQBulkStart

PQBulkStart() initializes bulk operations on the server. You must call this function
before sending bulk data to the server. PQBulkStart() initializes the prepared
statement specified in stmtName to receive data in a format specified by paramFmts.

API Definition

PGresult * PQBulkStart(PGconn *conn,
 const char * Stmt_Name,
 unsigned int nCol,
 const int *paramFmts);

6.3.3.2 PQexecBulk

PQexecBulk() is used to supply data (paramValues) for a statement that was
previously initialized for bulk operation using PQBulkStart().

This function can be used more than once after PQBulkStart() to send multiple blocks
of data. See the example for more details.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

407

API Definition

PGresult *PQexecBulk(PGconn *conn,
 unsigned int nRows,
 const char *const * paramValues,
 const int *paramLengths);

6.3.3.3 PQBulkFinish

This function completes the current bulk operation. You can use the prepared statement
again without re-preparing it.

API Definition

PGresult *PQBulkFinish(PGconn *conn);

6.3.3.4 PQexecBulkPrepared

Alternatively, you can use the PQexecBulkPrepared() function to perform a bulk
operation with a single function call. PQexecBulkPrepared() sends a request to
execute a prepared statement with the given parameters, and waits for the result. This
function combines the functionality of PQbulkStart(), PQexecBulk(), and
PQBulkFinish(). When using this function, you are not required to initialize or
terminate the bulk operation; this function starts the bulk operation, passes the data to the
server, and terminates the bulk operation.

Specify a previously prepared statement in the place of stmtName. Commands that will
be used repeatedly will be parsed and planned just once, rather than each time they are
executed.

API Definition

PGresult *PQexecBulkPrepared(PGconn *conn,
 const char *stmtName,
 unsigned int nCols,
 unsigned int nRows,
 const char *const *paramValues,
 const int *paramLengths,
 const int *paramFormats);

6.3.3.5 Example Code (Using PQBulkStart, PQexecBulk,
PQBulkFinish)

The following example uses PGBulkStart, PQexecBulk, and PQBulkFinish.

void InsertDataUsingBulkStyle(PGconn *conn)
{

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

408

 PGresult *res;
 Oid paramTypes[2];
 char *paramVals[5][2];
 int paramLens[5][2];
 int paramFmts[2];
 int i;

 int a[5] = { 10, 20, 30, 40, 50 };
 char b[5][10] = { "Test_1", "Test_2", "Test_3", "Test_4",
"Test_5" };

 paramTypes[0] = 23;
 paramTypes[1] = 1043;
 res = PQprepare(conn, "stmt_1", "INSERT INTO testtable1 values($1, $2
)", 2, paramTypes);
 PQclear(res);

 paramFmts[0] = 1; /* Binary format */
 paramFmts[1] = 0;

 for(i = 0; i < 5; i++)
 {
 a[i] = htonl(a[i]);
 paramVals[i][0] = &(a[i]);
 paramVals[i][1] = b[i];

 paramLens[i][0] = 4;
 paramLens[i][1] = strlen(b[i]);
 }

 res = PQBulkStart(conn, "stmt_1", 2, paramFmts);
 PQclear(res);
 printf("< -- PQBulkStart -- >\n");

 res = PQexecBulk(conn, 5, (const char *const *)paramVals, (const int
*)paramLens);
 PQclear(res);
 printf("< -- PQexecBulk -- >\n");

 res = PQexecBulk(conn, 5, (const char *const *)paramVals, (const int
*)paramLens);
 PQclear(res);
 printf("< -- PQexecBulk -- >\n");

 res = PQBulkFinish(conn);
 PQclear(res);
 printf("< -- PQBulkFinish -- >\n");
}

6.3.3.6 Example Code (Using PQexecBulkPrepared)

The following example uses PQexecBulkPrepared.

void InsertDataUsingBulkStyleCombinedVersion(PGconn *conn)
{
 PGresult *res;
 Oid paramTypes[2];
 char *paramVals[5][2];

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

409

 int paramLens[5][2];
 int paramFmts[2];
 int i;

 int a[5] = { 10, 20, 30, 40, 50 };
 char b[5][10] = { "Test_1", "Test_2", "Test_3", "Test_4",
"Test_5" };

 paramTypes[0] = 23;
 paramTypes[1] = 1043;
 res = PQprepare(conn, "stmt_2", "INSERT INTO testtable1 values($1, $2
)", 2, paramTypes);
 PQclear(res);

 paramFmts[0] = 1; /* Binary format */
 paramFmts[1] = 0;

 for(i = 0; i < 5; i++)
 {
 a[i] = htonl(a[i]);
 paramVals[i][0] = &(a[i]);
 paramVals[i][1] = b[i];

 paramLens[i][0] = 4;
 paramLens[i][1] = strlen(b[i]);
 }

res = PQexecBulkPrepared(conn, "stmt_2", 2, 5, (const char *const
*)paramVals,(const int *)paramLens, (const int *)paramFmts);
 PQclear(res);
}

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

410

6.4 ECPGPlus

EnterpriseDB has enhanced ECPG (the PostgreSQL pre-compiler) to create ECPGPlus.
ECPGPlus allows you to include embedded SQL commands in C applications; when you
use ECPGPlus to compile an application that contains embedded SQL commands, the
SQL code is syntax-checked and translated into C.

ECPGPlus supports Pro*C compatible syntax in C programs when connected to an
Advanced Server database. ECPGPlus supports:

x Oracle Dynamic SQL – Method 4 (ODS-M4)
x Pro*C compatible anonymous blocks
x An Oracle-compatible CALL statement

As part of ECPGPlus's Pro*C compatibility, you do not need to include the BEGIN
DECLARE SECTION and END DECLARE SECTION directives.

For more information about using ECPGPlus, please see the Postgres Plus Advanced
Server ECPG Connector Guide, available from the EnterpriseDB website at:

http://www.enterprisedb.com/documentation/english

http://www.enterprisedb.com/documentation/english

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

411

6.4.1 C-preprocessor Directives

The ECPGPlus C-preprocessor enforces two behaviors that are dependent on the mode in
which you invoke ECPGPlus:

x PROC mode
x non-PROC mode

Compiling in PROC mode

In PROC mode, ECPGPlus allows you to:

x Declare host variables outside of an EXEC SQL BEGIN/END DECLARE
SECTION.

x Use any C variable as a host variable as long as it is of a data type compatible
with ECPG.

When you invoke ECPGPlus in PROC mode (by including the -C PROC keywords), the
ECPG compiler honors the following C-preprocessor directives:

#include
#if expression
#ifdef symbolName
#ifndef symbolName
#else
#elif expression
#endif
#define symbolName expansion
#define symbolName([macro arguments]) expansion
#undef symbolName
#defined(symbolName)

Pre-processor directives are used to effect or direct the code that is received by the
compiler. For example, using the following code sample:

#if HAVE_LONG_LONG == 1
#define BALANCE_TYPE long long
#else
#define BALANCE_TYPE double
#endif
...
BALANCE_TYPE customerBalance;

If you invoke ECPGPlus with the following command-line arguments:

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

412

ecpg –C PROC –DHAVE_LONG_LONG=1

ECPGPlus will copy the entire fragment (without change) to the output file, but will only
send the following tokens to the ECPG parser:

long long customerBalance;

On the other hand, if you invoke ECPGPlus with the following command-line arguments:

ecpg –C PROC –DHAVE_LONG_LONG=0

The ECPG parser will receive the following tokens:

double customerBalance;

If your code uses preprocessor directives to filter the code that is sent to the compiler, the
complete code is retained in the original code, while the ECPG parser sees only the
processed token stream.

Compiling in non-PROC mode

If you do not include the -C PROC command-line option:

x C preprocessor directives are copied to the output file without change.
x You must declare the type and name of each C variable that you intend to use as a

host variable within an EXEC SQL BEGIN/END DECLARE section.

When invoked in non-PROC mode, ECPG implements the behavior described in the
PostgreSQL Core documentation, available at:

http://www.enterprisedb.com/documentation/english

http://www.enterprisedb.com/documentation/english

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

413

6.4.2 Supported C Data Types

An ECPGPlus application must deal with two sets of data types: SQL data types (such as
SMALLINT, DOUBLE PRECISION and CHARACTER VARYING) and C data types (like
short, double and varchar[n]). When an application fetches data from the server,
ECPGPlus will map each SQL data type to the type of the C variable into which the data
is returned.

In general, ECPGPlus can convert most SQL server types into similar C types, but not all
combinations are valid. For example, ECPGPlus will try to convert a SQL character
value into a C integer value, but the conversion may fail (at execution time) if the SQL
character value contains non-numeric characters.

The reverse is also true; when an application sends a value to the server, ECPGPlus will
try to convert the C data type into the required SQL type. Again, the conversion may fail
(at execution time) if the C value cannot be converted into the required SQL type.

ECPGPlus can convert any SQL type into C character values (char[n] or
varchar[n]). Although it is safe to convert any SQL type to/from char[n] or
varchar[n], it is often convenient to use more natural C types such as int, double, or
float.

The supported C data types are:

x short
x int
x unsigned int
x long long int
x float
x double
x char[n+1]
x varchar[n+1]
x bool
x and any equivalent created by a typedef

In addition to the numeric and character types supported by C, the pgtypeslib run-time
library offers custom data types (and functions to operate on those types) for dealing with
date/time and exact numeric values:

x timestamp
x interval
x date
x decimal

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

414

x numeric

To use a data type supplied by pgtypeslib, you must #include the proper header file.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

415

6.4.3 Type Codes

The following table contains the type codes for external data types. An external data type
is used to indicate the type of a C host variable. When an application binds a value to a
parameter or binds a buffer to a SELECT-list item, the type code in the corresponding
SQLDA descriptor (descriptor->T[column]) should be set to one of the following
values:

Type Code Host Variable Type (C Data Type)
1, 2, 8, 11, 12, 15, 23, 24, 91,
94, 95, 96, 97

char[]

3 int

4, 7, 21 float

5, 6 null-terminated string
(char[length+1])

9 varchar

22 double

68 unsigned int

The following table contains the type codes for internal data types. An internal type code
is used to indicate the type of a value as it resides in the database. The DESCRIBE
SELECT LIST statement populates the data type array (descriptor->T[column])
using the following values.

Internal Type Code Server Type
1 VARCHAR2
2 NUMBER
8 LONG
11 ROWID
12 DATE
23 RAW
24 LONG RAW
96 CHAR
100 BINARY FLOAT
101 BINARY DOUBLE
104 UROWID
187 TIMESTAMP
188 TIMESTAMP W/TIMEZONE
189 INTERVAL YEAR TO MONTH
190 INTERVAL DAY TO SECOND
232 TIMESTAMP LOCAL_TZ

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

416

6.4.4 The SQLDA Structure

Oracle Dynamic SQL method 4 uses the SQLDA data structure to hold the data and
metadata for a dynamic SQL statement. A SQLDA structure can describe a set of input
parameters corresponding to the parameter markers found in the text of a dynamic
statement or the result set of a dynamic statement. The layout of the SQLDA structure is:

struct SQLDA
{
 int N; /* Number of entries */
 char **V; /* Variables */
 int *L; /* Variable lengths */
 short *T; /* Variable types */
 short **I; /* Indicators */
 int F; /* Count of variables discovered by DESCRIBE */
 char **S; /* Variable names */
 short *M; /* Variable name maximum lengths */
 short *C; /* Variable name actual lengths */
 char **X; /* Indicator names */
 short *Y; /* Indicator name maximum lengths */
 short *Z; /* Indicator name actual lengths */
};

Parameters

N - maximum number of entries

The N structure member contains the maximum number of entries that the SQLDA may
describe. This member is populated by the sqlald() function when you allocate the
SQLDA structure. Before using a descriptor in an OPEN or FETCH statement, you must
set N to the actual number of values described.

V - data values

The V structure member is a pointer to an array of data values.

For a SELECT-list descriptor, V points to an array of values returned by a FETCH
statement (each member in the array corresponds to a column in the result set).

For a bind descriptor, V points to an array of parameter values (you must populate
the values in this array before opening a cursor that uses the descriptor).

Your application must allocate the space required to hold each value.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

417

L - length of each data value

The L structure member is a pointer to an array of lengths. Each member of this array
must indicate the amount of memory available in the corresponding member of the V
array. For example, if V[5] points to a buffer large enough to hold a 20-byte NULL-
terminated string, L[5] should contain the value 21 (20 bytes for the characters in the
string plus 1 byte for the NULL-terminator). Your application must set each member of
the L array.

T - data types

The T structure member points to an array of data types, one for each column (or
parameter) described by the descriptor.

For a bind descriptor, you must set each member of the T array to tell ECPGPlus
the data type of each parameter.

For a SELECT-list descriptor, the DESCRIBE SELECT LIST statement sets each
member of the T array to reflect the type of data found in the corresponding
column.

You may change any member of the T array before executing a FETCH statement to force
ECPGPlus to convert the corresponding value to a specific data type. For example, if the
DESCRIBE SELECT LIST statement indicates that a given column is of type DATE, you
may change the corresponding T member to request that the next FETCH statement return
that value in the form of a NULL-terminated string. Each member of the T array is a
numeric type code. The type codes returned by a DESCRIBE SELECT LIST statement
differ from those expected by a FETCH statement. After executing a DESCRIBE SELECT
LIST statement, each member of T encodes a data type and a flag indicating whether the
corresponding column is nullable. You can use the sqlnul() function to extract the
type code and nullable flag from a member of the T array. The signature of the
sqlnul() function is as follows:

 void sqlnul(unsigned short *valType,
 unsigned short *typeCode,
 int *isNull)

For example, to find the type code and nullable flag for the third column of a descriptor
named results, you would invoke sqlnul() as follows:

 sqlnul(&results->T[2], &typeCode, &isNull);

I - indicator variables

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

418

The I structure member points to an array of indicator variables. This array is allocated
for you when your application calls the sqlald() function to allocate the descriptor.

For a SELECT-list descriptor, each member of the I array indicates whether the
corresponding column contains a NULL (non-zero) or non-NULL (zero) value.

For a bind parameter, your application must set each member of the I array to
indicate whether the corresponding parameter value is NULL.

F - number of entries

The F structure member indicates how many values are described by the descriptor (the N
structure member indicates the maximum number of values which may be described by
the descriptor; F indicates the actual number of values). The value of the F member is set
by ECPGPlus when you execute a DESCRIBE statement. F may be positive, negative, or
zero.

For a SELECT-list descriptor, F will contain a positive value if the number of
columns in the result set is equal to or less than the maximum number of values
permitted by the descriptor (as determined by the N structure member); 0 if the
statement is not a SELECT statement, or a negative value if the query returns more
columns than allowed by the N structure member.

For a bind descriptor, F will contain a positive number if the number of
parameters found in the statement is less than or equal to the maximum number of
values permitted by the descriptor (as determined by the N structure member); 0 if
the statement contains no parameters markers, or a negative value if the statement
contains more parameter markers than allowed by the N structure member.

If F contains a positive number (after executing a DESCRIBE statement), that number
reflects the count of columns in the result set (for a SELECT-list descriptor) or the number
of parameter markers found in the statement (for a bind descriptor). If F contains a
negative value, you may compute the absolute value of F to discover how many values
(or parameter markers) are required. For example, if F contains -24 after describing a
SELECT list, you know that the query returns 24 columns.

S - column/parameter names

The S structure member points to an array of NULL-terminated strings.

For a SELECT-list descriptor, the DESCRIBE SELECT LIST statement sets each
member of this array to the name of the corresponding column in the result set.

For a bind descriptor, the DESCRIBE BIND VARIABLES statement sets each
member of this array to the name of the corresponding bind variable.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

419

In this release, the name of each bind variable is determined by the left-to-right order of
the parameter marker within the query - for example, the name of the first parameter is
always ?0, the name of the second parameter is always ?1, and so on.

M - maximum column/parameter name length

The M structure member points to an array of lengths. Each member in this array
specifies the maximum length of the corresponding member of the S array (that is, M[0]
specifies the maximum length of the column/parameter name found at S[0]). This array
is populated by the sqlald() function.

C - actual column/parameter name length

The C structure member points to an array of lengths. Each member in this array
specifies the actual length of the corresponding member of the S array (that is, C[0]
specifies the actual length of the column/parameter name found at S[0]).

This array is populated by the DESCRIBE statement.

X - indicator variable names

The X structure member points to an array of NULL-terminated strings - each string
represents the name of a NULL indicator for the corresponding value.

This array is not used by ECPGPlus, but is provided for compatibility with Pro*C
applications.

Y - maximum indicator name length

The Y structure member points to an array of lengths. Each member in this array
specifies the maximum length of the corresponding member of the X array (that is, Y[0]
specifies the maximum length of the indicator name found at X[0]).

This array is not used by ECPGPlus, but is provided for compatibility with Pro*C
applications.

Z - actual indicator name length

The Z structure member points to an array of lengths. Each member in this array
specifies the actual length of the corresponding member of the X array (that is, Z[0]
specifies the actual length of the indicator name found at X[0]).

This array is not used by ECPGPlus, but is provided for compatibility with Pro*C
applications.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

420

6.4.5 ECPGPlus Statements

An embedded SQL statement allows your client application to interact with the server,
while an embedded directive is an instruction to the ECPGPlus compiler.

You can embed any Advanced Server SQL statement in a C program. Each statement
should begin with the keywords EXEC SQL, and must be terminated with a semi-colon
(;). Within the C program, a SQL statement takes the form:

EXEC SQL sql_command_body;

Where sql_command_body represents a standard SQL statement. You can use a host
variable anywhere that the SQL statement expects a value expression.

ECPGPlus extends the PostgreSQL server-side syntax for some statements; for those
statements, syntax differences are outlined in the following reference sections. For a
complete reference to the supported syntax of other SQL commands, please see the
PostgreSQL Core Documentation, available from the EnterpriseDB website at:

http://www.enterprisedb.com/docs/en/9.4/pg/sql-commands.html

6.4.5.1 ALLOCATE DESCRIPTOR

Use the ALLOCATE DESCRIPTOR statement to allocate an SQL descriptor area:

EXEC SQL [FOR array_size] ALLOCATE DESCRIPTOR descriptor_name
 [WITH MAX variable_count];

Where:

array_size is a variable that specifies the number of array elements to allocate
for the descriptor. array_size may be an INTEGER value or a host variable.

descriptor_name is the host variable that contains the name of the descriptor,
or the name of the descriptor. This value may take the form of an identifier, a
quoted string literal, or of a host variable.

variable_count specifies the maximum number of host variables in the
descriptor. The default value of variable_count is 100.

The following code fragment allocates a descriptor named emp_query that may be
processed as an array (emp_array):

EXEC SQL FOR :emp_array ALLOCATE DESCRIPTOR emp_query;

http://www.enterprisedb.com/docs/en/9.4/pg/sql-commands.html

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

421

6.4.5.2 CALL

Use the CALL statement to invoke a procedure or function on the server. The CALL
statement works only on Advanced Server. The CALL statement comes in two forms; the
first form is used to call a function:

EXEC SQL CALL program_name '('[actual_arguments]')'
 INTO [[:ret_variable][:ret_indicator]];

The second form is used to call a procedure:

EXEC SQL CALL program_name '('[actual_arguments]')';

Where:

program_name is the name of the stored procedure or function that the CALL
statement invokes. The program name may be schema-qualified or package-
qualified (or both); if you do not specify the schema or package in which the
program resides, ECPGPlus will use the value of search_path to locate the
program.

actual_arguments specifies a comma-separated list of arguments required by
the program. Note that each actual_argument corresponds to a formal
argument expected by the program. Each formal argument may be an IN
parameter, an OUT parameter, or an INOUT parameter.

:ret_variable specifies a host variable that will receive the value returned if
the program is a function.

:ret_indicator specifies a host variable that will receive the indicator value
returned, if the program is a function.

For example, the following statement invokes the get_job_desc function with the
value contained in the :ename host variable, and captures the value returned by that
function in the :job host variable:

EXEC SQL CALL get_job_desc(:ename)
 INTO :job;

6.4.5.3 CLOSE

Use the CLOSE statement to close a cursor, and free any resources currently in use by the
cursor. A client application cannot fetch rows from a closed cursor. The syntax of the
CLOSE statement is:

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

422

EXEC SQL CLOSE [cursor_name];

Where:

cursor_name is the name of the cursor closed by the statement. The cursor
name may take the form of an identifier or of a host variable.

The OPEN statement initializes a cursor. Once initialized, a cursor result set will remain
unchanged unless the cursor is re-opened. You do not need to CLOSE a cursor before re-
opening it.

To manually close a cursor named emp_cursor, use the command:

EXEC SQL CLOSE emp_cursor;

A cursor is automatically closed when an application terminates.

6.4.5.4 COMMIT

Use the COMMIT statement to complete the current transaction, making all changes
permanent and visible to other users. The syntax is:

EXEC SQL [AT database_name] COMMIT [WORK]
 [COMMENT 'text'] [COMMENT 'text' RELEASE];

Where:

database_name is the name of the database (or host variable that contains the
name of the database) in which the work resides. This value may take the form of
an unquoted string literal, or of a host variable.

For compatibility, ECPGPlus accepts the COMMENT clause without error but does not
store any text included with the COMMENT clause.

Include the RELEASE clause to close the current connection after performing the commit.

For example, the following command commits all work performed on the dept database
and closes the current connection:

EXEC SQL AT dept COMMIT RELEASE;

By default, statements are committed only when a client application performs a COMMIT
statement. Include the -t option when invoking ECPGPlus to specify that a client
application should invoke AUTOCOMMIT functionality. You can also control
AUTOCOMMIT functionality in a client application with the following statements:

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

423

EXEC SQL SET AUTOCOMMIT TO ON

and

EXEC SQL SET AUTOCOMMIT TO OFF

6.4.5.5 CONNECT

Use the CONNECT statement to establish a connection to a database. The CONNECT
statement is available in two forms.

The following is the first form:

EXEC SQL CONNECT
 {{:user_name IDENTIFIED BY :password} | :connection_id}
 [AT database_name]
 [USING :database_string]
 [ALTER AUTHORIZATION :new_password];

Where:

user_name is a host variable that contains the role that the client application will
use to connect to the server.

password is a host variable that contains the password associated with that role.

connection_id is a host variable that contains a slash-delimited user name and
password used to connect to the database.

Include the AT clause to specify the database to which the connection is established.
database_name is the name of the database to which the client is connecting; specify
the value in the form of a variable, or as a string literal.

Include the USING clause to specify a host variable that contains a null-terminated string
identifying the database to which the connection will be established.

The ALTER AUTHORIZATION clause is supported for syntax compatibility only;
ECPGPlus parses the ALTER AUTHORIZATION clause, and reports a warning.

Using the first form of the CONNECT statement, a client application might establish a
connection with a host variable named user that contains the identity of the connecting
role, and a host variable named password that contains the associated password using
the following command:

EXEC SQL CONNECT :user IDENTIFIED BY :password;

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

424

A client application could also use the first form of the CONNECT statement to establish a
connection using a single host variable named :connection_id. In the following
example, connection_id contains the slash-delimited role name and associated
password for the user:

EXEC SQL CONNECT :connection_id;

The syntax of the second form of the CONNECT statement is:

EXEC SQL CONNECT TO database_name
[AS connection_name] [credentials];

Where credentials is one of the following:

USER user_name password
USER user_name IDENTIFIED BY password
USER user_name USING password

In the second form:

database_name is the name or identity of the database to which the client is
connecting. Specify database_name as a variable, or as a string literal, in one of the
following forms:

database_name[@hostname][:port]

tcp:postgresql://hostname[:port][/database_name][options]

unix:postgresql://hostname[:port][/database_name][options]

Where:

hostname is the name or IP address of the server on which the database resides.

port is the port on which the server listens.

You can also specify a value of DEFAULT to establish a connection with the
default database, using the default role name. If you specify DEFAULT as the
target database, do not include a connection_name or credentials.

connection_name is the name of the connection to the database.
connection_name should take the form of an identifier (that is, not a string
literal or a variable). You can open multiple connections, by providing a unique
connection_name for each connection.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

425

If you do not specify a name for a connection, ecpglib assigns a name of
DEFAULT to the connection. You can refer to the connection by name
(DEFAULT) in any EXEC SQL statement.

CURRENT is the most recently opened or the connection mentioned in the
most-recent SET CONNECTION TO statement. If you do not refer to a
connection by name in an EXEC SQL statement, ECPG assumes the name
of the connection to be CURRENT.

user_name is the role used to establish the connection with the Advanced Server
database. The privileges of the specified role will be applied to all commands
performed through the connection.

password is the password associated with the specified user_name.

The following code fragment uses the second form of the CONNECT statement to establish
a connection to a database named edb, using the role alice and the password associated
with that role, 1safepwd:

 EXEC SQL CONNECT TO edb AS acctg_conn
 USER 'alice' IDENTIFIED BY '1safepwd';

The name of the connection is acctg_conn; you can use the connection name when
changing the connection name using the SET CONNECTION statement.

6.4.5.6 DEALLOCATE DESCRIPTOR

Use the DEALLOCATE DESCRIPTOR statement to free memory in use by an allocated
descriptor. The syntax of the statement is:

EXEC SQL DEALLOCATE DESCRIPTOR descriptor_name

Where:

descriptor_name is the name of the descriptor. This value may take the form
of a quoted string literal, or of a host variable.

The following example deallocates a descriptor named emp_query:

EXEC SQL DEALLOCATE DESCRIPTOR emp_query;

6.4.5.7 DECLARE CURSOR

Use the DECLARE CURSOR statement to define a cursor. The syntax of the statement is:

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

426

EXEC SQL [AT database_name] DECLARE cursor_name CURSOR FOR
(select_statement | statement_name);

Where:

database_name is the name of the database on which the cursor operates. This
value may take the form of an identifier or of a host variable. If you do not
specify a database name, the default value of database_name is the default
database.

cursor_name is the name of the cursor.

select_statement is the text of the SELECT statement that defines the cursor
result set; the SELECT statement cannot contain an INTO clause.

statement_name is the name of a SQL statement or block that defines the
cursor result set.

The following example declares a cursor named employees:

 EXEC SQL DECLARE employees CURSOR FOR
 SELECT
 empno, ename, sal, comm
 FROM
 emp;

The cursor generates a result set that contains the employee number, employee name,
salary and commission for each employee record that is stored in the emp table.

6.4.5.8 DECLARE DATABASE

Use the DECLARE DATABASE statement to declare a database identifier for use in
subsequent SQL statements (for example, in a CONNECT statement). The syntax is:

EXEC SQL DECLARE database_name DATABASE;

Where:

database_name specifies the name of the database.

The following example demonstrates declaring an identifier for the acctg database:

EXEC SQL DECLARE acctg DATABASE;

After invoking the command declaring acctg as a database identifier, the acctg
database can be referenced by name when establishing a connection or in AT clauses.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

427

This statement has no effect and is provided for Pro*C compatibility only.

6.4.5.9 DECLARE STATEMENT

Use the DECLARE STATEMENT directive to declare an identifier for an SQL statement.
Advanced Server supports two versions of the DECLARE STATEMENT directive:

EXEC SQL [database_name] DECLARE statement_name STATEMENT;

and

EXEC SQL DECLARE STATEMENT statement_name;

Where:

statement_name specifies the identifier associated with the statement.

database_name specifies the name of the database. This value may take the
form of an identifier or of a host variable that contains the identifier.

A typical usage sequence that includes the DECLARE STATEMENT directive might be:

EXEC SQL DECLARE give_raise STATEMENT; // give_raise
is now a statement handle (not prepared)
EXEC SQL PREPARE give_raise FROM :stmtText; // give_raise
is now associated with a statement
EXEC SQL EXECUTE give_raise;

This statement has no effect and is provided for Pro*C compatibility only.

6.4.5.10 DELETE

Use the DELETE statement to delete one or more rows from a table. The syntax for the
ECPGPlus DELETE statement is the same as the syntax for the SQL statement, but you
can use parameter markers and host variables any place that an expression is allowed.
The syntax is:

[FOR exec_count] DELETE FROM [ONLY] table [[AS] alias]
 [USING using_list]
 [WHERE condition | WHERE CURRENT OF cursor_name]
 [{RETURNING|RETURN} * | output_expression [[AS] output_name]
[, ...] INTO host_variable_list]

Where:

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

428

Include the FOR exec_count clause to specify the number of times the statement
will execute; this clause is valid only if the VALUES clause references an array or
a pointer to an array.

table is the name (optionally schema-qualified) of an existing table. Include the
ONLY clause to limit processing to the specified table; if you do not include the
ONLY clause, any tables inheriting from the named table are also processed.

alias is a substitute name for the target table.

using_list is a list of table expressions, allowing columns from other tables to
appear in the WHERE condition.

Include the WHERE clause to specify which rows should be deleted. If you do not
include a WHERE clause in the statement, DELETE will delete all rows from the
table, leaving the table definition intact.

condition is an expression, host variable or parameter marker that returns a
value of type BOOLEAN. Those rows for which condition returns true will be
deleted.

cursor_name is the name of the cursor to use in the WHERE CURRENT OF clause;
the row to be deleted will be the one most recently fetched from this cursor. The
cursor must be a non-grouping query on the DELETE statements target table. You
cannot specify WHERE CURRENT OF in a DELETE statement that includes a
Boolean condition.

The RETURN/RETURNING clause specifies an output_expression or
host_variable_list that is returned by the DELETE command after each row
is deleted:

output_expression is an expression to be computed and returned by
the DELETE command after each row is deleted. output_name is the
name of the returned column; include * to return all columns.

host_variable_list is a comma-separated list of host variables and
optional indicator variables. Each host variable receives a corresponding
value from the RETURNING clause.

For example, the following statement deletes all rows from the emp table where the sal
column contains a value greater than the value specified in the host variable, :max_sal:

DELETE FROM emp WHERE sal > :max_sal;

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

429

For more information about using the DELETE statement, please see the PostgreSQL Core
documentation, available from EnterpriseDB at:

http://www.enterprisedb.com/docs/en/9.4/pg/sql-delete.html

6.4.5.11 DESCRIBE

Use the DESCRIBE statement to find the number of input values required by a prepared
statement or the number of output values returned by a prepared statement. The
DESCRIBE statement is used to analyze a SQL statement whose shape is unknown at the
time you write your application.

The DESCRIBE statement populates an SQLDA descriptor; to populate a SQL descriptor,
use the ALLOCATE DESCRIPTOR and DESCRIBE…DESCRIPTOR statements.

EXEC SQL DESCRIBE BIND VARIABLES FOR statement_name INTO
descriptor;

or

EXEC SQL DESCRIBE SELECT LIST FOR statement_name INTO
descriptor;

Where:

statement_name is the identifier associated with a prepared SQL statement or
PL/SQL block.

descriptor is the name of C variable of type SQLDA*. You must allocate the
space for the descriptor by calling sqlald() (and initialize the descriptor) before
executing the DESCRIBE statement.

When you execute the first form of the DESCRIBE statement, ECPG populates the given
descriptor with a description of each input variable required by the statement. For
example, given two descriptors:

SQLDA *query_values_in;
SQLDA *query_values_out;

You might prepare a query that returns information from the emp table:

EXEC SQL PREPARE get_emp FROM
 "SELECT ename, empno, sal FROM emp WHERE empno = ?";

The command requires one input variable (for the parameter marker (?)).

http://www.enterprisedb.com/docs/en/9.4/pg/sql-delete.html

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

430

EXEC SQL DESCRIBE BIND VARIABLES
 FOR get_emp INTO query_values_in;

After describing the bind variables for this statement, you can examine the descriptor to
find the number of variables required and the type of each variable.

When you execute the second form, ECPG populates the given descriptor with a
description of each value returned by the statement. For example, the following
statement returns three values:

EXEC SQL DESCRIBE SELECT LIST
 FOR get_emp INTO query_values_out;

After describing the select list for this statement, you can examine the descriptor to find
the number of returned values and the name and type of each value.

Before executing the statement, you must bind a variable for each input value and a
variable for each output value. The variables that you bind for the input values specify
the actual values used by the statement. The variables that you bind for the output values
tell ECPGPlus where to put the values when you execute the statement.

This is alternate Pro*C compatible syntax for the DESCRIBE DESCRIPTOR statement.

6.4.5.12 DESCRIBE DESCRIPTOR

Use the DESCRIBE DESCRIPTOR statement to retrieve information about a SQL
statement, and store that information in a SQL descriptor. Before using DESCRIBE
DESCRIPTOR, you must allocate the descriptor with the ALLOCATE DESCRIPTOR
statement. The syntax is:

EXEC SQL DESCRIBE [INPUT | OUTPUT] statement_identifier
 USING [SQL] DESCRIPTOR descriptor_name;

Where:

statement_name is the name of a prepared SQL statement.

descriptor_name is the name of the descriptor. descriptor_name can be a
quoted string value or a host variable that contains the name of the descriptor.

If you include the INPUT clause, ECPGPlus populates the given descriptor with a
description of each input variable required by the statement.

For example, given two descriptors:

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

431

EXEC SQL ALLOCATE DESCRIPTOR query_values_in;
EXEC SQL ALLOCATE DESCRIPTOR query_values_out;

You might prepare a query that returns information from the emp table:

EXEC SQL PREPARE get_emp FROM
 "SELECT ename, empno, sal FROM emp WHERE empno = ?";

The command requires one input variable (for the parameter marker (?)).

EXEC SQL DESCRIBE INPUT get_emp USING
'query_values_in';

After describing the bind variables for this statement, you can examine the
descriptor to find the number of variables required and the type of each variable.

If you do not specify the INPUT clause, DESCRIBE DESCRIPTOR populates the
specified descriptor with the values returned by the statement.

If you include the OUTPUT clause, ECPGPlus populates the given descriptor with a
description of each value returned by the statement.

For example, the following statement returns three values:

EXEC SQL DESCRIBE OUTPUT FOR get_emp USING
'query_values_out';

After describing the select list for this statement, you can examine the descriptor
to find the number of returned values and the name and type of each value.

6.4.5.13 DISCONNECT

Use the DISCONNECT statement to close the connection to the server. The syntax is:

EXEC SQL DISCONNECT [connection_name][CURRENT][DEFAULT][ALL];

Where:

connection_name is the connection name specified in the CONNECT statement
used to establish the connection. If you do not specify a connection name, the
current connection is closed.

Include the CURRENT keyword to specify that ECPGPlus should close the most-
recently used connection.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

432

Include the DEFAULT keyword to specify that ECPGPlus should close the
connection named DEFAULT. If you do not specify a name when opening a
connection, ECPGPlus assigns the name, DEFAULT, to the connection.

Include the ALL keyword to instruct ECPGPlus to close all active connections.

The following example creates a connection (named hr_connection) that connects to
the hr database, and then disconnects from the connection:

/* client.pgc*/
int main()
{
 EXEC SQL CONNECT TO hr AS connection_name;
 EXEC SQL DISCONNECT connection_name;
 return(0);
}

6.4.5.14 EXECUTE

Use the EXECUTE statement to execute a statement previously prepared using an EXEC
SQL PREPARE statement. The syntax is:

EXEC SQL [FOR array_size] EXECUTE statement_name
 [USING {DESCRIPTOR SQLDA_descriptor
 |:host_variable [[INDICATOR] :indicator_variable]}];

Where:

array_size is an integer value or a host variable that contains an integer value
that specifies the number of rows to be processed. If you omit the FOR clause, the
statement is executed once for each member of the array.

statement_name specifies the name assigned to the statement when the
statement was created (using the EXEC SQL PREPARE statement).

Include the USING clause to supply values for parameters within the prepared
statement:

Include the DESCRIPTOR SQLDA_descriptor clause to provide an
SQLDA descriptor value for a parameter.

Use a host_variable (and an optional indicator_variable) to
provide a user-specified value for a parameter.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

433

The following example creates a prepared statement that inserts a record into the emp
table:

EXEC SQL PREPARE add_emp (numeric, text, text, numeric) AS
 INSERT INTO emp VALUES($1, $2, $3, $4);

Each time you invoke the prepared statement, provide fresh parameter values for the
statement:

EXEC SQL EXECUTE add_emp USING 8000, 'DAWSON', 'CLERK',
7788;
EXEC SQL EXECUTE add_emp USING 8001, 'EDWARDS', 'ANALYST',
7698;

6.4.5.15 EXECUTE DESCRIPTOR

Use the EXECUTE statement to execute a statement previously prepared by an EXEC SQL
PREPARE statement, using an SQL descriptor. The syntax is:

EXEC SQL [FOR array_size] EXECUTE statement_identifier
 [USING [SQL] DESCRIPTOR descriptor_name]
 [INTO [SQL] DESCRIPTOR descriptor_name];

Where:

array_size is an integer value or a host variable that contains an integer value
that specifies the number of rows to be processed. If you omit the FOR clause, the
statement is executed once for each member of the array.

statement_identifier specifies the identifier assigned to the statement with
the EXEC SQL PREPARE statement.

Include the USING clause to specify values for any input parameters required by
the prepared statement.

Include the INTO clause to specify a descriptor into which the EXECUTE statement
will write the results returned by the prepared statement.

descriptor_name specifies the name of a descriptor (as a single-quoted string
literal), or a host variable that contains the name of a descriptor.

The following example executes the prepared statement, give_raise, using the values
contained in the descriptor stmtText:

EXEC SQL PREPARE give_raise FROM :stmtText;
EXEC SQL EXECUTE give_raise USING DESCRIPTOR :stmtText;

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

434

6.4.5.16 EXECUTE...END EXEC

Use the EXECUTE…END-EXEC statement to embed an anonymous block into a client
application. The syntax is:

EXEC SQL [AT database_name] EXECUTE anonymous_block END-EXEC;

Where:

database_name is the database identifier or a host variable that contains the
database identifier. If you omit the AT clause, the statement will be executed on
the current default database.

anonymous_block is an inline sequence of PL/pgSQL or SPL statements and
declarations. You may include host variables and optional indicator variables
within the block; each such variable is treated as an IN/OUT value.

The following example executes an anonymous block:

EXEC SQL EXECUTE
 BEGIN
 IF (current_user = :admin_user_name) THEN
 DBMS_OUTPUT.PUT_LINE('You are an administrator');
 END IF;
END-EXEC;

Please Note: the EXECUTE…END EXEC statement is supported only by Postgres Plus
Advanced Server.

6.4.5.17 EXECUTE IMMEDIATE

Use the EXECUTE IMMEDIATE statement to execute a string that contains a SQL
command. The syntax is:

EXEC SQL [AT database_name] EXECUTE IMMEDIATE command_text;

Where:

database_name is the database identifier or a host variable that contains the
database identifier. If you omit the AT clause, the statement will be executed on
the current default database.

command_text is the command executed by the EXECUTE IMMEDIATE
statement.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

435

This dynamic SQL statement is useful when you don't know the text of an SQL statement
(i.e., when writing a client application). For example, a client application may prompt a
(trusted) user for a statement to execute. After the user provides the text of the statement
as a string value, the statement is then executed with an EXECUTE IMMEDIATE command.

The statement text may not contain references to host variables. If the statement may
contain parameter markers or returns one or more values, you must use the PREPARE and
DESCRIBE statements.

The following example executes the command contained in the :command_text host
variable:

EXEC SQL EXECUTE IMMEDIATE :command_text;

6.4.5.18 FETCH

Use the FETCH statement to return rows from a cursor into an SQLDA descriptor or a
target list of host variables. Before using a FETCH statement to retrieve information from
a cursor, you must prepare the cursor using DECLARE and OPEN statements. The
statement syntax is:

EXEC SQL [FOR array_size] FETCH cursor
 { USING DESCRIPTOR SQLDA_descriptor }|{ INTO target_list };

Where:

array_size is an integer value or a host variable that contains an integer value
specifying the number of rows to fetch. If you omit the FOR clause, the statement
is executed once for each member of the array.

cursor is the name of the cursor from which rows are being fetched, or a host
variable that contains the name of the cursor.

If you include a USING clause, the FETCH statement will populate the specified
SQLDA descriptor with the values returned by the server.

If you include an INTO clause, the FETCH statement will populate the host
variables (and optional indicator variables) specified in the target_list.

The following code fragment declares a cursor named employees that retrieves the
employee number, name and salary from the emp table:

 EXEC SQL DECLARE employees CURSOR FOR
 SELECT empno, ename, esal FROM emp;
 EXEC SQL OPEN emp_cursor;
 EXEC SQL FETCH emp_cursor INTO :emp_no, :emp_name, :emp_sal;

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

436

6.4.5.19 FETCH DESCRIPTOR

Use the FETCH DESCRIPTOR statement to retrieve rows from a cursor into an SQL
descriptor. The syntax is:

EXEC SQL [FOR array_size] FETCH cursor
 INTO [SQL] DESCRIPTOR descriptor_name;

Where:

array_size is an integer value or a host variable that contains an integer value
specifying the number of rows to fetch. If you omit the FOR clause, the statement
is executed once for each member of the array.

cursor is the name of the cursor from which rows are fetched, or a host variable
that contains the name of the cursor. The client must DECLARE and OPEN the
cursor before calling the FETCH DESCRIPTOR statement.

Include the INTO clause to specify an SQL descriptor into which the EXECUTE
statement will write the results returned by the prepared statement.
descriptor_name specifies the name of a descriptor (as a single-quoted string
literal), or a host variable that contains the name of a descriptor. Prior to use, the
descriptor must be allocated using an ALLOCATE DESCRIPTOR statement.

The following example allocates a descriptor named row_desc that will hold the
description and the values of a specific row in the result set. It then declares and opens a
cursor for a prepared statement (my_cursor), before looping through the rows in result
set, using a FETCH to retrieve the next row from the cursor into the descriptor:

 EXEC SQL ALLOCATE DESCRIPTOR 'row_desc';
 EXEC SQL DECLARE my_cursor CURSOR FOR query;
 EXEC SQL OPEN my_cursor;

 for(row = 0; ; row++)
 {
 EXEC SQL BEGIN DECLARE SECTION;
 int col;
 EXEC SQL END DECLARE SECTION;
 EXEC SQL FETCH my_cursor INTO SQL DESCRIPTOR 'row_desc';

6.4.5.20 GET DESCRIPTOR

Use the GET DESCRIPTOR statement to retrieve information from a descriptor. The GET
DESCRIPTOR statement comes in two forms. The first form returns the number of values
(or columns) in the descriptor.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

437

EXEC SQL GET DESCRIPTOR descriptor_name
 :host_variable = COUNT;

The second form returns information about a specific value (specified by the VALUE
column_number clause).

EXEC SQL [FOR array_size] GET DESCRIPTOR descriptor_name
 VALUE column_number {:host_variable = descriptor_item {,…}};

Where:

array_size is an integer value or a host variable that contains an integer value
that specifies the number of rows to be processed. If you specify an
array_size, the host_variable must be an array of that size; for example, if
array_size is 10, :host_variable must be a 10-member array of
host_variables. If you omit the FOR clause, the statement is executed once
for each member of the array.

descriptor_name specifies the name of a descriptor (as a single-quoted string
literal), or a host variable that contains the name of a descriptor.

Include the VALUE clause to specify the information retrieved from the descriptor.

column_number identifies the position of the variable within the
descriptor.

host_variable specifies the name of the host variable that will receive
the value of the item.

descriptor_item specifies the type of the retrieved descriptor item.

ECPGPlus implements the following descriptor_item types:

x TYPE
x LENGTH
x OCTET_LENGTH
x RETURNED_LENGTH
x RETURNED_OCTET_LENGTH
x PRECISION
x SCALE
x NULLABLE
x INDICATOR
x DATA
x NAME

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

438

The following code fragment demonstrates using a GET DESCRIPTOR statement to obtain
the number of columns entered in a user-provided string:

 EXEC SQL ALLOCATE DESCRIPTOR parse_desc;
 EXEC SQL PREPARE query FROM :stmt;
 EXEC SQL DESCRIBE query INTO SQL DESCRIPTOR parse_desc;
 EXEC SQL GET DESCRIPTOR parse_desc :col_count = COUNT;

The example allocates an SQL descriptor (named parse_desc), before using a
PREPARE statement to syntax check the string provided by the user (:stmt). A
DESCRIBE statement moves the user-provided string into the descriptor, parse_desc.
The call to EXEC SQL GET DESCRIPTOR interrogates the descriptor to discover the
number of columns (:col_count) in the result set.

6.4.5.21 INSERT

Use the INSERT statement to add one or more rows to a table. The syntax for the
ECPGPlus INSERT statement is the same as the syntax for the SQL statement, but you
can use parameter markers and host variables any place that a value is allowed. The
syntax is:

[FOR exec_count] INSERT INTO table [(column [, ...])]
 {DEFAULT VALUES |
 VALUES ({expression | DEFAULT} [, ...])[, ...] | query}
 [RETURNING * | output_expression [[AS] output_name] [, ...]]

Where:

Include the FOR exec_count clause to specify the number of times the statement will
execute; this clause is valid only if the VALUES clause references an array or a pointer to
an array.

table specifies the (optionally schema-qualified) name of an existing table.

column is the name of a column in the table. The column name may be qualified
with a subfield name or array subscript. Specify the DEFAULT VALUES clause to
use default values for all columns.

expression is the expression, value, host variable or parameter marker that will
be assigned to the corresponding column. Specify DEFAULT to fill the
corresponding column with its default value.

query specifies a SELECT statement that supplies the row(s) to be inserted.

output_expression is an expression that will be computed and returned by the
INSERT command after each row is inserted. The expression can refer to any
column within the table. Specify * to return all columns of the inserted row(s).

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

439

output_name specifies a name to use for a returned column.

The following example adds a row to the employees table:

INSERT INTO emp (empno, ename, job, hiredate)
 VALUES ('8400', :ename, 'CLERK', '2011-10-31');

Note that the INSERT statement uses a host variable (:ename) to specify the value of the
ename column.

For more information about using the INSERT statement, please see the PostgreSQL Core
documentation, available from EnterpriseDB at:

http://www.enterprisedb.com/docs/en/9.4/pg/sql-insert.html

6.4.5.22 OPEN

Use the OPEN statement to open a cursor. The syntax is:

EXEC SQL [FOR array_size] OPEN cursor [USING parameters];

Where parameters is one of the following:

 DESCRIPTOR SQLDA_descriptor
or
 host_variable [[INDICATOR] indicator_variable, …]

Where:

array_size is an integer value or a host variable that contains an integer value
specifying the number of rows to fetch. If you omit the FOR clause, the statement
is executed once for each member of the array.

cursor is the name of the cursor being opened.

parameters is either DESCRIPTOR SQLDA_descriptor or a comma-
separated list of host variables (and optional indicator variables) that initialize the
cursor. If specifying an SQLDA_descriptor, the descriptor must be initialized
with a DESCRIBE statement.

The OPEN statement initializes a cursor using the values provided in
parameters. Once initialized, the cursor result set will remain unchanged
unless the cursor is closed and re-opened. A cursor is automatically closed when
an application terminates.

http://www.enterprisedb.com/docs/en/9.4/pg/sql-insert.html
http://www.enterprisedb.com/docs/en/9.4/pg/sql-insert.html

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

440

The following example declares a cursor named employees, that queries the emp table,
returning the employee number, name, salary and commission of an employee whose
name matches a user-supplied value (stored in the host variable, :emp_name).

 EXEC SQL DECLARE employees CURSOR FOR
 SELECT
 empno, ename, sal, comm
 FROM
 emp
 WHERE ename = :emp_name;
 EXEC SQL OPEN employees;
...

After declaring the cursor, the example uses an OPEN statement to make the contents of
the cursor available to a client application.

6.4.5.23 OPEN DESCRIPTOR

Use the OPEN DESCRIPTOR statement to open a cursor with a SQL descriptor. The
syntax is:

EXEC SQL [FOR array_size] OPEN cursor
 [USING [SQL] DESCRIPTOR descriptor_name]
 [INTO [SQL] DESCRIPTOR descriptor_name];

Where:

array_size is an integer value or a host variable that contains an integer value
specifying the number of rows to fetch. If you omit the FOR clause, the statement
is executed once for each member of the array.

cursor is the name of the cursor being opened.

descriptor_name specifies the name of an SQL descriptor (in the form of a
single-quoted string literal) or a host variable that contains the name of an SQL
descriptor that contains the query that initializes the cursor.

For example, the following statement opens a cursor (named emp_cursor), using the
host variable, :employees:

 EXEC SQL OPEN emp_cursor USING DESCRIPTOR :employees;

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

441

6.4.5.24 PREPARE

Prepared statements are useful when a client application must perform a task multiple
times; the statement is parsed, written and planned only once, rather than each time the
statement is executed, saving repetitive processing time.

Use the PREPARE statement to prepare an SQL statement or PL/pgSQL block for
execution. The statement is available in two forms; the first form is:

EXEC SQL [AT database_name] PREPARE statement_name
 FROM sql_statement;

The second form is:

EXEC SQL [AT database_name] PREPARE statement_name
 AS sql_statement;

Where:

database_name is the database identifier or a host variable that contains the
database identifier against which the statement will execute. If you omit the AT
clause, the statement will execute against the current default database.

statement_name is the identifier associated with a prepared SQL statement or
PL/SQL block.

sql_statement may take the form of a SELECT statement, a single-quoted
string literal or host variable that contains the text of an SQL statement.

To include variables within a prepared statement, substitute placeholders ($1, $2, $3,
etc.) for statement values that might change when you PREPARE the statement. When
you EXECUTE the statement, provide a value for each parameter. The values must be
provided in the order in which they will replace placeholders.

The following example creates a prepared statement (named add_emp) that inserts a
record into the emp table:

EXEC SQL PREPARE add_emp (int, text, text, numeric) AS
 INSERT INTO emp VALUES($1, $2, $3, $4);

Each time you invoke the statement, provide fresh parameter values for the statement:

EXEC SQL EXECUTE add_emp(8003, 'Davis', 'CLERK', 2000.00);
EXEC SQL EXECUTE add_emp(8004, 'Myer', 'CLERK', 2000.00);

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

442

Please note: A client application must issue a PREPARE statement within each session in
which a statement will be executed; prepared statements persist only for the duration of
the current session.

6.4.5.25 ROLLBACK

Use the ROLLBACK statement to abort the current transaction, and discard any updates
made by the transaction. The syntax is:

EXEC SQL [AT database_name] ROLLBACK [WORK]
 [{ TO [SAVEPOINT] savepoint } | RELEASE]

Where:

database_name is the database identifier or a host variable that contains the
database identifier against which the statement will execute. If you omit the AT
clause, the statement will execute against the current default database.

Include the TO clause to abort any commands that were executed after the
specified savepoint; use the SAVEPOINT statement to define the savepoint.
If you omit the TO clause, the ROLLBACK statement will abort the transaction,
discarding all updates.

Include the RELEASE clause to cause the application to execute an EXEC SQL
COMMIT RELEASE and close the connection.

Use the following statement to rollback a complete transaction:

EXEC SQL ROLLBACK;

Invoking this statement will abort the transaction, undoing all changes, erasing any
savepoints, and releasing all transaction locks. If you include a savepoint
(my_savepoint in the following example):

EXEC SQL ROLLBACK TO SAVEPOINT my_savepoint;

Only the portion of the transaction that occurred after the my_savepoint is rolled back;
my_savepoint is retained, but any savepoints created after my_savepoint will be
erased.

Rolling back to a specified savepoint releases all locks acquired after the savepoint.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

443

6.4.5.26 SAVEPOINT

Use the SAVEPOINT statement to define a savepoint; a savepoint is a marker within a
transaction. You can use a ROLLBACK statement to abort the current transaction,
returning the state of the server to its condition prior to the specified savepoint. The
syntax of a SAVEPOINT statement is:

EXEC SQL [AT database_name] SAVEPOINT savepoint_name

Where:

database_name is the database identifier or a host variable that contains the
database identifier against which the savepoint resides. If you omit the AT clause,
the statement will execute against the current default database.

savepoint_name is the name of the savepoint. If you re-use a
savepoint_name, the original savepoint is discarded.

Savepoints can only be established within a transaction block. A transaction block may
contain multiple savepoints.

To create a savepoint named my_savepoint, include the statement:

EXEC SQL SAVEPOINT my_savepoint;

6.4.5.27 SELECT

ECPGPlus extends support of the SQL SELECT statement by providing the INTO
host_variables clause. The clause allows you to select specified information from an
Advanced Server database into a host variable. The syntax for the SELECT statement is:

EXEC SQL [AT database_name]
SELECT
 [hint]
 [ALL | DISTINCT [ON(expression, ...)]]
 select_list INTO host_variables

 [FROM from_item [, from_item]...]
 [WHERE condition]
 [hierarchical_query_clause]
 [GROUP BY expression [, ...]]
 [HAVING condition]
 [{ UNION [ALL] | INTERSECT | MINUS } (subquery)]
 [ORDER BY expression [order_by_options]]
 [LIMIT { count | ALL }]
 [OFFSET start [ROW | ROWS]]
 [FETCH { FIRST | NEXT } [count] { ROW | ROWS } ONLY]

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

444

 [FOR { UPDATE | SHARE } [OF table_name [, ...]][NOWAIT][...]]

Where:

database_name is the name of the database (or host variable that contains the
name of the database) in which the table resides. This value may take the form of
an unquoted string literal, or of a host variable.

host_variables is a list of host variables that will be populated by the SELECT
statement. If the SELECT statement returns more than a single row,
host_variables must be an array.

ECPGPlus provides support for the additional clauses of the SQL SELECT statement as
documented in the PostgreSQL Core documentation, available from EnterpriseDB at:

http://www.enterprisedb.com/docs/en/9.4/pg/sql-select.html

To use the INTO host_variables clause, include the names of defined host variables
when specifying the SELECT statement. For example, the following SELECT statement
populates the :emp_name and :emp_sal host variables with a list of employee names
and salaries:

EXEC SQL SELECT ename, sal
 INTO :emp_name, :emp_sal
 FROM emp
 WHERE empno = 7988;

The enhanced SELECT statement also allows you to include parameter markers (question
marks) in any clause where a value would be permitted. For example, the following
query contains a parameter marker in the WHERE clause:

SELECT * FROM emp WHERE dept_no = ?;

This SELECT statement allows you to provide a value at run-time for the dept_no
parameter marker.

6.4.5.28 SET CONNECTION

There are (at least) three reasons you may need more than one connection in a given
client application:

x You may want different privileges for different statements.
x You may need to interact with multiple databases within the same client.
x Multiple threads of execution (within a client application) cannot share a

connection concurrently.

http://www.enterprisedb.com/docs/en/9.4/pg/sql-select.html

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

445

The syntax for the SET CONNECTION statement is:

EXEC SQL SET CONNECTION connection_name;

Where:

connection_name is the name of the connection to the database.

To use the SET CONNECTION statement, you should open the connection to the database
using the second form of the CONNECT statement; include the AS clause to specify a
connection_name.

By default, the current thread uses the current connection; use the SET CONNECTION
statement to specify a default connection for the current thread to use. The default
connection is only used when you execute an EXEC SQL statement that does not explicitly
specify a connection name. For example, the following statement will use the default
connection because it does not include an AT connection_name clause:

EXEC SQL DELETE FROM emp;

This statement will not use the default connection because it specifies a connection name
using the AT connection_name clause:

 EXEC SQL AT acctg_conn DELETE FROM emp;

For example, a client application that creates and maintains multiple connections (such
as):

 EXEC SQL CONNECT TO edb AS acctg_conn
 USER 'alice' IDENTIFIED BY 'acctpwd';

and

 EXEC SQL CONNECT TO edb AS hr_conn
 USER 'bob' IDENTIFIED BY 'hrpwd';

Can change between the connections with the SET CONNECTION statement:

SET CONNECTION acctg_conn;

or

SET CONNECTION hr_conn;

The server will use the privileges associated with the connection when determining the
privileges available to the connecting client. When using the acctg_conn connection,

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

446

the client will have the privileges associated with the role, alice; when connected using
hr_conn, the client will have the privileges associated with bob.

6.4.5.29 SET DESCRIPTOR

Use the SET DESCRIPTOR statement to assign a value to a descriptor area using
information provided by the client application in the form of a host variable or an integer
value. The statement comes in two forms; the first form is:

EXEC SQL [FOR array_size] SET DESCRIPTOR descriptor_name
 VALUE column_number descriptor_item = host_variable;

The second form is:

EXEC SQL [FOR array_size] SET DESCRIPTOR descriptor_name
 COUNT = integer;

Where:

array_size is an integer value or a host variable that contains an integer value
specifying the number of rows to fetch. If you omit the FOR clause, the statement
is executed once for each member of the array.

descriptor_name specifies the name of a descriptor (as a single-quoted string
literal), or a host variable that contains the name of a descriptor.

Include the VALUE clause to describe the information stored in the descriptor.

column_number identifies the position of the variable within the
descriptor.

descriptor_item specifies the type of the descriptor item.

host_variable specifies the name of the host variable that contains the
value of the item.

ECPGPlus implements the following descriptor_item types:

x TYPE
x LENGTH
x [REF] INDICATOR
x [REF] DATA
x [REF] RETURNED LENGTH

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

447

For example, a client application might prompt a user for a dynamically created
query:

query_text = promptUser("Enter a query");

To execute a dynamically created query, you must first prepare the query (parsing and
validating the syntax of the query), and then describe the input parameters found in the
query using the EXEC SQL DESCRIBE INPUT statement.

EXEC SQL ALLOCATE DESCRIPTOR query_params;
EXEC SQL PREPARE emp_query FROM :query_text;

EXEC SQL DESCRIBE INPUT emp_query
 USING SQL DESCRIPTOR 'query_params';

After describing the query, the query_params descriptor contains information about
each parameter required by the query.

For this example, we'll assume that the user has entered:

SELECT ename FROM emp WHERE sal > ? AND job = ?;,

In this case, the descriptor describes two parameters:

x one for sal > ?
x one for job = ?

To discover the number of parameter markers (question marks) in the query (and
therefore, the number of values you must provide before executing the query), use:

EXEC SQL GET DESCRIPTOR … :host_variable = COUNT;

Then, you can use EXEC SQL GET DESCRIPTOR to retrieve the name of each parameter.
You can also use EXEC SQL GET DESCRIPTOR to retrieve the type of each parameter
(along with the number of parameters) from the descriptor, or you can supply each value
in the form of a character string and ECPG will convert that string into the required data
type.

The data type of the first parameter is numeric; the type of the second parameter is
varchar. The name of the first parameter is sal; the name of the second parameter is
job.

Next, loop through each parameter, prompting the user for a value, and store those values
in host variables. You can use GET DESCRIPTOR … COUNT to find the number of
parameters in the query.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

448

EXEC SQL GET DESCRIPTOR 'query_params'
 :param_count = COUNT;

for(param_number = 1;
 param_number <= param_count;
 param_number++)
{

Use GET DESCRIPTOR to copy the name of the parameter into the param_name host
variable:

 EXEC SQL GET DESCRIPTOR 'query_params'
 VALUE :param_number :param_name = NAME;

 reply = promptUser(param_name);
 if (reply == NULL)
 reply_ind = 1; /* NULL */
else
 reply_ind = 0; /* NOT NULL */

To associate a value with each parameter, you use the EXEC SQL SET DESCRIPTOR
statement. For example:

 EXEC SQL SET DESCRIPTOR 'query_params'
 VALUE :param_number DATA = :reply;
 EXEC SQL SET DESCRIPTOR 'query_params'
 VALUE :param_number INDICATOR = :reply_ind;
}

Now, you can use the EXEC SQL EXECUTE DESCRIPTOR statement to execute the
prepared statement on the server.

6.4.5.30 UPDATE

Use an UPDATE statement to modify the data stored in a table. The syntax is:

EXEC SQL [AT database_name][FOR exec_count]
 UPDATE [ONLY] table [[AS] alias]
 SET {column = { expression | DEFAULT } |
 (column [, ...]) = ({ expression|DEFAULT } [, ...])} [, ...]
 [FROM from_list]
 [WHERE condition | WHERE CURRENT OF cursor_name]
 [RETURNING * | output_expression [[AS] output_name] [, ...]]

Where:

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

449

database_name is the name of the database (or host variable that contains the
name of the database) in which the table resides. This value may take the form of
an unquoted string literal, or of a host variable.

Include the FOR exec_count clause to specify the number of times the statement
will execute; this clause is valid only if the SET or WHERE clause contains an
array.

ECPGPlus provides support for the additional clauses of the SQL UPDATE statement as
documented in the PostgreSQL Core documentation, available from EnterpriseDB at:

http://www.enterprisedb.com/docs/en/9.4/pg/sql-update.html

A host variable can be used in any clause that specifies a value. To use a host variable,
simply substitute a defined variable for any value associated with any of the documented
UPDATE clauses.

The following UPDATE statement changes the job description of an employee (identified
by the :ename host variable) to the value contained in the :new_job host variable, and
increases the employee‟s salary, by multiplying the current salary by the value in the
:increase host variable:

EXEC SQL UPDATE emp
 SET job = :new_job, sal = sal * :increase
 WHERE ename = :ename;

The enhanced UPDATE statement also allows you to include parameter markers (question
marks) in any clause where an input value would be permitted. For example, we can
write the same update statement with a parameter marker in the WHERE clause:

EXEC SQL UPDATE emp
 SET job = ?, sal = sal * ?
 WHERE ename = :ename;

This UPDATE statement could allow you to prompt the user for a new value for the job
column and provide the amount by which the sal column is incremented for the
employee specified by :ename.

6.4.5.31 WHENEVER

Use the WHENEVER statement to specify the action taken by a client application when it
encounters an SQL error or warning. The syntax is:

EXEC SQL WHENEVER condition action;

The following table describes the different conditions that might trigger an action:

http://www.enterprisedb.com/docs/en/9.4/pg/sql-update.html

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

450

Condition Description
NOT FOUND The server returns a NOT FOUND condition when it encounters a

SELECT that returns no rows, or when a FETCH reaches the end of a
result set.

SQLERROR The server returns an SQLERROR condition when it encounters a serious
error returned by an SQL statement.

SQLWARNING The server returns an SQLWARNING condition when it encounters a
non-fatal warning returned by an SQL statement.

The following table describes the actions that result from a client encountering a
condition:

Action Description
CALL function([args]) Instructs the client application to call the named function.
CONTINUE Instructs the client application to proceed to the next statement.
DO BREAK Instructs the client application to a C break statement. A break

statement may appear in a loop or a switch statement. If executed,
the break statement terminate the loop or the switch statement.

DO CONTINUE Instructs the client application to emit a C continue statement. A
continue statement may only exist within a loop, and if executed,
will cause the flow of control to return to the top of the loop.

DO function([args]) Instructs the client application to call the named function.
GOTO label or
GO TO label

Instructs the client application to proceed to the statement that contains
the label.

SQLPRINT Instructs the client application to print a message to standard error.
STOP Instructs the client application to stop execution.

The following code fragment prints a message if the client application encounters a
warning, and aborts the application if it encounters an error:

EXEC SQL WHENEVER SQLWARNING SQLPRINT;
EXEC SQL WHENEVER SQLERROR STOP;

Include the following code to specify that a client should continue processing after
warning a user of a problem:

EXEC SQL WHENEVER SQLWARNING SQLPRINT;

Include the following code to call a function if a query returns no rows, or when a cursor
reaches the end of a result set:

EXEC SQL WHENEVER NOT FOUND CALL error_handler(__LINE__);

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

451

7 Open Client Library
The Open Client Library provides application interoperability with the Oracle Call
Interface – an application that was formerly “locked in” can now work with either a
Postgres Plus Advanced Server or an Oracle database with minimal to no changes to the
application code. The EnterpriseDB implementation of the Open Client Library is
written in C.

Please note: EnterpriseDB does not support use of the Open Client Library with
Oracle Real Application Clusters (RAC) and Oracle Exadata; the aforementioned
Oracle products have not been evaluated nor certified with this EnterpriseDB
product.

7.1 Comparison with Oracle Call Interface

The following diagram compares the Open Client Library and Oracle Call Interface
application stacks.

Figure 3 Open Client Library

OracleTM Call Interface EnterpriseDB’s
Open Client Library

Application Programs Same
Application Programs

Published API Compatible API

Oracle’s OCI-Lib Open Client Library

libpq

Wire-Level Protocols Wire-Level Protocols

“Black
Box” Open

Source

Oracle DBMS Advanced Server

Oracle Database Postgres Plus
Database

UPI

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

452

7.2 Compiling and Linking a Program

The EnterpriseDB Open Client Library allows applications written using the Oracle Call
Interface API to connect to and access an EnterpriseDB database with minimal changes
to the C source code. The EnterpriseDB Open Client Library files are named:

On Linux:

libedboci.so

On Windows:

edboci.dll

The files are installed in the connectors/edb-oci/lib subdirectory.

Compiling and Linking a Sample Program

The following example compiles and links the sample program edb_demo.c in a Linux
environment. The edb_demo.c is located in the connectors/edb-oci/samples
subdirectory.

1. Set the ORACLE_HOME and EDB_HOME environment variables.

Set ORACLE_HOME to the complete pathname of the Oracle home directory.

For example:

export
ORACLE_HOME=/usr/lib/oracle/xe/app/oracle/product/10.2.0/serve
r

Set EDB_HOME to the complete pathname of the home directory.

For example:

export EDB_HOME=/opt/PostgresPlus

2. Set LD_LIBRARY_PATH to the complete path of libpthread.so. By default,
libpthread.so is located in /usr/lib.

export LD_LIBRARY_PATH=/usr/lib:$LD_LIBRARY_PATH

3. Set LD_LIBRARY_PATH to include the Advanced Server Open Client library. By
default, libiconv.so.2 is located in $EDB_HOME/connectors/edb-oci/lib.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

453

export
LD_LIBRARY_PATH=$EDB_HOME/connectors/edb-oci:$EDB_HOME/
connectors/edb-oci/lib:$LD_LIBRARY_PATH

4. Then, compile and link the OCI API program.

cd $EDB_HOME/connectors/edb-oci/samples

make

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

454

7.3 Ref Cursor Support

The Advanced Server Open Client Library supports the use of Oracle-compatible REF
CURSOR's as OUT parameters in PL/SQL procedures. Support is provided through the
following API's:

x OCIBindByName
x OCIBindByPos
x OCIBindDynamic
x OCIStmtPrepare
x OCIStmtExecute
x OCIStmtFetch
x OCIAttrGet

OCL also supports the SQLT_RSET data type.

The following example demonstrates how to invoke a stored procedure that opens a
cursor and returns a REF CURSOR as an output parameter. The code sample assumes that
a PL/SQL procedure named openCursor (with an OUT parameter of type REF CURSOR)
has been created on the database server, and that the required handles have been
allocated:

char * openCursor =
 "begin \
 openCursor(:cmdRefCursor); \
 end;";
OCIStmt *stmtOpenRefCursor;
OCIStmt *stmtUseRefCursor;

Allocate handles for executing a stored procedure to open and use the REF CURSOR:

 /* Handle for the stored procedure to open the ref cursor */
 OCIHandleAlloc((dvoid *) envhp,
 (dvoid **) &stmtOpenRefCursor,
 OCI_HTYPE_STMT,
 0,
 (dvoid **) NULL));

 /* Handle for using the Ref Cursor */
 OCIHandleAlloc((dvoid *) envhp,
 (dvoid **) &stmtUseRefCursor,
 OCI_HTYPE_STMT,
 0,
 (dvoid **) NULL));

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

455

Then, prepare the PL/SQL block that is used to open the REF CURSOR:

 OCIStmtPrepare(stmtOpenRefCursor,
 errhp,
 (text *) openCursor,
 (ub4) strlen(openCursor),
 OCI_NTV_SYNTAX,
 OCI_DEFAULT));

Bind the PL/SQL openCursor OUT parameter:

 OCIBindByPos(stmtOpenRefCursor,
 &bndplrc1,
 errhp,
 1,
 (dvoid*) &stmtUseRefCursor,
 /* the returned ref cursor */
 0,
 SQLT_RSET,
 /* SQLT_RSET type representing cursor
*/
 (dvoid *) 0,
 (ub2 *) 0,
 (ub2) 0,
 (ub4) 0,
 (ub4 *) 0,
 OCI_DEFAULT));

Use the stmtOpenRefCursor statement handle to call the openCursor procedure:

 OCIStmtExecute(svchp,
 stmtOpenRefCursor,
 errhp,
 1,
 0,
 0,
 0,
 OCI_DEFAULT);

At this point, the stmtUseRefCursor statement handle contains the reference to the
cursor. To obtain the information, define output variables for the ref cursor:

/* Define the output variables for the ref cursor */
 OCIDefineByPos(stmtUseRefCursor,
 &defnEmpNo,
 errhp,
 (ub4) 1,
 (dvoid *) &empNo,
 (sb4) sizeof(empNo),

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

456

 SQLT_INT,
 (dvoid *) 0,
 (ub2 *)0,
 (ub2 *)0,
 (ub4) OCI_DEFAULT));

Then, fetch the first row of the result set into the target variables:

/* Fetch the cursor data */
 OCIStmtFetch(stmtUseRefCursor,
 errhp,
 (ub4) 1,
 (ub4) OCI_FETCH_NEXT,
 (ub4) OCI_DEFAULT))

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

457

7.4 OCL Function Reference

The following tables list the functions supported in the Open Client Library. Note that
any and all header files must be supplied by the user. Postgres Plus Advanced Server
does not supply any such files.

7.4.1 Connect, Authorize and Initialize Functions
Table 9-7-1 Connect, Authorize, Terminate and Initialize Functions

Function Description
OCIBreak Aborts the specified OCI function.
OCIEnvCreate Create an OCI environment.
OCIEnvInit Initialize an OCI environment handle.
OCIInitialize Initialize the OCI environment.
OCILogoff Release a session.
OCILogon Create a logon connection.
OCILogon2 Create a logon session in various modes.
OCIReset Resets the current operation/protocol.

OCIServerAttach
Establish an access path to a data source. For information about
using the tnsnames.ora file, see Section 9.6.

OCIServerDetach Remove access to a data source.
OCISessionBegin Create a user session.
OCISessionEnd End a user session.
OCISessionGet Get session from session pool.
OCISessionRelease Release a session.
OCITerminate Detach from shared memory subsystem.

7.4.1.1 Using the tnsnames.ora File

The OCIServerAttach method uses a connection descriptor specified in the dblink
parameter of the tnsnames.ora file. Use the Oracle-compatible tnsnames.ora file to
specify database connection addresses. Advanced Server searches the user's home
directory for a file named tnsnames.ora. If Advanced Server doesn't find the
tnsnames.ora file in the user's home directory, it searches the path specified by
TNS_ADMIN.

The sample tnsnames.ora file contains:

 EDBX =
(DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = localhost)(PORT = 5444))
 (CONNECT_DATA = (SERVER = DEDICATED)(SID = edb))
)

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

458

Any parameters not included in the sample, are ignored by the Open Client Library. In
the sample, SID refers to the database named edb, in the cluster running on server
'localhost' at port 5444.

A C program call to OCIServerAttach that uses the tnsnames.ora file will look like:

static text *username = (text *) "enterprisedb";
static text *password = (text *) "edb";
static text *attach_str = "EDBX";
OCIServerAttach(srvhp, errhp, attach_str, strlen(attach_str),
0);

If you don't have a tnsnames.ora file, supply the connection string parameter in the
form //localhost:5444/edbx.

7.4.2 Handle and Descriptor Functions
Table 9-7-2 Handle and Descriptor Functions

Function Description

OCIAttrGet

Get handle attributes. Advanced server supports the following
handle attributes: OCI_ATTR_USERNAME, OCI_ATTR_PASSWORD,
OCI_ATTR_SERVER, OCI_ATTR_ENV, OCI_ATTR_SESSION,
OCI_ATTR_ROW_COUNT, OCI_ATTR_CHARSET_FORM,
OCI_ATTR_CHARSET_ID, EDB_ATTR_STMT_LEVEL_TX,
OCI_ATTR_MODULE

OCIAttrSet

Set handle attributes. Advanced server supports the following
handle attributes: OCI_ATTR_USERNAME, OCI_ATTR_PASSWORD,
OCI_ATTR_SERVER, OCI_ATTR_ENV, OCI_ATTR_SESSION,
OCI_ATTR_ROW_COUNT, OCI_ATTR_CHARSET_FORM,
OCI_ATTR_CHARSET_ID, EDB_ATTR_STMT_LEVEL_TX,
OCI_ATTR_MODULE

OCIDescriptorAlloc Allocate and initialize a descriptor.
OCIDescriptorFree Free an allocated descriptor.
OCIHandleAlloc Allocate and initialize a handle.
OCIHandleFree Free an allocated handle.
OCIParamGet Get a parameter descriptor.
OCIParamSet Set a parameter descriptor.

7.4.2.1 EDB_ATTR_EMPTY_STRINGS

By default, Advanced Server will treat an empty string as a NULL value. You can use the
EDB_ATTR_EMPTY_STRINGS environment attribute to control the behavior of the OCL
when mapping empty strings. To modify the mapping behavior, use the OCIAttrSet()
function to set EDB_ATTR_EMPTY_STRINGS to one of the following:

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

459

Value Description
OCI_DEFAULT Treat an empty string as a NULL value.
EDB_EMPTY_STRINGS_NULL Treat an empty string as a NULL value.
EDB_EMPTY_STRINGS_EMPTY Treat an empty string as a string of zero length.

To find the value of EDB_ATTR_EMPTY_STRINGS, query OCIAttrGet().

7.4.2.2 EDB_ATTR_HOLDABLE

Advanced Server supports statements that execute as WITH HOLD cursors. The
EDB_ATTR_HOLDABLE attribute specifies which statements execute as WITH HOLD
cursors. The EDB_ATTR_HOLDABLE attribute can be set to any of the following three
values:

x EDB_WITH_HOLD - execute as a WITH HOLD cursor
x EDB_WITHOUT_HOLD - execute using a protocol-level prepared statement
x OCI_DEFAULT - see the definition that follows

You can set the attribute in an OCIStmt handle or an OCIServer handle. When you
create an OCIServer handle or an OCIStmt handle, the EDB_ATTR_HOLDABLE attribute
for that handle is set to OCI_DEFAULT.

You can change the EDB_ATTR_HOLDABLE attribute for a handle by calling
OCIAttrSet() and retrieve the attribute by calling OCIAttrGet().

When Advanced Server executes a SELECT statement, it examines the
EDB_ATTR_HOLDABLE attribute in the OCIServer handle. If that attribute is set to
EDB_WITH_HOLD, the query is executed as a WITH HOLD cursor.

If the EDB_ATTR_HOLDABLE attribute in the OCIServer handle is set to
EDB_WITHOUT_HOLD, the query is executed as a normal prepared statement.

If the EDB_ATTR_HOLDABLE attribute in the OCIServer handle is set to OCI_DEFAULT,
Advanced Server uses the value of the EDB_ATTR_HOLDABLE attribute in the
OCIServer handle (if the EDB_ATTR_HOLDABLE attribute in the OCIServer is set to
EDB_WITH_HOLD, the query executes as a WITH HOLD cursor, otherwise, the query
executes as a protocol-prepared statement).

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

460

7.4.2.3 EDB_ATTR_STMT_LVL_TX

Unless otherwise instructed, the OCL library will ROLLBACK the current transaction
whenever the server reports an error. If you choose, you can override the automatic
ROLLBACK with the edb_stmt_level_tx parameter, which preserves modifications
within a transaction, even if one (or several) statements raise an error within the
transaction. For more information about edb_stmt_level_tx, see Section 1.3.4.

You can use the OCIServer attribute with OCIAttrSet() and OCIAttrGet()to
enable or disable EDB_ATTR_STMT_LEVEL_TX. By default, edb_stmt_level_tx is
disabled. To enable edb_stmt_level_tx, the client application must call
OCIAttrSet():

OCIServer *server = myServer;
ub1 enabled = 1;

OCIAttrSet(server, OCI_HTYPE_SERVER, &enabled,
 sizeof(enabled), EDB_ATTR_STMT_LEVEL_TX, err);

To disable edb_stmt_level_tx:

OCIServer *server = myServer;
ub1 enabled = 0;

OCIAttrSet(server, OCI_HTYPE_SERVER, &enabled,
 sizeof(enabled), EDB_ATTR_STMT_LEVEL_TX, err);

7.4.3 Bind, Define and Describe Functions
Table 9-7-3 Bind, Define, and Describe Functions

Function Description
OCIBindByName Bind by name.
OCIBindByPos Bind by position.
OCIBindDynamic Set additional attributes after bind.
OCIBindArrayOfStruct Bind an array of structures for bulk operations.
OCIDefineArrayOfStruct Specify the attributes of an array.
OCIDefineByPos Define an output variable association.
OCIDefineDynamic Set additional attributes for define.
OCIDescribeAny Describe existing schema objects.
OCIStmtGetBindInfo Get bind and indicator variable names and handle.
OCIUserCallbackRegister Define a user-defined callback.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

461

7.4.4 Statement Functions
Table 9-7-4 Statement Functions

Function Description
OCIStmtExecute Execute a prepared SQL statement.
OCIStmtFetch Fetch rows of data (deprecated).
OCIStmtFetch2 Fetch rows of data.
OCIStmtPrepare Prepare a SQL statement.
OCIStmtPrepare2 Prepare a SQL statement.
OCIStmtRelease Release a statement handle.

7.4.5 Transaction Functions
Table 9-7-5 Transaction Functions

Function Description
OCITransCommit Commit a transaction.
OCITransRollback Roll back a transaction.

7.4.6 XA Functions
Table 9-7-6 XA Functions

Function Description
xaoEnv Returns OCL environment handle.
xaoSvcCtx Returns OCL service context.

7.4.6.1 xaoSvcCtx

In order to use the xaoSvcCtx function, extensions in the xaoSvcCtx or xa_open
connection string format must be provided as follows:

Oracle_XA{+required_fields ...}

Where required_fields are the following:

HostName=host_ip_address specifies the IP address of the Advanced Server
database.

PortNumber=host_port_number specifies the port number on which Advanced
Server is running.

SqlNet=dbname specifies the database name.

Acc=P/username/password specifies the database username and password.
password may be omitted in which case the field is specified as Acc=P/username/.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

462

AppName=app_id specifies a number that identifies the application.

The following is an example of the connection string:

Oracle_XA+HostName=192.168.1.1+PortNumber=1533+SqlNet=XE+Acc=P/
user/password+AppName=1234

7.4.7 Date and Datetime Functions
Table 9-7-7 Date and Datetime Functions

Function Description
OCIDateAddDays Add or subtract a number of days.
OCIDateAddMonths Add or subtract a number of months.
OCIDateAssign Assign a date.
OCIDateCheck Check if the given date is valid.
OCIDateCompare Compare two dates.
OCIDateDaysBetween Find the number of days between two dates.
OCIDateFromText Convert a string to a date.
OCIDateGetDate Get the date portion of a date.
OCIDateGetTime Get the time portion of a date.
OCIDateLastDay Get the date of the last day of the month.
OCIDateNextDay Get the date of the next day.
OCIDateSetDate Set the date portion of a date.
OCIDateSetTime Set the time portion of a date.
OCIDateSysDate Get the current system date and time.
OCIDateToText Convert a date to a string.
OCIDateTimeAssign Perform datetime assignment.
OCIDateTimeCheck Check if the date is valid.
OCIDateTimeCompare Compare two datetime values.
OCIDateTimeConstruct Construct a datetime descriptor.
OCIDateTimeConvert Convert one datetime type to another.

OCIDateTimeFromArray Convert an array of size OCI_DT_ARRAYLEN to an OCIDateTime
descriptor.

OCIDateTimeFromText
Convert the given string to Oracle datetime type in the
OCIDateTime descriptor according to the specified format.

OCIDateTimeGetDate Get the date portion of a datetime value.
OCIDateTimeGetTime Get the time portion of a datetime value.
OCIDateTimeGetTimeZoneName Get the time zone name portion of a datetime value.
OCIDateTimeGetTimeZoneOffset Get the time zone (hour, minute) portion of a datetime value.

OCIDateTimeSubtract Take two datetime values as input and return their difference as an
interval.

OCIDateTimeSysTimeStamp Get the system current date and time as a timestamp with time
zone.

OCIDateTimeToArray Convert an OCIDateTime descriptor to an array.

OCIDateTimeToText Convert the given date to a string according to the specified
format.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

463

7.4.8 Interval Functions
Table 9-7-8 Interval Functions

Function Description
OCIIntervalAdd Adds two interval values.
OCIIntervalAssign Copies one interval value into another interval value.
OCIIntervalCompare Compares two interval values.

OCIIntervalGetDaySecond Extracts days, hours, minutes, seconds and fractional seconds from
an interval.

OCIIntervalSetDaySecond Modifies days, hours, minutes, seconds and fractional seconds in
an interval.

OCIIntervalGetYearMonth Extracts year and month values from an interval.
OCIIntervalSetYearMonth Modifies year and month values in an interval.

OCIIntervalDivide Implements division of OCIInterval values by OCINumber
values.

OCIIntervalMultiply Implements multiplication of OCIInterval values by
OCINumber values.

OCIIntervalSubtract Subtracts one interval value from another interval value.
OCIIntervalToText Extrapolates a character string from an interval.
OCIIntervalCheck Verifies the validity of an interval value.
OCIIntervalToNumber Converts an OCIInterval value into a OCINumber value.
OCIIntervalFromNumber Converts a OCINumber value into an OCIInterval value.

OCIDateTimeIntervalAdd Adds an OCIInterval value to an OCIDatetime value, resulting
in an OCIDatetime value.

OCIDateTimeIntervalSub Subtracts an OCIInterval value from an OCIDatetime value,
resulting in an OCIDatetime value.

OCIIntervalFromText Converts a text string into an interval.
OCIIntervalFromTZ Converts a time zone specification into an interval value.

7.4.9 Number Functions
Table 9-7-9 Number Functions

Function Description
OCINumberAbs Compute the absolute value.
OCINumberAdd Adds NUMBERs.
OCINumberArcCos Compute the arc cosine.
OCINumberArcSin Compute the arc sine.
OCINumberArcTan Compute the arc tangent.
OCINumberArcTan2 Compute the arc tangent of two NUMBERs.
OCINumberAssign Assign one NUMBER to another.
OCINumberCeil Compute the ceiling of NUMBER.
OCINumberCmp Compare NUMBERs.
OCINumberCos Compute the cosine.
OCINumberDec Decrement a NUMBER.
OCINumberDiv Divide two NUMBERs.
OCINumberExp Raise e to the specified NUMBER power.
OCINumberFloor Compute the floor of a NUMBER.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

464

Function Description
OCINumberFromInt Convert an integer to an Oracle NUMBER.
OCINumberFromReal Convert a real to an Oracle NUMBER.
OCINumberFromText Convert a string to an Oracle NUMBER.
OCINumberHypCos Compute the hyperbolic cosine.
OCINumberHypSin Compute the hyperbolic sine.
OCINumberHypTan Compute the hyperbolic tangent.
OCINumberInc Increments a NUMBER.
OCINumberIntPower Raise a given base to an integer power.
OCINumberIsInt Test if a NUMBER is an integer.
OCINumberIsZero Test if a NUMBER is zero.
OCINumberLn Compute the natural logarithm.
OCINumberLog Compute the logarithm to an arbitrary base.
OCINumberMod Modulo division.
OCINumberMul Multiply NUMBERs.
OCINumberNeg Negate a NUMBER.
OCINumberPower Exponentiation to base e.
OCINumberPrec Round a NUMBER to a specified number of decimal places.
OCINumberRound Round a NUMBER to a specified decimal place.
OCINumberSetPi Initialize a NUMBER to Pi.
OCINumberSetZero Initialize a NUMBER to zero.
OCINumberShift Multiply by 10, shifting specified number of decimal places.
OCINumberSign Obtain the sign of a NUMBER.
OCINumberSin Compute the sine.
OCINumberSqrt Compute the square root of a NUMBER.
OCINumberSub Subtract NUMBERs.
OCINumberTan Compute the tangent.
OCINumberToInt Convert a NUMBER to an integer.
OCINumberToReal Convert a NUMBER to a real.
OCINumberToRealArray Convert an array of NUMBER to a real array.
OCINumberToText Converts a NUMBER to a string.
OCINumberTrunc Truncate a NUMBER at a specified decimal place.

7.4.10 String Functions
Table 9-7-10 String Functions

Function Description
OCIStringAllocSize Get allocated size of string memory in bytes.
OCIStringAssign Assign string to a string.
OCIStringAssignText Assign text string to a string.
OCIStringPtr Get string pointer.
OCIStringResize Resize string memory.
OCIStringSize Get string size.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

465

7.4.11 Cartridge Services and File I/O Interface Functions
Table 9-7-11 Cartridge Services and File I/O Interface Functions

Function Description
OCIFileClose Close an open file.
OCIFileExists Test to see if the file exists.
OCIFileFlush Write buffered data to a file.
OCIFileGetLength Get the length of a file.
OCIFileInit Initialize the OCIFile package.
OCIFileOpen Open a file.
OCIFileRead Read from a file into a buffer.
OCIFileSeek Change the current position in a file.
OCIFileTerm Terminate the OCIFile package.
OCIFileWrite Write buflen bytes into the file.

7.4.12 LOB Functions
Table 9-7-11 LOB Functions

Function Description
OCILobRead Returns a LOB value (or a portion of a LOB value).
OCILOBWriteAppend Adds data to a LOB value.
OCILobGetLength Returns the length of a LOB value.
OCILobTrim Trims data from the end of a LOB value.
OCILobOpen Opens a LOB value for use by other LOB functions.
OCILobClose Closes a LOB value.

7.4.13 Miscellaneous Functions
Table 9-7-12 Miscellaneous Functions

Function Description
OCIClientVersion Return client library version.
OCIErrorGet Return error message.

OCIPGErrorGet

Return native error messages reported by libpq or the server. The
signature is:
sword OCIPGErrorGet(dvoid *hndlp, ub4 recordno,
OraText *errcodep,ub4 errbufsiz, OraText *bufp,
ub4 bufsiz, ub4 type)

OCIPasswordChange Change password.
OCIPing Confirm that the connection and server are active.
OCIServerVersion Get the Oracle version string.

7.4.14 Supported Data Types
Table 9-7-13 Supported Data Types

Function Description
ANSI_DATE ANSI date

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

466

SQLT_AFC ANSI fixed character
SQLT_AVC ANSI variable character
SQLT_BDOUBLE Binary double
SQLT_BIN Binary data
SQLT_BFLOAT Binary float
SQLT_CHR Character string
SQLT_DAT Oracle date
SQLT_DATE ANSI date
SQLT_FLT Float
SQLT_INT Integer
SQLT_LBI Long binary
SQLT_LNG Long
SQLT_LVB Longer long binary
SQLT_LVC Longer longs (character)
SQLT_NUM Oracle numeric
SQLT_ODT OCI date type
SQLT_STR Zero-terminated string
SQLT_TIMESTAMP Timestamp
SQLT_TIMESTAMP_TZ Timestamp with time zone
SQLT_TIMESTAMP_LTZ Timestamp with local time zone
SQLT_UIN Unsigned integer
SQLT_VBI VCS format binary
SQLT_VCS Variable character
SQLT_VNU Number with preceding length byte
SQLT_VST OCI string type

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

467

7.5 Debugger

The Debugger is a tool that gives developers and DBAs the ability to test and debug
Postgres Plus server-side programs using a graphical, dynamic environment. The types of
programs that can be debugged are SPL stored procedures, functions, triggers, and
packages as well as PL/pgSQL functions and triggers.

The Debugger is integrated with and invoked from the Postgres Enterprise Manager
client. There are two basic ways the Debugger can be used to test programs:

x Standalone Debugging. The Debugger is used to start the program to be tested.
You supply any input parameter values required by the program and you can
immediately observe and step through the code of the program. Standalone
debugging is the typical method used for new programs and for initial problem
investigation.

x In-Context Debugging. The program to be tested is initiated by an application
other than the Debugger. You first set a global breakpoint on the program to be
tested. The application that makes the first call to the program encounters the
global breakpoint. The application suspends execution at which point the
Debugger takes control of the called program. You can then observe and step
through the code of the called program as it runs within the context of the calling
application. After you have completely stepped through the code of the called
program in the Debugger, the suspended application resumes execution. In-
context debugging is useful if it is difficult to reproduce a problem using
standalone debugging due to complex interaction with the calling application.

The debugging tools and operations are the same whether using standalone or in-context
debugging. The difference is in how the program to be debugged is invoked.

The following sections discuss the features and functionality of the Debugger using the
standalone debugging method. The directions for starting the Debugger for in-context
debugging are discussed in Section 7.5.5.3.

7.5.1 Configuring the Debugger

Before using the Debugger, edit the postgresql.conf file (located in the data
subdirectory of your Postgres Plus Advanced Server home directory), adding
$libdir/plugin_debugger to the libraries listed in the
shared_preload_libraries configuration parameter:

shared_preload_libraries = '$libdir/dbms_pipe,$libdir/edb_gen,$libdir/plugin_debugger'

After modifying the shared_preload_libraries parameter, you must restart the
database server.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

468

7.5.2 Starting the Debugger

You can use the Postgres Enterprise Manager (PEM) client to access the Debugger for
standalone debugging. To open the Debugger, highlight the name of the stored procedure
or function you wish to debug in the PEM Object browser panel. Then, navigate
through the Tools menu to the Debugging menu and select Debug from the submenu
as shown in Figure 7.1.

Figure 7.1 - Starting the Debugger from the Tools menu

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

469

You can also right-click on the name of the stored procedure or function in the PEM
client Object Browser, and select Debugging, and the Debug from the context menu
as shown in Figure 7.2.

Figure 7.2 - Starting the Debugger from the object’s context menu

Note that triggers cannot be debugged using standalone debugging. Triggers must be
debugged using in-context debugging. See Section 7.5.5.3 for information on setting a
global breakpoint for in-context debugging.

To debug a package, highlight the specific procedure or function under the package node
of the package you wish to debug and follow the same directions as for stored procedures
and functions.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

470

7.5.3 The View Data Options Window

You can use the View Data Options window to pass parameter values when you are
standalone-debugging a program that expects parameters. When you start the debugger,
the View Data Options window opens automatically to display any IN or IN OUT
parameters expected by the program. If the program declares no IN or IN OUT
parameters, the View Data Options window does not open.

Figure 7.3 - The View Data Options window

Use the fields on the View Data Options window (shown in Figure 7.3) to provide a
value for each parameter:

x The Name field contains the formal parameter name.

x The Type field contains the parameter data type.

x Check the Null? checkbox to indicate that the parameter is a NULL value.

x Check the Expression checkbox if the Value field contains an expression.

x The Value field contains the parameter value that will be passed to the program.

x Check the Use default? checkbox to indicate that the program should use the
value in the Default Value field.

x The Default Value field contains the default value of the parameter.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

471

Press the Enter key to select the next parameter in the list for data entry, or click on a
Value field to select the parameter for data entry.

If you are debugging a procedure or function that is a member of a package that has an
initialization section, check the Debug Package Initializer check box to instruct the
Debugger to step into the package initialization section, allowing you to debug the
initialization section code before debugging the procedure or function. If you do not
select the check box, the Debugger executes the package initialization section without
allowing you to see or step through the individual lines of code as they are executed.

After entering the desired parameter values, click the OK button to start the debugging
process. Click the Cancel button to terminate the Debugger and return control to the
PEM client.

Note: The View Data Options window does not open during in-context debugging.
Instead, the application calling the program to be debugged must supply any required
input parameter values.

When you have completed a full debugging cycle by stepping through the program code,
the View Data Options window re-opens, allowing you to enter new parameter values
and repeat the debugging cycle, or end the debugging session.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

472

7.5.4 Main Debugger Window

The Main Debugger window (see Figure 7.4) contains three panes:

x the Program Body pane
x the Stack pane
x the Output pane

You can use the debugger menu bar or tool bar icons (located at the top of the debugger
window) to access debugging functions.

Figure 7.4 - The Main Debugger window

Status and error information is displayed in the status bar at the bottom of the Debugger
window.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

473

7.5.4.1 The Program Body Pane

The Program Body pane in the upper-left corner of the Debugger window displays the
source code of the program that is being debugged.

Figure 7.5 - The Program Body

Figure 7.5 shows that the Debugger is about to execute the SELECT statement. The green
indicator in the program body highlights the next statement to execute.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

474

7.5.4.2 The Stack Pane

The Stack pane displays a list of programs that are currently on the call stack (programs
that have been invoked but which have not yet completed). When a program is called,
the name of the program is added to the top of the list displayed in the Stack pane;
when the program ends, its name is removed from the list.

The Stack pane also displays information about program calls. The information includes:

x The location of the call within the program
x The call arguments
x The name of the program being called

Reviewing the call stack can help you trace the course of execution through a series of
nested programs.

Figure 7.6 – A debugged program calling a subprogram

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

475

Figure 7.6 shows that emp_query_caller is about to call a subprogram named
emp_query. emp_query_caller is currently at the top of the call stack.

After the call to emp_query executes, emp_query is displayed at the top of the Stack
pane, and its code is displayed in the Program Body frame (see Figure 7.7).

Figure 7.7 - Debugging the called subprogram

Upon completion of execution of the subprogram, control returns to the calling program
(public.emp_query_caller), now displayed at the top of the Stack pane in Figure
7.8.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

476

Figure 7.8 – Control returns from debugged subprogram

Highlight an entry in the call stack to review detailed information about the selected entry
on the tabs in the Output pane. Using the call stack to navigate to another entry in the
call stack will not alter the line that is currently executing.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

477

7.5.4.3 The Output Pane

You can use tabs in the Output pane (see Figure 7.9) to view or modify parameter
values or local variables, or to view messages generated by RAISE INFO and function
results.

Figure 7.9 – The DBMS Messages tab of the Output pane.

Each tab contains a different type of information:

x The Parameters tab displays the current parameter values.

x The Local Variables tab displays the value of any variables declared within
the program.

x The DBMS Messages tab displays any results returned by the program as it
executes.

x The Results tab displays program results (if applicable).

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

478

7.5.4.4 The Status Bar

The status bar (see Figure 7.10) displays a message when the Debugger pauses, when a
runtime error message is encountered, or when execution completes.

Figure 7.10 - The Status Bar, indicating Execution completed.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

479

7.5.5 Debugging a Program

You can perform the following operations to debug a program:

x Step through the program one line at a time
x Execute the program until you reach a breakpoint
x View and change local variable values within the program

7.5.5.1 Stepping Through the Code

Use the tool bar icons to step through a program with the Debugger:

 Use the Step Into icon to execute the line of code currently highlighted
by the green bar in the Program Body pane, and then pause execution. If the
executed code line is a call to a subprogram, the called subprogram is brought into the
Program Body pane, and the first executable line of code of the subprogram is
highlighted as the Debugger waits for you to perform an operation on the
subprogram.

 Use the Step Over icon to execute a line of code, stepping over any
subprograms invoked by that line of code. The subprogram is executed, but not
debugged. If the subprogram contains a breakpoint, the debugger will stop at that
breakpoint.

 Use the Continue icon to execute the line of code highlighted by the
green bar, and continue execution until either a breakpoint is encountered or the last
line of the program has been executed.

Figure 7.11 shows the locations of the Step Into, Step Over, and Continue icons on
the tool bar:

Figure 7.11 - The Step Into, Step Over, and Continue icons

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

480

The debugging operations are also accessible through the Debug menu, as shown in
Figure 7.12.

Figure 7.12 - Debug menu options

7.5.5.2 Using Breakpoints

As the Debugger executes a program, it pauses whenever it reaches a breakpoint. When
the Debugger pauses, you can observe or change local variables, or navigate to an entry
in the call stack to observe variables or set other breakpoints. The next step into, step
over, or continue operation forces the debugger to resume execution with the next line of
code following the breakpoint. There are two types of breakpoints:

Local Breakpoint - A local breakpoint can be set at any executable line of code within a
program. The Debugger pauses execution when it reaches a line where a local breakpoint
has been set.
Global Breakpoint - A global breakpoint will trigger when any session reaches that
breakpoint. Set a global breakpoint if you want to perform in-context debugging of a
program. When a global breakpoint is set on a program, the debugging session that set
the global breakpoint waits until that program is invoked in another session. A global
breakpoint can only be set by a superuser.

To create a local breakpoint, left-click in the grey shaded margin to the left of the line of
code where you want the local breakpoint set. The Debugger displays a red dot in the
margin, indicating a breakpoint has been set at the selected line of code (see Figure 7.13).

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

481

Figure 7.13 - Set a breakpoint by clicking in left-hand margin

You can also set a breakpoint by left-clicking in the Program Body to place your
cursor, and selecting Toggle Breakpoint from Debug menu or by clicking the
Toggle Breakpoint icon (see Figure 7.14). A red dot appears in the left-hand margin
indicating a breakpoint has been set as the line of code.

Figure 7.14 - The breakpoint control icons

You can set as many local breakpoints as desired. Local breakpoints remain in effect for
the duration of a debugging session until they are removed.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

482

Removing a Local Breakpoint

To remove a local breakpoint, you can:

x Left click the mouse on the red breakpoint indicator in the left margin of the
Program Body pane. The red dot disappears, indicating that the breakpoint has
been removed.

x Use your mouse to select the location of the breakpoint in the code body, and
select Toggle Breakpoint from Debug menu, or click the Toggle
Breakpoint icon.

You can remove all of the breakpoints from the program that currently appears in the
Program Body frame by selecting Clear all breakpoints from the Debug menu
(see Figure 7.15) or by clicking the Clear All Breakpoints icon.

Figure 7.15 - The breakpoint menu options

Note: When you perform any of the preceding actions, only the breakpoints in the
program that currently appears in the Program Body frame are removed. Breakpoints in
called subprograms or breakpoints in programs that call the program currently appearing
in the Program Body frame are not removed.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

483

7.5.5.3 Setting a Global Breakpoint for In-Context Debugging

To set a global breakpoint for in-context debugging, highlight the stored procedure,
function, or trigger on which you wish to set the breakpoint in the Object browser
panel. Navigate through the Tools menu to select Debugging, and then Set
Breakpoint (see Figure 7.16)

Figure 7.16 - Setting a global breakpoint from the Tools menu

Alternatively, you can right-click on the name of the stored procedure, function, or
trigger on which you wish to set a global breakpoint and select Debugging, then Set
Breakpoint from the context menu as shown in Figure 7.17.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

484

Figure 7.17 - Setting a global breakpoint from the object's context menu

To set a global breakpoint on a trigger, expand the table node that contains the trigger,
highlight the specific trigger you wish to debug, and follow the same directions as for
stored procedures and functions.

To set a global breakpoint in a package, highlight the specific procedure or function
under the package node of the package you wish to debug and follow the same directions
as for stored procedures and functions.

After you choose Set Breakpoint, the Debugger window opens and waits for an
application to call the program to be debugged (see Figure 7.18).

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

485

Figure 7.18 - Waiting for invocation of program to be debugged

In Figure 7.19, the EDB-PSQL client invokes the select_emp function (on which a
global breakpoint has been set).

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

486

Figure 7.19 - Application invoking program with a global breakpoint

The select_emp function does not complete until you step through the program in the
Debugger, which now appears as shown in Figure 7.20.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

487

Figure 7.20 - Program on which a global breakpoint has been set

You can now debug the program using any of the previously discussed operations such as
step into, step over, and continue, or set local breakpoints. When you have stepped
through execution of the program, the calling application (EDB-PSQL) regains control as
shown in Figure 7.21.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

488

Figure 7.21 - Application after debugging

The select_emp function completes execution and its output is displayed.

At this point, you can end the Debugger session by choosing Exit from the File menu.
If you do not end the Debugger session, the next application that invokes the program
will encounter the global breakpoint and the debugging cycle will begin again.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

489

7.5.5.4 Exiting the Debugger

To end a Debugger session and exit the Debugger, select Exit from File menu or press
Alt-F4 as shown by the following:

Figure 7.22 - Exiting from the Debugger

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

490

8 Performance Analysis and Tuning
Postgres Plus Advanced Server provides various tools for performance analysis and
tuning. These features are described in this chapter.

8.1 Dynatune

Postgres Plus Advanced Server supports dynamic tuning of the database server to make
the optimal usage of the system resources available on the host machine on which it is
installed. The two parameters that control this functionality are located in the
postgresql.conf file. These parameters are:

x edb_dynatune
x edb_dynatune_profile

8.1.1 edb_dynatune

edb_dynatune determines how much of the host system's resources are to be used by
the database server based upon the host machine's total available resources and the
intended usage of the host machine.

When Postgres Plus Advanced Server is initially installed, the edb_dynatune parameter
is set in accordance with the selected usage of the host machine on which it was installed
- i.e., development machine, mixed use machine, or dedicated server. For most purposes,
there is no need for the database administrator to adjust the various configuration
parameters in the postgresql.conf file in order to improve performance.

You can change the value of the edb_dynatune parameter after the initial installation of
Postgres Plus Advanced Server by editing the postgresql.conf file. The postmaster
must be restarted in order for the new configuration to take effect.

The edb_dynatune parameter can be set to any integer value between 0 and 100,
inclusive. A value of 0, turns off the dynamic tuning feature thereby leaving the database
server resource usage totally under the control of the other configuration parameters in
the postgresql.conf file.

A low non-zero, value (e.g., 1 - 33) dedicates the least amount of the host machine's
resources to the database server. This setting would be used for a development machine
where many other applications are being used.

A value in the range of 34 - 66 dedicates a moderate amount of resources to the database
server. This setting might be used for a dedicated application server that may have a fixed

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

491

number of other applications running on the same machine as Postgres Plus Advanced
Server.

The highest values (e.g., 67 - 100) dedicate most of the server's resources to the database
server. This setting would be used for a host machine that is totally dedicated to running
Postgres Plus Advanced Server.

Once a value of edb_dynatune is selected, database server performance can be further
fine-tuned by adjusting the other configuration parameters in the postgresql.conf
file. Any adjusted setting overrides the corresponding value chosen by edb_dynatune.
You can change the value of a parameter by un-commenting the configuration parameter,
specifying the desired value, and restarting the database server.

8.1.2 edb_dynatune_profile

The edb_dynatune_profile parameter is used to control tuning aspects based upon
the expected workload profile on the database server. This parameter takes effect upon
startup of the database server.

The possible values for edb_dynatune_profile are:

Value Usage

oltp Recommended when the database server is processing heavy online transaction
processing workloads.

reporting Recommended for database servers used for heavy data reporting.

mixed Recommended for servers that provide a mix of transaction processing and data
reporting.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

492

8.2 Infinite Cache

Note: Infinite Cache has been deprecated and may be removed in a future release. Please
contact your EnterpriseDB Account Manager or mailto:sales@enterprisedb.com for more
information.

Database performance is typically governed by two competing factors:

x Memory access is fast; disk access is slow.
x Memory space is scarce; disk space is abundant.

Postgres Plus Advanced Server tries very hard to minimize disk I/O by keeping
frequently used data in memory. When the first server process starts, it creates an in-
memory data structure known as the buffer cache. The buffer cache is organized as a
collection of 8K (8192 byte) pages: each page in the buffer cache corresponds to a page
in some table or index. The buffer cache is shared between all processes servicing a
given database.

When you select a row from a table, Advanced Server reads the page that contains the
row into the shared buffer cache. If there isn't enough free space in the cache, Advanced
Server evicts some other page from the cache. If Advanced Server evicts a page that has
been modified, that data is written back out to disk; otherwise, it is simply discarded.
Index pages are cached in the shared buffer cache as well.

Figure 1.1 demonstrates the flow of data in a typical Advanced Server session:

Figure 1.1 – Data Flow

mailto:sales@enterprisedb.com

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

493

A client application sends a query to the Postgres server and the server searches the
shared buffer cache for the required data. If the requested data is found in the cache, the
server immediately sends the data back to the client. If not, the server reads the page that
holds the data into the shared buffer cache, evicting one or more pages if necessary. If
the server decides to evict a page that has been modified, that page is written to disk.

As you can see, a query will execute much faster if the required data is found in the
shared buffer cache.

One way to improve performance is to increase the amount of memory that you can
devote to the shared buffer cache. However, most computers impose a strict limit on the
amount of RAM that you can install. To help circumvent this limit, Infinite Cache lets
you utilize memory from other computers connected to your network.

With Infinite Cache properly configured, Advanced Server will dedicate a portion of the
memory installed on each cache server as a secondary memory cache. When a client
application sends a query to the server, the server first searches the shared buffer cache
for the required data; if the requested data is not found in the cache, the server searches
for the necessary page in one of the cache servers.

Figure 1.2 shows the flow of data in an Advanced Server session with Infinite Cache:

Figure 1.2 – Data flow with Infinite Cache

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

494

When a client application sends a query to the server, the server searches the shared
buffer cache for the required data. If the requested data is found in the cache, the server
immediately sends the data back to the client. If not, the server sends a request for the
page to a specific cache server; if the cache server holds a copy of the page it sends the
data back to the server and the server copies the page into the shared buffer cache. If the
required page is not found in the primary cache (the shared buffer cache) or in the
secondary cache (the cloud of cache servers), Advanced Server must read the page from
disk. Infinite Cache improves performance by utilizing RAM from other computers on
your network in order to avoid reading frequently accessed data from disk.

Updating the Cache Node Configuration

You can add or remove cache servers without restarting the database server by adding or
deleting cache nodes from the list defined in the edb_icache_servers configuration
parameter. For more information about changing the configuration parameter, see
Section 8.2.2.2.

When you add one or more cache nodes, the server re-allocates the cache, dividing the
cache evenly amongst the servers; each of the existing cache servers loses a percentage of
the information that they have cached. You can calculate the percentage of the cache that
remains valid with the following formula:

(existing_nodes * 100) / (existing_nodes + new_nodes)

For example, if an Advanced Server installation with three existing cache nodes adds an
additional cache node, 75% of the existing cache remains valid after the reconfiguration.

If cache nodes are removed from a server, the data that has been stored on the remaining
cache nodes is preserved. If one cache server is removed from a set of five cache servers,
Advanced Server preserves the 80% of the distributed cache that is stored on the four
remaining cache nodes.

When you change the cache server configuration (by adding or removing cache servers),
the portion of the cache configuration that is preserved is not re-written unless the cache
is completely re-warmed using the edb_icache_warm() function or
edb_icache_warm utility. If you do not re-warm the cache servers, new cache servers
will accrue cache data as queries are performed on the server.

Infinite Cache Offers a Second Performance Advantage: Compression.

Without Infinite Cache, Advanced Server will read each page from disk as an 8K chunk;
when a page resides in the shared buffer cache, it consumes 8K of RAM. With Infinite
Cache, Postgres can compress each page before sending it to a cache server. A
compressed page can take significantly less room in the secondary cache, making more
space available for other data and effectively increasing the size of the cache. A

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

495

compressed page consumes less network bandwidth as well, decreasing the amount of
time required to retrieve a page from the secondary cache.

The fact that Infinite Cache can compress each page may make it attractive to configure a
secondary cache server on the same computer that runs your Postgres server. If, for
example, your computer is configured with 6GB of RAM, you may want to allocate a
smaller amount (say 1GB) for the primary cache (the shared buffer cache) and a larger
amount (4GB) to the secondary cache (Infinite Cache), reserving 1GB for the operating
system. Since the secondary cache resides on the same computer, there is very little
overhead involved in moving data between the primary and secondary cache. All data
stored in the Infinite Cache is compressed so the secondary cache can hold many more
pages than would fit into the (uncompressed) shared buffer cache. If you had allocated
5GB to the shared buffer cache, the cache could hold no more than 65000 pages
(approximately). By assigning 4GB of memory to Infinite Cache, the cache may be able
to hold 130000 pages (at 2x compression), 195000 pages (at 3x compression) or more.
The compression factor that you achieve is determined by the amount of redundancy in
the data itself and the edb_icache_compression_level parameter.

To use Infinite Cache, you must specify a list of one or more cache servers (computers on
your network) and start the edb_icache daemon on each of those servers.

Infinite Cache is supported on Linux, HPUX and Solaris systems only.

Please Note: Infinite Cache and the effective_io_concurrency parameter can
potentially interfere with each other. You should disable asynchronous I/O requests (by
setting the value of effective_io_concurrency to 0 in the postgresql.conf file)
if you enable the Infinite Cache feature.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

496

8.2.1 Installing Infinite Cache

Postgres Plus Advanced Server includes Infinite Cache functionality as part of a standard
installation with either the graphical installer or the RPM installer. You can also
optionally install only the Infinite Cache daemon on a supporting cache server.

For information about using the RPM packages to install Infinite Cache, please see the
Postgres Plus Advanced Server Installation Guide, available at:

http://www.enterprisedb.com/products-services-
training/products/documentation/enterpriseedition

To use the graphical installer to install Advanced Server with Infinite Cache
functionality, confirm that the box next to the Database Server option (located on the
Setup: Select Components window, shown in Figure 8.3) is selected when running
the installation wizard.

Figure 8.3: The Setup: Select Components window.

The Database Server option installs the following Infinite Cache components:

x The ppas-infinitecache service script.

http://www.enterprisedb.com/products-services-training/products/documentation/enterpriseedition
http://www.enterprisedb.com/products-services-training/products/documentation/enterpriseedition

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

497

x The Infinite Cache configuration file (ppas-infinitecache).
x A command line tool that allows you to pre-load the cache servers (edb-

icache-warm).
x The edb_icache libraries (code libraries required by the edb-icache

daemon).

The graphical installation wizard can selectively install only the Infinite Cache daemon
on a cache server. To install the edb-icache daemon on a cache server, deploy the
installation wizard on the machine hosting the cache; when the Setup: Select
Components window opens, de-select all options except Infinite Cache (as shown
in Figure 8.4).

Figure 8.4: Installing only the Infinite Cache Daemon.

The Infinite Cache Daemon option installs the following:

x The ppas-infinitecache service script.
x The Infinite Cache configuration file (ppas-infinitecache).
x A command line tool that allows you to pre-load the cache servers (edb-

icache-warm).
x The edb_icache libraries (code libraries required by the edb-icache

daemon).

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

498

8.2.2 Configuring the Infinite Cache Server

Configuring Infinite Cache is a three-step process:

x Specify Infinite Cache server settings in the Infinite Cache configuration file.
x Modify the Advanced Server postgresql.conf file, enabling Infinite Cache,

and specifying connection and compression settings.
x Start the Infinite Cache service.

8.2.2.1 Modifying Infinite Cache Settings

The Infinite Cache configuration file is named ppas-infinitecache, and contains two
parameters and their associated values:

PORT=11211
CACHESIZE=500

To modify a parameter, open the ppas-infinitecache file (located in the
/opt/PostgresPlus/infinitecache/etc directory) with your editor of choice,
and modify the parameter values:

PORT

Use the PORT variable to specify the port where Infinite Cache will listen for
connections from Advanced Server.

CACHESIZE

Use the CACHESIZE variable to specify the size of the cache (in MB).

8.2.2.2 Enabling Infinite Cache

The postgresql.conf file includes three configuration parameters that control the
behavior of Infinite Cache. The postgresql.conf file is read each time you start the
Advanced Server database server. To modify a parameter, open the postgresql.conf
file (located in the $PGDATA directory) with your editor of choice, and edit the section of
the configuration file shown below:

- Infinite Cache
#edb_enable_icache = off
#edb_icache_servers = '' #'host1:port1,host2,ip3:port3,ip4'
#edb_icache_compression_level = 6

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

499

Lines that begin with a pound sign (#) are treated as comments; to enable a given
parameter, remove the pound sign and specify a value for the parameter. When you've
updated and saved the configuration file, restart the database server for the changes to
take effect.

edb_enable_icache

Use the edb_enable_icache parameter to enable or disable Infinite Cache.
When edb_enable_icache is set to on, Infinite Cache is enabled; if the
parameter is set to off, Infinite Cache is disabled.

If you set edb_enable_icache to on, you must also specify a list of cache
servers by setting the edb_icache_servers parameter (described in the next
section).

The default value of edb_enable_icache is off.

edb_icache_servers

The edb_icache_servers parameter specifies a list of one or more servers
with active edb-icache daemons. edb_icache_servers is a string value that
takes the form of a comma-separated list of hostname:port pairs. You can specify
each pair in any of the following forms:

x hostname
x IP-address
x hostname:portnumber
x IP-address:portnumber

If you do not specify a port number, Infinite Cache assumes that the cache server
is listening at port 11211. This configuration parameter will take effect only if
edb_enable_icache is set to on. Use the edb_icache_servers parameter
to specify a maximum of 128 cache nodes.

edb_icache_compression_level

The edb_icache_compression_level parameter controls the compression
level that is applied to each page before storing it in the distributed Infinite Cache.
This parameter must be an integer in the range 0 to 9.

x A compression level of 0 disables compression; it uses no CPU time for
compression, but requires more storage space and network resources to
process.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

500

x A compression level of 9 invokes the maximum amount of compression; it
increases the load on the CPU, but less data flows across the network, so
network demand is reduced. Each page takes less room on the Infinite
Cache server, so memory requirements are reduced.

x A compression level of 5 or 6 is a reasonable compromise between the
amount of compression received and the amount of CPU time invested.

By default, edb_icache_compression_level is set to 6.

When Advanced Server reads data from disk, it typically reads the data in 8K
increments. If edb_icache_compression_level is set to 0, each time
Advanced Server sends an 8K page to the Infinite Cache server that page is stored
(uncompressed) in 8K of cache memory. If the
edb_icache_compression_level parameter is set to 9, Advanced Server
applies the maximum compression possible before sending it to the Infinite Cache
server, so a page that previously took 8K of cached memory might take 2K of
cached memory. Exact compression numbers are difficult to predict, as they are
dependent on the nature of the data on each page.

The compression level must be set by the superuser and can be changed for the
current session while the server is running. The following command disables the
compression mechanism for the currently active session:

 SET edb_icache_compression_level = 0

The following example shows a typical collection of Infinite Cache settings:

edb_enable_icache = on
edb_icache_servers = 'localhost,192.168.2.1:11200,192.168.2.2'
edb_icache_compression_level = 6

Please Note: Infinite Cache and the effective_io_concurrency parameter can
potentially interfere with each other. You should disable asynchronous I/O requests (by
setting the value of effective_io_concurrency to 0 in the postgresql.conf file)
if you enable the Infinite Cache feature. By default, effective_io_concurrency is
set to 1.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

501

8.2.2.3 Controlling the Infinite Cache Server

Linux

On Linux, the Infinite Cache service script is named ppas-infinitecache. The
service script resides in the /etc/init.d directory. You can control the Infinite Cache
service, or check the status of the service with the following command:

/etc/init.d/ppas-infinitecache action

Where action specifies:

x start to start the service.
x stop to stop the service
x restart to stop and then start the service.
x status to return the status of the service.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

502

8.2.3 Dynamically Modifying Infinite Cache Server Nodes

You can dynamically modify the Infinite Cache server nodes; to change the Infinite
Cache server configuration, use the edb_icache_servers parameter in the
postgresql.conf file to:

x specify additional cache information to add a server/s.

x delete server information to remove a server/s.

x specify additional server information and delete existing server information to
both add and delete servers during the same reload operation.

After updating the edb_icache_servers parameter in the postgresql.conf file, you
must reload the configuration parameters for the changes to take effect.

To reload the configuration parameters, navigate through the Postgres Plus
Advanced Server 9.4 menu to the Expert Configuration menu, and select the
Reload Configuration option. If prompted, enter your password to reload the
configuration parameters.

Alternatively, you can use the pg_ctl reload command to update the server's configuration
parameters at the command line:

pg_ctl reload -D data_directory

Where data_directory specifies the complete path to the data directory.

Please Note: If the server detects a problem with the value specified for the
edb_icache_servers parameter during a server reload, it will ignore changes to the
parameter and use the last valid parameter value. If you are performing a server
restart, and the parameter contains an invalid value, the server will return an error.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

503

8.2.4 Controlling the edb-icache Daemons

edb-icache is a high-performance memory caching daemon that distributes and stores
data in shared buffers. The server transparently interacts with edb-icache daemons to
store and retrieve data.

Before starting the database server, the edb-icache daemons must be running on each
server node. Log into each server and start the edb-icache server (on that host) by
issuing the following command:

 # edb-icache -u enterprisedb -d -m 1024

Where:

-u

-u specifies the user name

-m

 -m specifies the amount of memory to be used by edb-icache. The default is
64MB.

-d

 -d designates that the service should run in the background

To gracefully kill an edb-icache daemon (close any in-use files, flush buffers, and
exit), execute the command:

killall -TERM edb-icache

If the edb-icache daemon refuses to die, you may need to use the following command:

killall -KILL edb-icache

8.2.4.1 Command Line Options

To view the command line options for the edb-icache daemon, use the following
command from the edb_Infinite Cache subdirectory, located in the Advanced
Server installation directory:

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

504

 # edb-icache -h

The command line options are:

Parameter Description
-p <port_number> The TCP port number the Infinite Cache daemon is listening on. The default is

11211.
-U <UDP_number> The UDP port number the Infinite Cache daemon is listening on. The default is

0 (off).
-s <pathname> The Unix socket pathname the Infinite Cache daemon is listening on. If

included, the server limits access to the host on which the Infinite Cache
daemon is running, and disables network support for Infinite Cache.

-a <mask> The access mask for the Unix socket, in octal form. The default value is 0700.
-l <ip_addr> Specifies the IP address that the daemon is listening on. If an individual address

is not specified, the default value is INDRR_ANY; all IP addresses assigned to
the resource are available to the daemon.

-d Run as a daemon.
-r Maximize core file limit.
-u <username> Assume the identity of the specified user (when run as root).
-m <numeric> Max memory to use for items in megabytes. Default is 64 MB.
-M Return error on memory exhausted (rather than removing items).
-c <numeric> Max simultaneous connections. Default is 1024.
-k Lock down all paged memory. Note that there is a limit on how much memory

you may lock. Trying to allocate more than that would fail, so be sure you set
the limit correctly for the user you started the daemon with (not for -u
<username> user; under sh this is done with 'ulimit -S -l NUM_KB').

-v Verbose (print errors/warnings while in event loop).
-vv Very verbose (include client commands and responses).
-vvv Extremely verbose (also print internal state transitions).
-h Print the help text and exit.
-i Print memcached and libevent licenses.
-P <file> Save PID in <file>, only used with -d option.
-f <factor> Chunk size growth factor. Default value is 1.25.
-n <bytes> Minimum space allocated for key+value+flags. Default is 48.
-L Use large memory pages (if available). Increasing the memory page size could

reduce the number of transition look-aside buffer misses and improve the
performance. To get large pages from the OS, Infinite Cache will allocate the
total item-cache in one large chunk.

-D <char> Use <char> as the delimiter between key prefixes and IDs. This is used for per-
prefix stats reporting. The default is":" (colon).
If this option is specified, stats collection is enabled automatically; if not, then it
may be enabled by sending the stats detail on command to the server.

-t <num> Specifies the number of threads to use. Default is 4.
-R Maximum number of requests per event; this parameter limits the number of

requests process for a given connection to prevent starvation, default is 20.
-C Disable use of CAS (check and set).
-b Specifies the backlog queue limit, default is 1024.
-B Specifies the binding protocol. Possible values are ascii, binary or auto;

default value is auto.
-I Override the size of each slab page. Specifies the max item size; default 1 MB,

minimum size is 1 k, maximum is 128 MB).

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

505

8.2.4.2 edb-icache-tool

edb-icache-tool provides a command line interface that queries the edb-icache
daemon to retrieve statistical information about a specific cache node. The syntax is:

 edb-icache-tool <host[:port]> stats

host specifies the address of the host that you are querying.

port specifies the port that the daemon is listening on.

edb-icache-tool retrieves the statistics described in the following table:

Statistic Description
accepting_conns Will this server accept new connection(s)? 1 if yes, otherwise 0.
auth_cmds Number of authentication commands handled by this server, success or

failure.
auth_errors Number of failed authentications.
bytes Total number of bytes in use.
bytes_read Total number of bytes received by this server (from the network).
bytes_written Total number of bytes sent by this server (to the network).
cas_badval Number of keys that have been compared and swapped by this server but

the comparison (original) value did not match the supplied value.
cas_hits Number of keys that have been compared and swapped by this server and

found present.
cas_misses Number of keys that have been compared and swapped by this server and

not found.
cmd_flush Cumulative number of flush requests sent to this server.
cmd_get Cumulative number of read requests sent to this server.
cmd_set Cumulative number of write requests sent to this server.
conn_yields Number of times any connection yielded to another due to hitting the edb-

icache -R limit.
connection_structures Number of connection structures allocated by the server.
curr_connections Number of open connections.
curr_items Number of items currently stored by the server.
decr_hits Number of decrement requests satisfied by this server.
decr_misses Number of decrement requests not satisfied by this server.
delete_hits Number of delete requests satisfied by this server.
delete_misses Number of delete requests not satisfied by this server.
evictions Number of valid items removed from cache to free memory for new items.
get_hits Number of read requests satisfied by this server.
get_misses Number of read requests not satisfied by this server.
incr_hits Number of increment requests satisfied by this server.
incr_misses Number of increment requests not satisfied by this server.
limit_maxbytes Number of bytes allocated on this server for storage.
listen_disabled_num Cumulative number of times this server has hit its connection limit.
pid Process ID (on cache server).
pointer_size Default pointer size on host OS (usually 32 or 64).
reclaimed Number of times an entry was stored using memory from an expired entry.
rusage_user Accumulated user time for this process (seconds.microseconds).
rusage_system Accumulated system time for this process (seconds.microseconds).

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

506

threads Number of worker threads requested.
total_time Number of seconds since this server's base date (usually midnight, January

1, 1970, UTC).
total_connections Total number of connections opened since the server started running.
total_items Total number of items stored by this server (cumulative).
uptime Amount of time that server has been active.
version edb-icache version.

In the following example, edb-icache-tool retrieves statistical information about an
Infinite Cache server located at the address, 192.168.23.85 and listening on port
11213:

 # edb-icache-tool 192.168.23.85:11213 stats

Field Value
accepting_conns 1
auth_cmds 0
auth_errors 0
bytes 52901223
bytes_read 188383848
bytes_written 60510385
cas_badval 0
cas_hits 0
cas_misses 0
cmd_flush 1
cmd_get 53139
cmd_set 229120
conn_yields 0
connection_structures 34
curr_connections 13
curr_items 54953
decr_hits 0
decr_misses 0
delete_hits 0
delete_misses 0
evictions 0
get_hits 52784
get_misses 355
incr_hits 0
incr_misses 0
limit_maxbytes 314572800
listen_disabled_num 0
pid 7226
pointer_size 32
reclaimed 0
rusage_system 10.676667
rusage_user 3.068191
threads 4
time 1320919080
total_connections 111
total_items 229120
uptime 7649
version 1.4.5

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

507

8.2.5 Warming the edb-icache Servers

When the server starts, the primary and secondary caches are empty. When Advanced
Server processes a client request, the server reads the required data from disk and stores a
copy in each cache. You can improve server performance by warming (or pre-loading)
the data into the memory cache before a client asks for it.

There are two advantages to warming the cache. Advanced Server will find data in the
cache the first time it is requested by a client application, instead of waiting for it to be
read from disk. Also, manually warming the cache with the data that your applications
are most likely to need saves time by avoiding future random disk reads. If you don't
warm the cache at startup, Postgres Plus Advanced Server performance may not reach
full speed until the client applications happen to load commonly used data into the cache.

There are several ways to load pages to warm the Infinite Cache server nodes. You can:

x Use the edb_icache_warm utility to warm the caches from the command line.

x Use the edb_icache_warm() function from within edb-psql.

x Use the edb_icache_warm() function via scripts to warm the cache.

While it is not necessary to re-warm the cache after making changes to an existing cache
configuration, re-warming the cache can improve performance by bringing the new
configuration of cache servers up-to-date.

8.2.5.1 The edb_icache_warm() Function

The edb_icache_warm() function comes in two variations; the first variation warms
not only the table, but any indexes associated with the table. If you use the second
variation, you must make additional calls to warm any associated indexes.

The first form of the edb_icache_warm() function warms the given table and any
associated indexes into the cache. The signature is:

edb_icache_warm(table_name)

You may specify table_name as a table name, OID, or regclass value.

 # edb-psql edb -c "select edb_icache_warm('accounts')"

When you call the first form of edb_icache_warm(), Advanced Server reads each
page in the given table, compresses the page (if configured to do so), and then sends the

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

508

compressed data to an Infinite Cache server. edb_icache_warm() also reads,
compresses, and caches each page in each index defined for the given table.

The second form of the edb_icache_warm() function warms the pages that contain the
specified range of bytes into the cache. The signature of the second form is:

edb_icache_warm(table-spec, startbyte, endbyte):

You must make subsequent calls to specify indexes separately when using this form of
the edb_icache_warm() function.

 # edb-psql edb -c "select edb_icache_warm('accounts', 1, 10000)"

The edb_icache_warm() function is typically called by a utility program (such as the
edb_icache_warm utility) to spread the warming process among multiple processes
that operate in parallel.

8.2.5.2 Using the edb_icache_warm Utility

You can use the edb_icache_warm command-line utility to load the cache servers with
specified tables, allowing fast access to relevant data from the cache.

The syntax for edb_icache_warm is:

 # edb_icache_warm –d database –t tablename

The only required parameter is tablename. tablename can be specified with or
without the -t option. All other parameters are optional; if omitted, default values are
inferred from Advanced Server environment variables.

The options for edb_icache_warm are:

Option Variable Description
-h Hostname The name of the host running Advanced Server. Include this parameter if

you are running Advanced Server on a remote host.
The default value is PGHOST.

-p Portname Port in use by Advanced Server. Default value is PGPORT.
-j process count Number of (parallel) processes used to warm the cache. The default value

is 1.
-U Username The Advanced Server username. Unless specified, this defaults to

PGUSER.
-d Database The name of database containing the tables to be warmed. Default value is

PGDATABASE.
-t Tablename Name of table to be warmed. The index for the table is also warmed.

Required.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

509

8.2.6 Retrieving Statistics from Infinite Cache

8.2.6.1 Using edb_icache_stats()

You can view Infinite Cache statistics by using the edb_icache_stats() function at
the edb-psql command line (or any other query tool).

The edb_icache_stats() function returns a result set that reflects the state of an
Infinite Cache node or nodes and the related usage statistics. The result set includes:

Statistic Description
hostname Host name (or IP address) of server
Port Port number at which edb-icache daemon is listening
State Health of this server
write_failures Number of write failures
Bytes Total number of bytes in use
bytes_read Total number of bytes received by this server (from the network)
bytes_written Total number of bytes sent by this server (to the network)
cmd_get Cumulative number of read requests sent to this server
cmd_set Cumulative number of write requests sent to this server
connection_structures Number of connection structures allocated by the server
curr_connections Number of open connections
curr_items Number of items currently stored by the server
Evictions Number of valid items removed from cache to free memory for new items
get_hits Number of read requests satisfied by this server
get_misses Number of read requests not satisfied by this server
limit_maxbytes Number of bytes allocated on this server for storage
Pid Process ID (on cache server)
pointer_size Default pointer size on host OS (usually 32 or 64)
rusage_user Accumulated user time for this process (seconds.microseconds)
rusage_system Accumulated system time for this process (seconds.microseconds)
Threads Number of worker threads requested
total_time Number of seconds since this server's base date (usually midnight, January

1, 1970, UTC)
total_connections Total number of connections opened since the server started running
total_items Total number of items stored by this server (cumulative)
Uptime Amount of time that server has been active
Version edb-icache version

You can use SQL queries to view Infinite Cache statistics. To view the server status of
all Infinite Cache nodes:

SELECT hostname, port, state FROM edb_icache_stats()

 hostname | port | state
---------------+-------+--------
 192.168.23.85 | 11211 | UNHEALTHY
 192.168.23.85 | 11212 | ACTIVE

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

510

(2 rows)

Use the following command to view complete statistics (shown here using edb-psql's
expanded display mode, \x) for a specified node:

SELECT * FROM edb_icache_stats() WHERE hostname = '192.168.23.85:11211'

-[RECORD 1]-----------+--------------
hostname | 192.168.23.85
port | 11211
state | ACTIVE
write_failures | 0
bytes | 225029460
bytes_read | 225728252
bytes_written | 192806774
cmd_get | 23313
cmd_set | 27088
connection_structures | 53
curr_connections | 3
curr_items | 27088
evictions | 0
get_hits | 23266
get_misses | 47
limit_maxbytes | 805306368
pid | 4240
pointer_size | 32
rusage_user | 0.481926
rusage_system | 1.583759
threads | 1
total_time | 1242199782
total_connections | 66
total_items | 27088
uptime | 714
version | 1.2.6

8.2.6.2 edb_icache_server_list

The edb_icache_server_list view exposes information about the status and health
of all Infinite Cache servers listed in the edb_icache_servers GUC. The
edb_icache_server_list view is created using the edb_icache stats() API.
The view exposes the following information for each server:

Statistic Description
Hostname Host name (or IP address) of server
Port Port number at which edb-icache daemon is listening
State Health of this server
write_failures Number of write failures
total_memory Number of bytes allocated to the cache on this server
memory_used Number of bytes currently used by the cache
memory_free Number of unused bytes remaining in the cache
hit_ratio Percentage of cache hits

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

511

The state column will contain one of the following four values, reflecting the health of
the given server:

Server State Description
Active The server is known to be up and running.
Unhealthy An error occurred while interacting with the cache server. Postgres will

attempt to re-establish the connection with the server.
Offline Postgres can no longer contact the given server.
Manual Offline You have taken the server offline with the edb_icache_server_enable()

function.

Use the following SELECT statement to return the health of each node in the Infinite
Cache server farm:

SELECT hostname, port, state FROM edb_icache_server_list

 hostname | port | state
---------------+-------+-------
 192.168.23.85 | 11211 | ACTIVE
 192.168.23.85 | 11212 | ACTIVE
(2 rows)

Use the following command to view complete details about a specific Infinite Cache
node (shown here using edb-psql's \x expanded-view option):

SELECT * FROM edb_icache_server_list WHERE hostname = '192.168.23.85:11211'

-[RECORD 1]-----------+--------------
hostname | 192.168.23.85
port | 11211
state | ACTIVE
write_failures | 0
total_memory | 805306368
memory_used | 225029460
memory_free | 580276908
hit_ratio | 99.79

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

512

8.2.7 Retrieving Table Statistics

Advanced Server provides six system views that contain statistical information on a per-
table basis. The views are:

x pg_statio_all_tables
x pg_statio_sys_tables
x pg_statio_user_tables
x pg_statio_all_indexes
x pg_statio_sys_indexes
x pg_statio_user_indexes

You can use standard SQL queries to view and compare the information stored in the
views. The views contain information that will allow you to observe the effectiveness of
the Advanced Server buffer cache and the icache servers.

8.2.7.1 pg_statio_all_tables

The pg_statio_all_tables view contains one row for each table in the database.
The view contains the following information:

Column Name Description
relid The OID of the table.
schemaname The name of the schema that the table resides in.
relname The name of the table.
heap_blks_read The number of heap blocks read.
heap_blks_hit The number of heap blocks hit.
heap_blks_icache_hit The number of heap blocks found on an icache server.
idx_blks_read The number of index blocks read.
idx_blks_hit The number of index blocks hit.
idx_blks_icache_hit The number of index blocks found on an icache server.
toast_blks_read The number of toast blocks read.
toast_blks_hit The number of toast blocks hit.
toast_blks_icache_hit The number of toast blocks found on an icache server.
tidx_blks_read The number of index toast blocks read.
tidx_blks_hit The number of index toast blocks hit.
tidx_blks_icache_hit The number of index toast blocks found on an icache server.

You can execute a simple query to view performance statistics for a specific table:

SELECT * FROM pg_statio_all_tables WHERE relname=‟jobhist‟;

-[RECORD 1]---------+---------
relid | 16402
schemaname | public
relname | jobhist
heap_blks_read | 1
heap_blks_hit | 51

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

513

heap_blks_icache_hit | 0
idx_blks_read | 2
idx_blks_hit | 17
idx_blks_icache_hit | 0
toast_blks_read |
toast_blks_hit |
toast_blks_icache_hit |
tidx_blks_read |
tidx_blks_hit |
tidx_blks_icache_hit |

Or, you can view the statistics by activity level. The following example displays the
statistics for the ten tables that have the greatest heap_blks_icache_hit activity:

SELECT * FROM pg_statio_all_tables ORDER BY heap_blks_icache_hit DESC LIMIT
10;

relid schemaname relname
 heap_blks_read heap_blks_hit heap_blks_icache_hit
 idx_blks_read idx_blks_hit idx_blks_icache_hit
 toast_blks_read toast_blks_hit toast_blks_icache_hit
 tidx_blks_read tidx_blks_hit tidx_blks_icache_hit

16390 public pgbench_accounts
 264105 71150 81498
 13171 282541 18053

1259 pg_catalog pg_class
 22 2904 18
 14 3449 11

1249 pg_catalog pg_attribute
 49 1619 16
 17 2841 13

1255 pg_catalog pg_proc
 38 276 11
 33 682 16
 0 0 0
 0 0 0

2619 pg_catalog pg_statistic
 20 295 8
 4 436 4
 0 0 0
 0 0 0

2617 pg_catalog pg_operator
 20 293 8
 19 791 10

2602 pg_catalog pg_amop
 10 721 6
 13 1154 13

2610 pg_catalog pg_index
 10 633 6
 8 719 8

1247 pg_catalog pg_type
 17 235 5

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

514

 12 433 4

2615 pg_catalog pg_namespace
 4 260 4
 6 330 4
 0 0 0
 0 0 0
 (10 rows)

8.2.7.2 pg_statio_sys_tables

The pg_statio_sys_tables view contains one row for each table in a system-defined
schema. The statistical information included in this view is the same as for
pg_statio_all_tables.

8.2.7.3 pg_statio_user_tables

The pg_statio_user_tables view contains one row for each table in a user-defined
schema. The statistical information in this view is the same as for
pg_statio_all_tables.

8.2.7.4 pg_statio_all_indexes

The pg_statio_all_indexes view contains one row for each index in the current
database. The view contains the following information:

Column Name Description
relid The OID of the indexed table
indexrelid The OID of the index.
schemaname The name of the schema that the table resides in.
relname The name of the table.
indexrelname The name of the index
idx_blks_read The number of index blocks read.
idx_blks_hit The number of index blocks hit.
idx_blks_icache_hit The number of index blocks found on an icache server.

You can execute a simple query to view performance statistics for the indexes on a
specific table:

SELECT * FROM pg_statio_all_indexes WHERE relname=‟pg_attribute‟;

-[RECORD 1]---------+---------
relid | 1249
indexrelid | 2658
schemaname | pg_catalog
relname | pg_attribute
indexrelname | pg_attribute_relid_attnam_index
idx_blks_read | 10
idx_blks_hit | 1200
idx_blks_icache_hit | 0
-[RECORD 2]---------+---------

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

515

relid | 1249
indexrelid | 2659
schemaname | pg_catalog
relname | pg_attribute
indexrelname | pg_attribute_relid_attnum_index
idx_blks_read | 12
idx_blks_hit | 3917
idx_blks_icache_hit | 0

The result set from the query includes the statistical information for two indexes; the
pg_attribute table has two indexes.

You can also view the statistics by activity level. The following example displays the
statistics for the ten indexes that have the greatest idx_blks_icache_hit activity:

SELECT * FROM pg_statio_all_indexes ORDER BY idx_blks_icache_hit DESC LIMIT
10;

relid indexrelid schemaname relname
indexrelname idx_blks_read idx_blks_hit idx_blks_icache_hit

16390 16401 public pgbench_accounts
pgbench_accounts_pkey 13171 282541 18053

1249 2659 pg_catalog pg_attribute
pg_attr_relid_attnum_index 14 2749 13

1255 2690 pg_catalog proc
pg_proc_oid_index 16 580 12

1259 2663 pg_catalog pg_class
pg_class_relname_nsp_index 10 2019 7

2602 2654 pg_catalog pg_amop
pg_amop_opr_fam_index 7 453 7

2603 2655 pg_catalog pg_amproc
pg_amproc_fam_proc_index 6 605 6

2617 2688 pg_catalog pg_operator
pg_operator_oid_index 7 452 6

2602 2653 pg_catalog pg_amop
pg_amop_fam_strat_index 6 701 6

2615 2684 pg_catalog pg_namespace
pg_namespace_nspname_index 4 328 4

1262 2672 pg_catalog pg_database
pg_database_oid_index 4 254 4

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

516

8.2.7.5 pg_statio_sys_indexes

The pg_statio_sys_indexes view contains one row for each index on the system
tables. The statistical information in this view is the same as in
pg_statio_all_indexes.

8.2.7.6 pg_statio_user_indexes

The pg_statio_user_indexes view contains one row for each index on a table that
resides in a user-defined schema. The statistical information in this view is the same as
in pg_statio_all_indexes.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

517

8.2.8 edb_icache_server_enable()

You can use the edb_icache_server_enable() function to take the Infinite Cache
server offline for maintenance or other planned downtime. The syntax is:

 void edb_icache_server_enable(host TEXT, port INTEGER, online BOOL)

host specifies the host that you want to disable. The host name may be specified by
name or numeric address.

port specifies the port number that the Infinite Cache server is listening on.

online specifies the state of the Infinite Cache server. The value of online must be true
or false.

To take a server offline, specify the host that you want to disable, the port number that
the Infinite Cache server is listening on, and false. To bring the Infinite Cache server
back online, specify the host name and port number, and pass a value of true.

The state of a server taken offline with the edb_icache_server_enable() function is
MANUAL OFFLINE. Postgres Plus Advanced Server will not automatically reconnect to
an Infinite Cache server that you have taken offline with
edb_icache_server_enable(..., false); you must bring the server back online
by calling edb_icache_server_enable(..., true).

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

518

8.2.9 Infinite Cache Log Entries

When you start Advanced Server, a message that includes Infinite Cache status, cache
node count and cache node size is written to the server log. The following example
shows the server log for an active Infinite Cache installation with two 750 MB cache
servers:

** EnterpriseDB Dynamic Tuning Agent**************************************
* System Utilization: 66 % *
* Autovacuum Naptime: 60 Seconds *
* Infinite Cache: on *
* Infinite Cache Servers: 2 *
* Infinite Cache Size: 1.500 GB *
**

8.2.10 Allocating Memory to the Cache Servers

As mentioned earlier in this document, each computer imposes a limit on the amount of
physical memory that you can install. However, modern operating systems typically
simulate a larger address space so that programs can transparently access more memory
than is actually installed. This "virtual memory" allows a computer to run multiple
programs that may simultaneously require more memory than is physically available.
For example, you may run an e-mail client, a web browser, and a database server which
each require 1GB of memory on a machine that contains only 2GB of physical RAM.
When the operating system runs out of physical memory, it starts swapping bits and
pieces of the currently running programs to disk to make room to satisfy your current
demand for memory.

This can bring your system to a grinding halt.

Since the primary goal of Infinite Cache is to improve performance by limiting disk I/O,
you should avoid dedicating so much memory to Infinite Cache that the operating system
must start swapping data to disk. If the operating system begins to swap to disk, you lose
the benefits offered by Infinite Cache.

The overall demand for physical memory can vary throughout the day; if the server is
frequently idle, you may never encounter swapping. If you have dedicated a large
portion of physical memory to the cache, and system usage increases, the operating
system may start swapping. To get the best performance and avoid disk swapping,
dedicate a server node to Infinite Cache so other applications on that computer will not
compete for physical memory.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

519

8.3 Index Advisor

The Index Advisor utility helps determine which columns you should index to improve
performance in a given workload. Index Advisor considers B-tree (single-column or
composite) index types, and does not identify other index types (GIN, GiST, Hash) that
may improve performance. Index Advisor is installed with Postgres Plus Advanced
Server.

Index Advisor works with Advanced Server's query planner by creating hypothetical
indexes that the query planner uses to calculate execution costs as if such indexes were
available. Index Advisor identifies the indexes by analyzing SQL queries supplied in the
workload.

There are three ways to use Index Advisor to analyze SQL queries:

x Invoke the Index Advisor utility program, supplying a text file containing the
SQL queries that you wish to analyze; Index Advisor will generate a text file with
CREATE INDEX statements for the recommended indexes.

x Provide queries at the EDB-PSQL command line that you want Index Advisor to
analyze.

x Access Index Advisor through the Postgres Enterprise Manager client. When
accessed via the PEM client, Index Advisor works with SQL Profiler, providing
indexing recommendations on code captured in SQL traces. For more
information about using SQL Profiler and Index Advisor with PEM, please see
Section 8.4 of the PEM Getting Started Guide, available from the EnterpriseDB
website at:

http://www.enterprisedb.com/products-services-training/products/postgres-enterprise-manager

Index Advisor will attempt to make indexing recommendations on INSERT, UPDATE,
DELETE and SELECT statements. When invoking Index Advisor, you supply the
workload in the form of a set of queries (if you are providing the command in an SQL
file) or an EXPLAIN statement (if you are specifying the SQL statement at the psql
command line). Index Advisor displays the query plan and estimated execution cost for
the supplied query, but does not actually execute the query.

During the analysis, Index Advisor compares the query execution costs with and without
hypothetical indexes. If the execution cost using a hypothetical index is less than the
execution cost without it, both plans are reported in the EXPLAIN statement output,
metrics that quantify the improvement are calculated, and Index Advisor generates the
CREATE INDEX statement needed to create the index.

If no hypothetical index can be found that reduces the execution cost, Index Advisor
displays only the original query plan output of the EXPLAIN statement.

http://www.enterprisedb.com/products-services-training/products/postgres-enterprise-manager

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

520

Index Advisor does not actually create indexes on the tables. Use the CREATE INDEX
statements supplied by Index Advisor to add any recommended indexes to your tables.

A script supplied with Advanced Server creates the table in which Index Advisor stores
the indexing recommendations generated by the analysis; the script also creates a
function and a view of the table to simplify the retrieval and interpretation of the results.

If you choose to forego running the script, Index Advisor will log recommendations in a
temporary table that is available only for the duration of the Index Advisor session.

8.3.1 Index Advisor Components

The Index Advisor shared library interacts with the query planner to make indexing
recommendations. The Postgres Plus Advanced Server installer creates the following
shared library in the libdir subdirectory of your Postgres Plus Advanced Server home
directory:

On Linux:

index_advisor.so

On Windows:

index_advisor.dll

Please note that libraries in the libdir directory can only be loaded by a superuser. A
database administrator can allow a non-superuser to use Index Advisor by manually
copying the Index Advisor file from the libdir directory into the libdir/plugins
directory (under your Advanced Server home directory). Only a trusted non-superuser
should be allowed access to the plugin; this is an unsafe practice in a production
environment.

The installer also creates the Index Advisor utility program and setup script:

pg_advise_index

pg_advise_index is a utility program that reads a user-supplied input file
containing SQL queries and produces a text file containing CREATE INDEX
statements that can be used to create the indexes recommended by the Index
Advisor. The pg_advise_index program is located in the bin subdirectory of
the Postgres Plus Advanced Server home directory.

index_advisor.sql

index_advisor.sql is a script that creates a permanent Index Advisor log
table along with a function and view to facilitate reporting of recommendations

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

521

from the log table. The script is located in the share/contrib subdirectory of
the Postgres Plus Advanced Server directory.

The index_advisor.sql script creates the index_advisor_log table, the
show_index_recommendations() function and the index_recommendations
view. These database objects must be created in a schema that is accessible by, and
included in the search path of the role that will invoke Index Advisor.

index_advisor_log

Index Advisor logs indexing recommendations in the index_advisor_log
table. If Index Advisor does not find the index_advisor_log table in the
user's search path, Index Advisor will store any indexing recommendations in a
temporary table of the same name. The temporary table exists only for the
duration of the current session.

show_index_recommendations()

show_index_recommendations() is a PL/pgSQL function that interprets and
displays the recommendations made during a specific Index Advisor session (as
identified by its backend process ID).

index_recommendations

Index Advisor creates the index_recommendations view based on information
stored in the index_advisor_log table during a query analysis. The view
produces output in the same format as the show_index_recommendations()
function, but contains Index Advisor recommendations for all stored sessions,
while the result set returned by the show_index_recommendations()
function are limited to a specified session.

8.3.2 Index Advisor Configuration

Index Advisor does not require any configuration to generate recommendations that are
available only for the duration of the current session; to store the results of multiple
sessions, you must create the index_advisor_log table (where Advanced Server will
store Index Advisor recommendations). To create the index_advisor_log table , you
must run the index_advisor.sql script.

When selecting a storage schema for the Index Advisor table, function and view, keep in
mind that all users that invoke Index Advisor (and query the result set) must have USAGE
privileges on the schema. The schema must be in the search path of all users that are
interacting with the Index Advisor.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

522

1. Place the selected schema at the start of your search_path parameter. For
example, if your search path is currently:

search_path=public, accounting
and you want the Index Advisor objects to be created in a schema named
advisor, use the command:
SET search_path = advisor, public, accounting;

2. Run the index_advisor.sql script to create the database objects. If you
are running the psql client, you can use the command:

\i full_pathname/index_advisor.sql
Specify the pathname to the index_advisor.sql script in place of
full_pathname.

3. Grant privileges on the index_advisor_log table to all Index Advisor
users; this step is not necessary if the Index Advisor user is a superuser, or the
owner of these database objects.

x Grant SELECT and INSERT privileges on the index_advisor_log table
to allow a user to invoke Index Advisor.

x Grant DELETE privileges on the index_advisor_log table to allow the
specified user to delete the table contents.

x Grant SELECT privilege on the index_recommendations view.

The following example demonstrates the creation of the Index Advisor database objects
in a schema named ia, which will then be accessible to an Index Advisor user with user
name ia_user:

$ edb-psql -d edb -U enterprisedb
edb-psql (9.4.0.0)
Type "help" for help.

edb=# CREATE SCHEMA ia;
CREATE SCHEMA
edb=# SET search_path TO ia;
SET
edb=# \i /opt/PostgresPlus/9.4AS/share/contrib/index_advisor.sql
CREATE TABLE
CREATE INDEX
CREATE INDEX
CREATE FUNCTION
CREATE FUNCTION
CREATE VIEW
edb=# GRANT USAGE ON SCHEMA ia TO ia_user;
GRANT
edb=# GRANT SELECT, INSERT, DELETE ON index_advisor_log TO ia_user;
GRANT

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

523

edb=# GRANT SELECT ON index_recommendations TO ia_user;
GRANT

While using Index Advisor, the specified schema (ia) must be included in ia_user's
search_path parameter.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

524

8.3.3 Using Index Advisor

When you invoke Index Advisor, you must supply a workload; the workload is either a
query (specified at the command line), or a file that contains a set of queries (executed by
the pg_advise_index() function). After analyzing the workload, Index Advisor will
either store the result set in a temporary table, or in a permanent table. You can review
the indexing recommendations generated by Index Advisor and use the CREATE INDEX
statements generated by Index Advisor to create the recommended indexes.

Note: You should not run Index Advisor in read-only transactions.

The following examples assume that superuser enterprisedb is the Index Advisor
user, and the Index Advisor database objects have been created in a schema in the
search_path of superuser enterprisedb.

The examples in the following sections use the table created with the statement shown
below:

CREATE TABLE t(a INT, b INT);
INSERT INTO t SELECT s, 99999 - s FROM generate_series(0,99999) AS s;
ANALYZE t;

The resulting table contains the following rows:

 a | b
-------+-------
 0 | 99999
 1 | 99998
 2 | 99997
 3 | 99996
 .
 .
 .
 99997 | 2
 99998 | 1
 99999 | 0

8.3.3.1 Using the pg_advise_index Utility

When invoking the pg_advise_index utility, you must include the name of a file that
contains the queries that will be executed by pg_advise_index; the queries may be on
the same line, or on separate lines, but each query must be terminated by a semicolon.
Queries within the file should not begin with the EXPLAIN keyword.

The following example shows the contents of a sample workload.sql file:

SELECT * FROM t WHERE a = 500;

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

525

SELECT * FROM t WHERE b < 1000;

Run the pg_advise_index program as shown in the code sample below:

$ pg_advise_index -d edb -h localhost -U enterprisedb -s 100M -o advisory.sql
workload.sql
poolsize = 102400 KB
load workload from file 'workload.sql'
Analyzing queries .. done.
size = 2184 KB, benefit = 1684.720000
size = 2184 KB, benefit = 1655.520000
/* 1. t(a): size=2184 KB, benefit=1684.72 */
/* 2. t(b): size=2184 KB, benefit=1655.52 */
/* Total size = 4368KB */

In the code sample, the -d, -h, and -U options are psql connection options.

-s

-s is an optional parameter that limits the maximum size of the indexes
recommended by Index Advisor. If Index Advisor does not return a result set, -s
may be set too low.

-o

The recommended indexes are written to the file specified after the -o option.

The information displayed by the pg_advise_index program is logged in the
index_advisor_log table. In response to the command shown in the example, Index
Advisor writes the following CREATE INDEX statements to the advisory.sql output
file

create index idx_t_1 on t (a);
create index idx_t_2 on t (b);

You can create the recommended indexes at the psql command line with the CREATE
INDEX statements in the file, or create the indexes by executing the advisory.sql
script.

$ edb-psql -d edb -h localhost -U enterprisedb -e -f advisory.sql
create index idx_t_1 on t (a);
CREATE INDEX
create index idx_t_2 on t (b);
CREATE INDEX

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

526

8.3.3.2 Using Index Advisor at the psql Command Line

You can use Index Advisor to analyze SQL statements entered at the edb-psql (or psql)
command line; the following steps detail loading the Index Advisor plugin and using
Index Advisor:

1. Connect to the server with the edb-psql command line utility, and load the Index
Advisor plugin:

$ edb-psql -d edb -U enterprisedb
…
edb=# LOAD 'index_advisor';
LOAD

2. Use the edb-psql command line to invoke each SQL command that you would like
Index Advisor to analyze. Index Advisor stores any recommendations for the queries
in the index_advisor_log table. If the index_advisor_log table does not exist
in the user's search_path, a temporary table is created with the same name. This
temporary table exists only for the duration of the user's session.

After loading the Index Advisor plugin, Index Advisor will analyze all SQL statements
and log any indexing recommendations for the duration of the session.

If you would like Index Advisor to analyze a query (and make indexing
recommendations) without actually executing the query, preface the SQL
statement with the EXPLAIN keyword.

If you do not preface the statement with the EXPLAIN keyword, Index Advisor
will analyze the statement while the statement executes, writing the indexing
recommendations to the index_advisor_log table for later review.

In the example that follows, the EXPLAIN statement displays the normal query plan,
followed by the query plan of the same query, if the query were using the recommended
hypothetical index:

edb=# EXPLAIN SELECT * FROM t WHERE a < 10000;
 QUERY PLAN

Seq Scan on t (cost=0.00..1693.00 rows=10105 width=8)
 Filter: (a < 10000)
Result (cost=0.00..337.10 rows=10105 width=8)
 One-Time Filter: '===[HYPOTHETICAL PLAN]==='::text
 -> Index Scan using "<hypothetical-index>:1" on t
 (cost=0.00..337.10 rows=10105 width=8)
 Index Cond: (a < 10000)
(6 rows)

edb=# EXPLAIN SELECT * FROM t WHERE a = 100;
 QUERY PLAN

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

527

Seq Scan on t (cost=0.00..1693.00 rows=1 width=8)
 Filter: (a = 100)
Result (cost=0.00..8.28 rows=1 width=8)
 One-Time Filter: '===[HYPOTHETICAL PLAN]==='::text
 -> Index Scan using "<hypothetical-index>:3" on t
 (cost=0.00..8.28 rows=1 width=8)
 Index Cond: (a = 100)
(6 rows)

For information about reviewing the recommended queries, see Section 8.3.4.

After loading the Index Advisor plugin, the default value of index_advisor.enabled
is on. The Index Advisor plugin must be loaded to use a SET or SHOW command to
display the current value of index_advisor.enabled.

You can use the index_advisor.enabled parameter to temporarily disable Index
Advisor without interrupting the psql session:

edb=# SET index_advisor.enabled TO off;
SET

To enable Index Advisor, set the parameter to on:

 edb=# SET index_advisor.enabled TO on;
 SET

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

528

8.3.4 Reviewing the Index Advisor Recommendations

There are several ways to review the index recommendations generated by Index
Advisor. You can:

x Query the index_advisor_log table.
x Run the show_index_recommendations function.
x Query the index_recommendations view.

8.3.4.1 Using the show_index_recommendations() Function

To review the recommendations of the Index Advisor utility using the
show_index_recommendations() function, call the function, specifying the process
ID of the session:

SELECT show_index_recommendations(pid);

Where pid is the process ID of the current session. If you do not know the process ID of
your current session, passing a value of NULL will also return a result set for the current
session.

The following code fragment shows an example of a row in a result set:

edb=# SELECT show_index_recommendations(null);
 show_index_recommendations

 create index idx_t_a on t(a);/* size: 2184 KB, benefit: 3040.62,
 gain: 1.39222666981456 */
(1 row)

In the example, create index idx_t_a on t(a) is the SQL statement needed to create
the index suggested by Index Advisor. Each row in the result set shows:

x The command required to create the recommended index.
x The maximum estimated size of the index.
x The calculated benefit of using the index.
x The estimated gain that will result from implementing the index.

You can display the results of all Index Advisor sessions from the following view:

SELECT * FROM index_recommendations;

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

529

8.3.4.2 Querying the index_advisor_log Table

Index Advisor stores indexing recommendations in a table named
index_advisor_log. Each row in the index_advisor_log table contains the result
of a query where Index Advisor determines it can recommend a hypothetical index to
reduce the execution cost of that query.

Column Type Description
reloid oid OID of the base table for the index
relname name Name of the base table for the index
attrs integer[] Recommended index columns (identified by column number)
benefit real Calculated benefit of the index for this query
index_size integer Estimated index size in disk-pages
backend_pid integer Process ID of the process generating this recommendation
timestamp timestamp Date/Time when the recommendation was generated

You can query the index_advisor_log table at the psql command line. The following
example shows the index_advisor_log table entries resulting from two Index
Advisor sessions. Each session contains two queries, and can be identified (in the table
below) by a different backend_pid value. For each session, Index Advisor generated
two index recommendations.

 edb=# SELECT * FROM index_advisor_log;
 reloid | relname | attrs | benefit | index_size | backend_pid |
timestamp
 --------+---------+-------+---------+------------+-------------+-----------

 16651 | t | {1} | 1684.72 | 2184 | 3442 | 22-MAR-11
16:44:32.712638 -04:00
 16651 | t | {2} | 1655.52 | 2184 | 3442 | 22-MAR-11
16:44:32.759436 -04:00
 16651 | t | {1} | 1355.9 | 2184 | 3506 | 22-MAR-11
16:48:28.317016 -04:00
 16651 | t | {1} | 1684.72 | 2184 | 3506 | 22-MAR-11
16:51:45.927906 -04:00
 (4 rows)

Index Advisor added the first two rows to the table after analyzing the following two
queries executed by the pg_advise_index utility:

 SELECT * FROM t WHERE a = 500;
 SELECT * FROM t WHERE b < 1000;

The value of 3442 in column backend_pid identifies these results as coming from the
session with process ID 3442.

The value of 1 in column attrs in the first row indicates that the hypothetical index is
on the first column of the table (column a of table t).

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

530

The value of 2 in column attrs in the second row indicates that the hypothetical index
is on the second column of the table (column b of table t).

Index Advisor added the last two rows to the table after analyzing the following two
queries (executed at the psql command line):

 edb=# EXPLAIN SELECT * FROM t WHERE a < 10000;
 QUERY PLAN
 --

 Seq Scan on t (cost=0.00..1693.00 rows=10105 width=8)
 Filter: (a < 10000)
 Result (cost=0.00..337.10 rows=10105 width=8)
 One-Time Filter: '===[HYPOTHETICAL PLAN]==='::text
 -> Index Scan using "<hypothetical-index>:1" on t (cost=0.00..337.10
rows=10105 width=8)
 Index Cond: (a < 10000)
 (6 rows)

 edb=# EXPLAIN SELECT * FROM t WHERE a = 100;
 QUERY PLAN
 --

 Seq Scan on t (cost=0.00..1693.00 rows=1 width=8)
 Filter: (a = 100)
 Result (cost=0.00..8.28 rows=1 width=8)
 One-Time Filter: '===[HYPOTHETICAL PLAN]==='::text
 -> Index Scan using "<hypothetical-index>:3" on t (cost=0.00..8.28
rows=1 width=8)
 Index Cond: (a = 100)
 (6 rows)

The values in the benefit column of the index_advisor_log table are calculated using
the following formula:

benefit = (normal execution cost) - (execution cost with hypothetical
index)

The value of the benefit column for the last row of the index_advisor_log table
(shown in the example) is calculated using the query plan for the following SQL
statement:

EXPLAIN SELECT * FROM t WHERE a = 100;

The execution costs of the different execution plans are evaluated and compared:

benefit = (Seq Scan on t cost) - (Index Scan using
<hypothetical-index>)

and the benefit is added to the table:

benefit = 1693.00 - 8.28
benefit = 1684.72

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

531

You can delete rows from the index_advisor_log table when you no longer have the
need to review the results of the queries stored in the row.

8.3.4.3 Querying the index_recommendations View

The index_recommendations view contains the calculated metrics and the CREATE
INDEX statements to create the recommended indexes for all sessions whose results are
currently in the index_advisor_log table. You can display the results of all stored
Index Advisor sessions by querying the index_recommendations view as shown
below:

SELECT * FROM index_recommendations;

Using the example shown in the previous section (Querying the index_advisor_log
Table), the index_recommendations view displays the following:

 edb=# SELECT * FROM index_recommendations;
 backend_pid | show_index_recommendations
 -------------+---

 3442 | create index idx_t_a on t(a);/* size: 2184 KB, benefit:
1684.72, gain: 0.771392654586624 */
 3442 | create index idx_t_b on t(b);/* size: 2184 KB, benefit:
1655.52, gain: 0.758021539820856 */
 3506 | create index idx_t_a on t(a);/* size: 2184 KB, benefit:
3040.62, gain: 1.39222666981456 */
 (3 rows)

Within each session, the results of all queries that benefit from the same recommended
index are combined to produce one set of metrics per recommended index, reflected in
the fields named benefit and gain.

The formulas for the fields are as follows:

size = MAX(index size of all queries)
benefit = SUM(benefit of each query)
gain = SUM(benefit of each query) / MAX(index size of all
queries)

So for example, using the following query results from the process with a backend_pid
of 3506:

 reloid | relname | attrs | benefit | index_size | backend_pid |
timestamp
 --------+---------+-------+---------+------------+-------------+-----------

 16651 | t | {1} | 1355.9 | 2184 | 3506 | 22-MAR-11
16:48:28.317016 -04:00
 16651 | t | {1} | 1684.72 | 2184 | 3506 | 22-MAR-11
16:51:45.927906 -04:00

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

532

The metrics displayed from the index_recommendations view for backend_pid
3506 are:

 backend_pid | show_index_recommendations
 -------------+---

 3506 | create index idx_t_a on t(a);/* size: 2184 KB, benefit:
3040.62, gain: 1.39222666981456 */

The metrics from the view are calculated as follows:

benefit = (benefit from 1st query) + (benefit from 2nd query)
benefit = 1355.9 + 1684.72
benefit = 3040.62

and

gain = ((benefit from 1st query) + (benefit from 2nd query))
/ MAX(index size of all queries)
gain = (1355.9 + 1684.72) / MAX(2184, 2184)
gain = 3040.62 / 2184
gain = 1.39223

The gain metric is useful when comparing the relative advantage of the different
recommended indexes derived during a given session. The larger the gain value, the
better the cost effectiveness derived from the index weighed against the possible disk
space consumption of the index.

8.3.5 Limitations

Index Advisor does not consider Index Only scans; it does consider Index scans when
making recommendations.

Index Advisor ignores any computations found in the WHERE clause. Effectively, the
index field in the recommendations will not be any kind of expression; the field will be a
simple column name.

Index Advisor does not consider inheritance when recommending hypothetical indexes.
If a query references a parent table, Index Advisor does not make any index
recommendations on child tables.

Restoration of a pg_dump backup file that includes the index_advisor_log table or
any tables for which indexing recommendations were made and stored in the
index_advisor_log table, may result in "broken links" between the
index_advisor_log table and the restored tables referenced by rows in the
index_advisor_log table because of changes in object identifiers (OIDs).

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

533

If it is necessary to display the recommendations made prior to the backup, you can
replace the old OIDs in the reloid column of the index_advisor_log table with the
new OIDs of the referenced tables using the SQL UPDATE statement:

UPDATE index_advisor_log SET reloid = new_oid WHERE reloid =
old_oid;

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

534

8.4 SQL Profiler

Inefficient SQL code is one of, if not the leading cause of database performance
problems. The challenge for database administrators and developers is locating and then
optimizing this code in large, complex systems.

SQL Profiler helps you locate and optimize poorly running SQL code.

Specific features and benefits of SQL Profiler include the following:

x On-Demand Traces. You can capture SQL traces at any time by manually
setting up your parameters and starting the trace.

x Scheduled Traces. For inconvenient times, you can also specify your trace
parameters and schedule them to run at some later time.

x Save Traces. Execute your traces and save them for later review.
x Trace Filters. Selectively filter SQL captures by database and by user, or capture

every SQL statement sent by all users against all databases.
x Trace Output Analyzer. A graphical table lets you quickly sort and filter queries

by duration or statement, and a graphical or text based EXPLAIN plan lays out
your query paths and joins.

x Index Advisor Integration. Once you have found your slow queries and
optimized them, you can also let the Index Advisor recommend the creation of
underlying table indices to further improve performance.

For more information about SQL Profiler and Postgres Enterprise Manager, visit the
EnterpriseDB website at:

http://www.enterprisedb.com/postgres-enterprise-manager

http://www.enterprisedb.com/products-services-training/products/postgres-enterprise-manager

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

535

8.5 Query Optimization Hints

When you invoke a DELETE, INSERT, SELECT or UPDATE command, the server
generates a set of execution plans; after analyzing those execution plans, the server
selects a plan that will (generally) return the result set in the least amount of time. The
server's choice of plan is dependent upon several factors:

x The estimated execution cost of data handling operations.
x Parameter values assigned to parameters in the Query Tuning section of the

postgresql.conf file.
x Column statistics that have been gathered by the ANALYZE command.

As a rule, the query planner will select the least expensive plan. You can use an
optimizer hint to influence the server as it selects a query plan. An optimizer hint is a
directive (or multiple directives) embedded in a comment-like syntax that immediately
follows a DELETE, INSERT, SELECT or UPDATE command. Keywords in the comment
instruct the server to employ or avoid a specific plan when producing the result set.

Synopsis

{ DELETE | INSERT | SELECT | UPDATE } /*+ { hint [comment] }
[...] */
 statement_body

{ DELETE | INSERT | SELECT | UPDATE } --+ { hint [comment] }
[...]
 statement_body

Optimizer hints may be included in either of the forms shown above. Note that in both
forms, a plus sign (+) must immediately follow the /* or -- opening comment symbols,
with no intervening space, or the server will not interpret the following tokens as hints.

If you are using the first form, the hint and optional comment may span multiple lines.
The second form requires all hints and comments to occupy a single line; the remainder
of the statement must start on a new line.

Description

Please Note:

x The database server will always try to use the specified hints if at all possible.
x If a planner method parameter is set so as to disable a certain plan type, then this

plan will not be used even if it is specified in a hint, unless there are no other
possible options for the planner. Examples of planner method parameters are

http://www.enterprisedb.com/docs/en/9.3/pg/sql-analyze.html

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

536

enable_indexscan, enable_seqscan, enable_hashjoin,
enable_mergejoin, and enable_nestloop. These are all Boolean
parameters.

x Remember that the hint is embedded within a comment. As a consequence, if the
hint is misspelled or if any parameter to a hint such as view, table, or column
name is misspelled, or non-existent in the SQL command, there will be no
indication that any sort of error has occurred. No syntax error will be given and
the entire hint is simply ignored.

x If an alias is used for a table or view name in the SQL command, then the alias
name, not the original object name, must be used in the hint. For example, in the
command, SELECT /*+ FULL(acct) */ * FROM accounts acct ...,
acct, the alias for accounts, must be specified in the FULL hint, not the table
name, accounts.

x Use the EXPLAIN command to ensure that the hint is correctly formed and the
planner is using the hint. See the Postgres Plus documentation set for information
on the EXPLAIN command.

x In general, optimizer hints should not be used in production applications.
Typically, the table data changes throughout the life of the application. By
ensuring that the more dynamic columns are ANALYZEd frequently, the column
statistics will be updated to reflect value changes and the planner will use such
information to produce the least cost plan for any given command execution. Use
of optimizer hints defeats the purpose of this process and will result in the same
plan regardless of how the table data changes.

Parameters

hint

An optimizer hint directive.

comment

A string with additional information. Note that there are restrictions as to what
characters may be included in the comment. Generally, comment may only
consist of alphabetic, numeric, the underscore, dollar sign, number sign and space
characters. These must also conform to the syntax of an identifier. Any
subsequent hint will be ignored if the comment is not in this form.

statement_body

The remainder of the DELETE, INSERT, SELECT, or UPDATE command.

The following sections describe the optimizer hint directives in more detail.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

537

8.5.1 Default Optimization Modes

There are a number of optimization modes that can be chosen as the default setting for a
Postgres Plus Advanced Server database cluster. This setting can also be changed on a
per session basis by using the ALTER SESSION command as well as in individual
DELETE, SELECT, and UPDATE commands within an optimizer hint. The configuration
parameter that controls these default modes is named OPTIMIZER_MODE. The following
table shows the possible values.

Table 3-8-1 Default Optimization Modes

Hint Description
ALL_ROWS Optimizes for retrieval of all rows of the result set.

CHOOSE Does no default optimization based on assumed number of rows to be retrieved
from the result set. This is the default.

FIRST_ROWS Optimizes for retrieval of only the first row of the result set.
FIRST_ROWS_10 Optimizes for retrieval of the first 10 rows of the results set.
FIRST_ROWS_100 Optimizes for retrieval of the first 100 rows of the result set.
FIRST_ROWS_1000 Optimizes for retrieval of the first 1000 rows of the result set.

FIRST_ROWS(n)
Optimizes for retrieval of the first n rows of the result set. This form may not be
used as the object of the ALTER SESSION SET OPTIMIZER_MODE command.
It may only be used in the form of a hint in a SQL command.

These optimization modes are based upon the assumption that the client submitting the
SQL command is interested in viewing only the first “n” rows of the result set and will
then abandon the remainder of the result set. Resources allocated to the query are
adjusted as such.

Examples

Alter the current session to optimize for retrieval of the first 10 rows of the result set.

ALTER SESSION SET OPTIMIZER_MODE = FIRST_ROWS_10;

The current value of the OPTIMIZER_MODE parameter can be shown by using the SHOW
command. Note that this command is a utility dependent command. In PSQL, the SHOW
command is used as follows:

SHOW OPTIMIZER_MODE;

optimizer_mode

 first_rows_10
(1 row)

The SHOW command has the following syntax:

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

538

SHOW PARAMETER OPTIMIZER_MODE;

NAME
--
VALUE
--
optimizer_mode
first_rows_10

The following example shows an optimization mode used in a SELECT command as a
hint:

SELECT /*+ FIRST_ROWS(7) */ * FROM emp;

 empno | ename | job | mgr | hiredate | sal | comm | deptno
-------+--------+-----------+------+--------------------+---------+---------+--------
 7369 | SMITH | CLERK | 7902 | 17-DEC-80 00:00:00 | 800.00 | | 20
 7499 | ALLEN | SALESMAN | 7698 | 20-FEB-81 00:00:00 | 1600.00 | 300.00 | 30
 7521 | WARD | SALESMAN | 7698 | 22-FEB-81 00:00:00 | 1250.00 | 500.00 | 30
 7566 | JONES | MANAGER | 7839 | 02-APR-81 00:00:00 | 2975.00 | | 20
 7654 | MARTIN | SALESMAN | 7698 | 28-SEP-81 00:00:00 | 1250.00 | 1400.00 | 30
 7698 | BLAKE | MANAGER | 7839 | 01-MAY-81 00:00:00 | 2850.00 | | 30
 7782 | CLARK | MANAGER | 7839 | 09-JUN-81 00:00:00 | 2450.00 | | 10
 7788 | SCOTT | ANALYST | 7566 | 19-APR-87 00:00:00 | 3000.00 | | 20
 7839 | KING | PRESIDENT | | 17-NOV-81 00:00:00 | 5000.00 | | 10
 7844 | TURNER | SALESMAN | 7698 | 08-SEP-81 00:00:00 | 1500.00 | 0.00 | 30
 7876 | ADAMS | CLERK | 7788 | 23-MAY-87 00:00:00 | 1100.00 | | 20
 7900 | JAMES | CLERK | 7698 | 03-DEC-81 00:00:00 | 950.00 | | 30
 7902 | FORD | ANALYST | 7566 | 03-DEC-81 00:00:00 | 3000.00 | | 20
 7934 | MILLER | CLERK | 7782 | 23-JAN-82 00:00:00 | 1300.00 | | 10
(14 rows)

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

539

8.5.2 Access Method Hints

The following hints influence how the optimizer accesses relations to create the result set.

Table 3-8-2 Access Method Hints

Hint Description
FULL(table) Perform a full sequential scan on table.
INDEX(table [index] [...]) Use index on table to access the relation.
NO_INDEX(table [index] [...]) Do not use index on table to access the relation.

In addition, the ALL_ROWS, FIRST_ROWS, and FIRST_ROWS(n) hints of Table 3-8-1 can
be used.

Examples

The sample application does not have sufficient data to illustrate the effects of optimizer
hints so the remainder of the examples in this section will use a banking database created
by the pgbench application located in the PostgresPlus\9.4AS\bin subdirectory.

The following steps create a database named, bank, populated by the tables, accounts,
branches, tellers, and history. The –s 5 option specifies a scaling factor of five
which results in the creation of five branches, each with 100,000 accounts, resulting in a
total of 500,000 rows in the accounts table and five rows in the branches table. Ten
tellers are assigned to each branch resulting in a total of 50 rows in the tellers table.

Note, if using Linux use the export command instead of the SET PATH command as
shown below.

export PATH=/opt/PostgresPlus/9.4AS/bin:$PATH

The following example was run in Windows.

SET PATH=C:\PostgresPlus\9.4AS\bin;%PATH%

createdb -U enterprisedb bank
CREATE DATABASE

pgbench -i -s 5 -U enterprisedb -d bank

creating tables...
10000 tuples done.
20000 tuples done.
30000 tuples done.
 .
 .
 .
470000 tuples done.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

540

480000 tuples done.
490000 tuples done.
500000 tuples done.
set primary key...
vacuum...done.

Ten transactions per client are then processed for eight clients for a total of 80
transactions. This will populate the history table with 80 rows.

pgbench –U enterprisedb –d bank –c 8 –t 10
 .
 .
 .
transaction type: TPC-B (sort of)
scaling factor: 5
number of clients: 8
number of transactions per client: 10
number of transactions actually processed: 80/80
tps = 6.023189 (including connections establishing)
tps = 7.140944 (excluding connections establishing)

The table definitions are shown below:

\d accounts

 Table "public.accounts"
 Column | Type | Modifiers
----------+---------------+-----------
 aid | integer | not null
 bid | integer |
 abalance | integer |
 filler | character(84) |
Indexes:
 "accounts_pkey" PRIMARY KEY, btree (aid)

\d branches

 Table "public.branches"
 Column | Type | Modifiers
----------+---------------+-----------
 bid | integer | not null
 bbalance | integer |
 filler | character(88) |
Indexes:
 "branches_pkey" PRIMARY KEY, btree (bid)

\d tellers

 Table "public.tellers"
 Column | Type | Modifiers
----------+---------------+-----------
 tid | integer | not null
 bid | integer |
 tbalance | integer |
 filler | character(84) |
Indexes:
 "tellers_pkey" PRIMARY KEY, btree (tid)

\d history

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

541

 Table "public.history"
 Column | Type | Modifiers
--------+-----------------------------+-----------
 tid | integer |
 bid | integer |
 aid | integer |
 delta | integer |
 mtime | timestamp without time zone |
 filler | character(22) |

The EXPLAIN command shows the plan selected by the query planner. In the following
example, aid is the primary key column, so an indexed search is used on index,
accounts_pkey.

EXPLAIN SELECT * FROM accounts WHERE aid = 100;

 QUERY PLAN

--
 Index Scan using accounts_pkey on accounts (cost=0.00..8.32 rows=1
width=97)
 Index Cond: (aid = 100)
(2 rows)

The FULL hint is used to force a full sequential scan instead of using the index as shown
below:

EXPLAIN SELECT /*+ FULL(accounts) */ * FROM accounts WHERE aid = 100;

 QUERY PLAN

 Seq Scan on accounts (cost=0.00..14461.10 rows=1 width=97)
 Filter: (aid = 100)
(2 rows)

The NO_INDEX hint also forces a sequential scan as shown below:

EXPLAIN SELECT /*+ NO_INDEX(accounts accounts_pkey) */ * FROM accounts WHERE
aid = 100;

 QUERY PLAN

 Seq Scan on accounts (cost=0.00..14461.10 rows=1 width=97)
 Filter: (aid = 100)
(2 rows)

In addition to using the EXPLAIN command as shown in the prior examples, more
detailed information regarding whether or not a hint was used by the planner can be
obtained by setting the client_min_messages and trace_hints configuration
parameters as follows:

SET client_min_messages TO info;
SET trace_hints TO true;

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

542

The SELECT command with the NO_INDEX hint is repeated below to illustrate the
additional information produced when the aforementioned configuration parameters are
set.

EXPLAIN SELECT /*+ NO_INDEX(accounts accounts_pkey) */ * FROM accounts WHERE
aid = 100;

INFO: [HINTS] Index Scan of [accounts].[accounts_pkey] rejected because of
NO_INDEX hint.

INFO: [HINTS] Bitmap Heap Scan of [accounts].[accounts_pkey] rejected
because of NO_INDEX hint.
 QUERY PLAN

 Seq Scan on accounts (cost=0.00..14461.10 rows=1 width=97)
 Filter: (aid = 100)
(2 rows)

Note that if a hint is ignored, the INFO: [HINTS] line will not appear. This may be an
indication that there was a syntax error or some other misspelling in the hint as shown in
the following example where the index name is misspelled.

EXPLAIN SELECT /*+ NO_INDEX(accounts accounts_xxx) */ * FROM accounts WHERE
aid = 100;

 QUERY PLAN

--
 Index Scan using accounts_pkey on accounts (cost=0.00..8.32 rows=1
 width=97)
 Index Cond: (aid = 100)
(2 rows

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

543

8.5.3 Specifying a Join Order

Include the ORDERED directive to instruct the query optimizer to join tables in the order in
which they are listed in the FROM clause. If you do not include the ORDERED keyword,
the query optimizer will choose the order in which to join the tables.

For example, the following command allows the optimizer to choose the order in which
to join the tables listed in the FROM clause:

SELECT e.ename, d.dname, h.startdate
 FROM emp e, dept d, jobhist h
 WHERE d.deptno = e.deptno
 AND h.empno = e.empno;

The following command instructs the optimizer to join the tables in the ordered specified:

SELECT /*+ ORDERED */ e.ename, d.dname, h.startdate
 FROM emp e, dept d, jobhist h
 WHERE d.deptno = e.deptno
 AND h.empno = e.empno;

In the ORDERED version of the command, Advanced Server will first join emp e with
dept d before joining the results with jobhist h. Without the ORDERED directive, the
join order is selected by the query optimizer.

Please note: the ORDERED directive does not work for outer joins that contain a '+' sign.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

544

8.5.4 Joining Relations Hints

When two tables are to be joined, there are three possible plans that may be used to
perform the join.

x Nested Loop Join – The right table is scanned once for every row in the left table.
x Merge Sort Join – Each table is sorted on the join attributes before the join starts.

The two tables are then scanned in parallel and the matching rows are combined
to form the join rows.

x Hash Join – The right table is scanned and its join attributes are loaded into a hash
table using its join attributes as hash keys. The left table is then scanned and its
join attributes are used as hash keys to locate the matching rows from the right
table.

The following table lists the optimizer hints that can be used to influence the planner to
use one type of join plan over another.

Table 3-8-3 Join Hints

Hint Description

USE_HASH(table [...])
Use a hash join with a hash table created from the join
attributes of table.

NO_USE_HASH(table [...])
Do not use a hash join created from the join attributes of
table.

USE_MERGE(table [...]) Use a merge sort join for table.
NO_USE_MERGE(table [...]) Do not use a merge sort join for table.
USE_NL(table [...]) Use a nested loop join for table.
NO_USE_NL(table [...]) Do not use a nested loop join for table.

Examples

In the following example, a join is performed on the branches and accounts tables.
The query plan shows that a hash join is used by creating a hash table from the join
attribute of the branches table.

EXPLAIN SELECT b.bid, a.aid, abalance FROM branches b, accounts a WHERE b.bid
= a.bid;

 QUERY PLAN
--
 Hash Join (cost=1.11..20092.70 rows=500488 width=12)
 Hash Cond: (a.bid = b.bid)
 -> Seq Scan on accounts a (cost=0.00..13209.88 rows=500488 width=12)
 -> Hash (cost=1.05..1.05 rows=5 width=4)
 -> Seq Scan on branches b (cost=0.00..1.05 rows=5 width=4)
(5 rows)

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

545

By using the USE_HASH(a) hint, the planner is forced to create the hash table from the
accounts join attribute instead of from the branches table. Note the use of the alias, a,
for the accounts table in the USE_HASH hint.

EXPLAIN SELECT /*+ USE_HASH(a) */ b.bid, a.aid, abalance FROM branches b,
accounts a WHERE b.bid = a.bid;

 QUERY PLAN

 Hash Join (cost=21909.98..30011.52 rows=500488 width=12)
 Hash Cond: (b.bid = a.bid)
 -> Seq Scan on branches b (cost=0.00..1.05 rows=5 width=4)
 -> Hash (cost=13209.88..13209.88 rows=500488 width=12)
 -> Seq Scan on accounts a (cost=0.00..13209.88 rows=500488
width=12)
(5 rows)

Next, the NO_USE_HASH(a b) hint forces the planner to use an approach other than
hash tables. The result is a nested loop.

EXPLAIN SELECT /*+ NO_USE_HASH(a b) */ b.bid, a.aid, abalance FROM branches
b, accounts a WHERE b.bid = a.bid;

 QUERY PLAN
--
 Nested Loop (cost=1.05..69515.84 rows=500488 width=12)
 Join Filter: (b.bid = a.bid)
 -> Seq Scan on accounts a (cost=0.00..13209.88 rows=500488 width=12)
 -> Materialize (cost=1.05..1.11 rows=5 width=4)
 -> Seq Scan on branches b (cost=0.00..1.05 rows=5 width=4)
(5 rows)

Finally, the USE_MERGE hint forces the planner to use a merge join.

EXPLAIN SELECT /*+ USE_MERGE(a) */ b.bid, a.aid, abalance FROM branches b,
accounts a WHERE b.bid = a.bid;

 QUERY PLAN

 Merge Join (cost=69143.62..76650.97 rows=500488 width=12)
 Merge Cond: (b.bid = a.bid)
 -> Sort (cost=1.11..1.12 rows=5 width=4)
 Sort Key: b.bid
 -> Seq Scan on branches b (cost=0.00..1.05 rows=5 width=4)
 -> Sort (cost=69142.52..70393.74 rows=500488 width=12)
 Sort Key: a.bid
 -> Seq Scan on accounts a (cost=0.00..13209.88 rows=500488
width=12)
(8 rows)

In this three-table join example, the planner first performs a hash join on the branches
and history tables, then finally performs a nested loop join of the result with the
accounts_pkey index of the accounts table.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

546

EXPLAIN SELECT h.mtime, h.delta, b.bid, a.aid FROM history h, branches b,
accounts a WHERE h.bid = b.bid AND h.aid = a.aid;

 QUERY PLAN

 Nested Loop (cost=1.11..207.95 rows=26 width=20)
 -> Hash Join (cost=1.11..25.40 rows=26 width=20)
 Hash Cond: (h.bid = b.bid)
 -> Seq Scan on history h (cost=0.00..20.20 rows=1020 width=20)
 -> Hash (cost=1.05..1.05 rows=5 width=4)
 -> Seq Scan on branches b (cost=0.00..1.05 rows=5 width=4)
 -> Index Scan using accounts_pkey on accounts a (cost=0.00..7.01 rows=1
 width=4)
 Index Cond: (h.aid = a.aid)
(8 rows)

This plan is altered by using hints to force a combination of a merge sort join and a hash
join.

EXPLAIN SELECT /*+ USE_MERGE(h b) USE_HASH(a) */ h.mtime, h.delta, b.bid,
a.aid FROM history h, branches b, accounts a WHERE h.bid = b.bid AND h.aid =
a.aid;

 QUERY PLAN

 Merge Join (cost=23480.11..23485.60 rows=26 width=20)
 Merge Cond: (h.bid = b.bid)
 -> Sort (cost=23479.00..23481.55 rows=1020 width=20)
 Sort Key: h.bid
 -> Hash Join (cost=21421.98..23428.03 rows=1020 width=20)
 Hash Cond: (h.aid = a.aid)
 -> Seq Scan on history h (cost=0.00..20.20 rows=1020
 width=20)
 -> Hash (cost=13209.88..13209.88 rows=500488 width=4)
 -> Seq Scan on accounts a (cost=0.00..13209.88
 rows=500488 width=4)
 -> Sort (cost=1.11..1.12 rows=5 width=4)
 Sort Key: b.bid
 -> Seq Scan on branches b (cost=0.00..1.05 rows=5 width=4)
(12 rows)

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

547

8.5.5 Global Hints

Thus far, hints have been applied directly to tables that are referenced in the SQL
command. It is also possible to apply hints to tables that appear in a view when the view
is referenced in the SQL command. The hint does not appear in the view, itself, but rather
in the SQL command that references the view.

When specifying a hint that is to apply to a table within a view, the view and table names
are given in dot notation within the hint argument list.

Synopsis

hint(view.table)

Parameters

hint

Any of the hints in Table 3-8-2 or Table 3-8-3.

view

The name of the view containing table.

table

The table on which the hint is to be applied.

Examples

A view named, tx, is created from the three-table join of history, branches, and
accounts shown in the final example of Section 8.5.3.

CREATE VIEW tx AS SELECT h.mtime, h.delta, b.bid, a.aid FROM history h,
branches b, accounts a WHERE h.bid = b.bid AND h.aid = a.aid;

The query plan produced by selecting from this view is show below:

EXPLAIN SELECT * FROM tx;

 QUERY PLAN

 Nested Loop (cost=1.11..207.95 rows=26 width=20)
 -> Hash Join (cost=1.11..25.40 rows=26 width=20)
 Hash Cond: (h.bid = b.bid)
 -> Seq Scan on history h (cost=0.00..20.20 rows=1020 width=20)

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

548

 -> Hash (cost=1.05..1.05 rows=5 width=4)
 -> Seq Scan on branches b (cost=0.00..1.05 rows=5 width=4)
 -> Index Scan using accounts_pkey on accounts a (cost=0.00..7.01 rows=1
 width=4)
 Index Cond: (h.aid = a.aid)
(8 rows)

The same hints that were applied to this join at the end of Section 8.5.3 can be applied to
the view as follows:

EXPLAIN SELECT /*+ USE_MERGE(tx.h tx.b) USE_HASH(tx.a) */ * FROM tx;

 QUERY PLAN

-
 Merge Join (cost=23480.11..23485.60 rows=26 width=20)
 Merge Cond: (h.bid = b.bid)
 -> Sort (cost=23479.00..23481.55 rows=1020 width=20)
 Sort Key: h.bid
 -> Hash Join (cost=21421.98..23428.03 rows=1020 width=20)
 Hash Cond: (h.aid = a.aid)
 -> Seq Scan on history h (cost=0.00..20.20 rows=1020
 width=20)
 -> Hash (cost=13209.88..13209.88 rows=500488 width=4)
 -> Seq Scan on accounts a (cost=0.00..13209.88
 rows=500488 width=4)
 -> Sort (cost=1.11..1.12 rows=5 width=4)
 Sort Key: b.bid
 -> Seq Scan on branches b (cost=0.00..1.05 rows=5 width=4)
(12 rows)

In addition to applying hints to tables within stored views, hints can be applied to tables
within subqueries as illustrated by the following example. In this query on the sample
application emp table, employees and their managers are listed by joining the emp table
with a subquery of the emp table identified by the alias, b.

SELECT a.empno, a.ename, b.empno "mgr empno", b.ename "mgr ename" FROM emp a,
(SELECT * FROM emp) b WHERE a.mgr = b.empno;

empno | ename | mgr empno | mgr ename
-------+--------+-----------+-----------
 7902 | FORD | 7566 | JONES
 7788 | SCOTT | 7566 | JONES
 7521 | WARD | 7698 | BLAKE
 7844 | TURNER | 7698 | BLAKE
 7654 | MARTIN | 7698 | BLAKE
 7900 | JAMES | 7698 | BLAKE
 7499 | ALLEN | 7698 | BLAKE
 7934 | MILLER | 7782 | CLARK
 7876 | ADAMS | 7788 | SCOTT
 7782 | CLARK | 7839 | KING
 7698 | BLAKE | 7839 | KING
 7566 | JONES | 7839 | KING
 7369 | SMITH | 7902 | FORD
(13 rows)

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

549

The plan chosen by the query planner is shown below:

EXPLAIN SELECT a.empno, a.ename, b.empno "mgr empno", b.ename "mgr ename"
FROM emp a, (SELECT * FROM emp) b WHERE a.mgr = b.empno;

 QUERY PLAN

 Merge Join (cost=2.81..3.08 rows=13 width=26)
 Merge Cond: (a.mgr = emp.empno)
 -> Sort (cost=1.41..1.44 rows=14 width=20)
 Sort Key: a.mgr
 -> Seq Scan on emp a (cost=0.00..1.14 rows=14 width=20)
 -> Sort (cost=1.41..1.44 rows=14 width=13)
 Sort Key: emp.empno
 -> Seq Scan on emp (cost=0.00..1.14 rows=14 width=13)
(8 rows)

A hint can be applied to the emp table within the subquery to perform an index scan on
index, emp_pk, instead of a table scan. Note the difference in the query plans.

EXPLAIN SELECT /*+ INDEX(b.emp emp_pk) */ a.empno, a.ename, b.empno "mgr
empno", b.ename "mgr ename" FROM emp a, (SELECT * FROM emp) b WHERE a.mgr =
b.empno;

 QUERY PLAN

 Merge Join (cost=1.41..13.21 rows=13 width=26)
 Merge Cond: (a.mgr = emp.empno)
 -> Sort (cost=1.41..1.44 rows=14 width=20)
 Sort Key: a.mgr
 -> Seq Scan on emp a (cost=0.00..1.14 rows=14 width=20)
 -> Index Scan using emp_pk on emp (cost=0.00..12.46 rows=14 width=13)
(6 rows)

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

550

8.5.6 Using the APPEND Optimizer Hint

By default, Advanced Server will add new data into the first available free-space in a
table (vacated by vacuumed records). Include the APPEND directive after an INSERT or
SELECT command to instruct the server to bypass mid-table free space, and affix new
rows to the end of the table. This optimizer hint can be particularly useful when bulk
loading data.

The syntax is:

/*+APPEND*/

For example, the following command instructs the server to append the data in the
INSERT statement to the end of the sales table:

INSERT /*+APPEND*/ INTO sales VALUES
(10, 10, '01-Mar-2011', 10, 'OR');

Note that Advanced Server supports the APPEND hint when adding multiple rows in a
single INSERT statement:

INSERT /*+APPEND*/ INTO sales VALUES
(20, 20, '01-Aug-2011', 20, 'NY'),
(30, 30, '01-Feb-2011', 30, 'FL'),
(40, 40, '01-Nov-2011', 40, 'TX');

The APPEND hint can also be included in the SELECT clause of an INSERT INTO
statement:

INSERT INTO sales_history SELECT /*+APPEND*/ FROM sales;

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

551

8.5.7 Conflicting Hints

If a command includes two or more conflicting hints, the server will ignore the
contradictory hints. The following table lists hints that are contradictory to each other.

Table 3-8-4 Conflicting Hints

Hint Conflicting Hint
ALL_ROWS FIRST_ROWS - all formats
FULL(table) INDEX(table [index])

INDEX(table) FULL(table)
NO_INDEX(table)

INDEX(table index) FULL(table)
NO_INDEX(table index)

USE_HASH(table) NO_USE_HASH(table)
USE_MERGE(table) NO_USE_MERGE(table)
USE_NL(table) NO_USE_NL(table)

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

552

8.6 DBMS_PROFILER

The DBMS_PROFILER package collects and stores performance information about the
PL/pgSQL and SPL statements that are executed during a profiling session; you can
review the performance information in the tables and views provided by the profiler.

DBMS_PROFILER works by recording a set of performance-related counters and timers
for each line of PL/pgSQL or SPL statement that executes within a profiling session. The
counters and timers are stored in a table named SYS.PLSQL_PROFILER_DATA. When
you complete a profiling session, DBMS_PROFILER will write a row to the performance
statistics table for each line of PL/pgSQL or SPL code that executed within the session.
For example, if you execute the following function:

1 - CREATE OR REPLACE FUNCTION getBalance(acctNumber INTEGER)
2 - RETURNS NUMERIC AS $$
3 - DECLARE
4 - result NUMERIC;
5 - BEGIN
6 - SELECT INTO result balance FROM acct WHERE id = acctNumber;
7 -
8 - IF (result IS NULL) THEN
9 - RAISE INFO 'Balance is null';
10- END IF;
11-
12- RETURN result;
13- END;
14- $$ LANGUAGE 'plpgsql';

DBMS_PROFILER adds one PLSQL_PROFILER_DATA entry for each line of code
within the getBalance() function (including blank lines and comments). The entry
corresponding to the SELECT statement executed exactly one time; and required a very
small amount of time to execute. On the other hand, the entry corresponding to the
RAISE INFO statement executed once or not at all (depending on the value for the
balance column).

Some of the lines in this function contain no executable code so the performance statistics
for those lines will always contain zero values.

To start a profiling session, invoke the DBMS_PROFILER.START_PROFILER function (or
procedure). Once you've invoked START_PROFILER, Advanced Server will profile
every PL/pgSQL or SPL function, procedure, trigger, or anonymous block that your
session executes until you either stop or pause the profiler (by calling STOP_PROFILER
or PAUSE_PROFILER).

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

553

It is important to note that when you start (or resume) the profiler, the profiler will only
gather performance statistics for functions/procedures/triggers that start after the call to
START_PROFILER (or RESUME_PROFILER).

While the profiler is active, Advanced Server records a large set of timers and counters in
memory; when you invoke the STOP_PROFILER (or FLUSH_DATA) function/procedure,
DBMS_PROFILER writes those timers and counters to a set of three tables:

x SYS.PLSQL_PROFILER_RAWDATA
Contains the performance counters and timers for each statement executed within
the session.

x SYS.PLSQL_PROFILER_RUNS
Contains a summary of each run (aggregating the information found in
PLSQL_PROFILER_RAWDATA).

x SYS.PLSQL_PROFILER_UNITS
Contains a summary of each code unit (function, procedure, trigger, or
anonymous block) executed within a session.

In addition, DBMS_PROFILER defines a view, SYS.PLSQL_PROFILER_DATA, which
contains a subset of the PLSQL_PROFILER_RAWDATA table.

Please note that a non-superuser may gather profiling information, but may not view that
profiling information unless a superuser grants specific privileges on the profiling tables
(stored in the SYS schema). This permits a non-privileged user to gather performance
statistics without exposing information that the administrator may want to keep secret.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

554

8.6.1 Querying the DBMS_PROFILER Tables and View

The following step-by-step example uses DBMS_PROFILER to retrieve performance
information for procedures, functions, and triggers included in the sample data distributed
with Advanced Server.

1. Open the EDB-PSQL command line, and establish a connection to the Advanced
Server database. Use an EXEC statement to start the profiling session:

acctg=# EXEC dbms_profiler.start_profiler('profile list_emp');

EDB-SPL Procedure successfully completed

(Note: the call to start_profiler() includes a comment that
DBMS_PROFILER associates with the profiler session).

2. Then call the list_emp function:

acctg=# SELECT list_emp();
INFO: EMPNO ENAME
INFO: ----- -------
INFO: 7369 SMITH
INFO: 7499 ALLEN
INFO: 7521 WARD
INFO: 7566 JONES
INFO: 7654 MARTIN
INFO: 7698 BLAKE
INFO: 7782 CLARK
INFO: 7788 SCOTT
INFO: 7839 KING
INFO: 7844 TURNER
INFO: 7876 ADAMS
INFO: 7900 JAMES
INFO: 7902 FORD
INFO: 7934 MILLER
 list_emp

(1 row)

3. Stop the profiling session with a call to dbms_profiler.stop_profiler:

acctg=# EXEC dbms_profiler.stop_profiler;

EDB-SPL Procedure successfully completed

4. Start a new session with the dbms_profiler.start_profiler function
(followed by a new comment):

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

555

acctg=# EXEC dbms_profiler.start_profiler('profile get_dept_name and
emp_sal_trig');

EDB-SPL Procedure successfully completed

5. Invoke the get_dept_name function:

acctg=# SELECT get_dept_name(10);
 get_dept_name

 ACCOUNTING
(1 row)

6. Execute an UPDATE statement that causes a trigger to execute:

acctg=# UPDATE memp SET sal = 500 WHERE empno = 7902;
INFO: Updating employee 7902
INFO: ..Old salary: 3000.00
INFO: ..New salary: 500.00
INFO: ..Raise : -2500.00
INFO: User enterprisedb updated employee(s) on 04-FEB-14
UPDATE 1

7. Terminate the profiling session and flush the performance information to the
profiling tables:

acctg=# EXEC dbms_profiler.stop_profiler;

EDB-SPL Procedure successfully completed

8. Now, query the plsql_profiler_runs table to view a list of the profiling
sessions, arranged by runid:

acctg=# SELECT * FROM plsql_profiler_runs;
 runid | related_run | run_owner | run_date | run_comment
| run_total_time | run_system_info | run_comment1 | spare1
-------+-------------+--------------+---------------------------+-----------------------------
-----------+----------------+-----------------+--------------+--------
 1 | | enterprisedb | 04-FEB-14 09:32:48.874315 | profile list_emp
| 4154 | | |
 2 | | enterprisedb | 04-FEB-14 09:41:30.546503 | profile get_dept_name and
emp_sal_trig | 2088 | | |
(2 rows)

9. Query the plsql_profiler_units table to view the amount of time consumed
by each unit (each function, procedure, or trigger):

acctg=# SELECT * FROM plsql_profiler_units;
 runid | unit_number | unit_type | unit_owner | unit_name |
unit_timestamp | total_time | spare1 | spare2
-------+-------------+-----------+--------------+---------------------------------+-----------
-----+------------+--------+--------

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

556

 1 | 16999 | FUNCTION | enterprisedb | list_emp() |
| 4 | |
 2 | 17002 | FUNCTION | enterprisedb | user_audit_trig() |
| 1 | |
 2 | 17000 | FUNCTION | enterprisedb | get_dept_name(p_deptno numeric) |
| 1 | |
 2 | 17004 | FUNCTION | enterprisedb | emp_sal_trig() |
| 1 | |
(4 rows)

10. Query the plsql_profiler_rawdata table to view a list of the wait event
counters and wait event times:

acctg=# SELECT runid, sourcecode, func_oid, line_number, exec_count, tuples_returned,
time_total FROM plsql_profiler_rawdata;
runid | sourcecode | func_oid |
line_number | exec_count | tuples_returned | time_total
-------+--+----------+--------
-----+------------+-----------------+------------
 1 | DECLARE | 16999 |
1 | 0 | 0 | 0
 1 | v_empno NUMERIC(4); | 16999 |
2 | 0 | 0 | 0
 1 | v_ename VARCHAR(10); | 16999 |
3 | 0 | 0 | 0
 1 | emp_cur CURSOR FOR | 16999 |
4 | 0 | 0 | 0
 1 | SELECT empno, ename FROM memp ORDER BY empno; | 16999 |
5 | 0 | 0 | 0
 1 | BEGIN | 16999 |
6 | 0 | 0 | 0
 1 | OPEN emp_cur; | 16999 |
7 | 0 | 0 | 0
 1 | RAISE INFO 'EMPNO ENAME'; | 16999 |
8 | 1 | 0 | 0.001621
 1 | RAISE INFO '----- -------'; | 16999 |
9 | 1 | 0 | 0.000301
 1 | LOOP | 16999 |
10 | 1 | 0 | 4.6e-05
 1 | FETCH emp_cur INTO v_empno, v_ename; | 16999 |
11 | 1 | 0 | 0.001114
 1 | EXIT WHEN NOT FOUND; | 16999 |
12 | 15 | 0 | 0.000206
 1 | RAISE INFO '% %', v_empno, v_ename; | 16999 |
13 | 15 | 0 | 8.3e-05
 1 | END LOOP; | 16999 |
14 | 14 | 0 | 0.000773
 1 | CLOSE emp_cur; | 16999 |
15 | 0 | 0 | 0
 1 | RETURN; | 16999 |
16 | 1 | 0 | 1e-05
 1 | END; | 16999 |
17 | 1 | 0 | 0
 1 | | 16999 |
18 | 0 | 0 | 0
 2 | DECLARE | 17002 |
1 | 0 | 0 | 0
 2 | v_action VARCHAR(24); | 17002 |
2 | 0 | 0 | 0
 2 | v_text TEXT; | 17002 |
3 | 0 | 0 | 0
 2 | BEGIN | 17002 |
4 | 0 | 0 | 0
 2 | IF TG_OP = 'INSERT' THEN | 17002 |
5 | 0 | 0 | 0
 2 | v_action := ' added employee(s) on '; | 17002 |
6 | 1 | 0 | 0.000143

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

557

 2 | ELSIF TG_OP = 'UPDATE' THEN | 17002 |
7 | 0 | 0 | 0
 2 | v_action := ' updated employee(s) on '; | 17002 |
8 | 0 | 0 | 0
 2 | ELSIF TG_OP = 'DELETE' THEN | 17002 |
9 | 1 | 0 | 3.2e-05
 2 | v_action := ' deleted employee(s) on '; | 17002 |
10 | 0 | 0 | 0
 2 | END IF; | 17002 |
11 | 0 | 0 | 0
 2 | v_text := 'User ' || USER || v_action || CURRENT_DATE; | 17002 |
12 | 0 | 0 | 0
 2 | RAISE INFO ' %', v_text; | 17002 |
13 | 1 | 0 | 0.000383
 2 | RETURN NULL; | 17002 |
14 | 1 | 0 | 6.3e-05
 2 | END; | 17002 |
15 | 1 | 0 | 3.6e-05
 2 | | 17002 |
16 | 0 | 0 | 0
 2 | DECLARE | 17000 |
1 | 0 | 0 | 0
 2 | v_dname VARCHAR(14); | 17000 |
2 | 0 | 0 | 0
 2 | BEGIN | 17000 |
3 | 0 | 0 | 0
 2 | SELECT INTO v_dname dname FROM dept WHERE deptno = p_deptno; | 17000 |
4 | 0 | 0 | 0
 2 | RETURN v_dname; | 17000 |
5 | 1 | 0 | 0.000647
 2 | IF NOT FOUND THEN | 17000 |
6 | 1 | 0 | 2.6e-05
 2 | RAISE INFO 'Invalid department number %', p_deptno; | 17000 |
7 | 0 | 0 | 0
 2 | RETURN ''; | 17000 |
8 | 0 | 0 | 0
 2 | END IF; | 17000 |
9 | 0 | 0 | 0
 2 | END; | 17000 |
10 | 0 | 0 | 0
 2 | | 17000 |
11 | 0 | 0 | 0
 2 | DECLARE | 17004 |
1 | 0 | 0 | 0
 2 | sal_diff NUMERIC(7,2); | 17004 |
2 | 0 | 0 | 0
 2 | BEGIN | 17004 |
3 | 0 | 0 | 0
 2 | IF TG_OP = 'INSERT' THEN | 17004 |
4 | 0 | 0 | 0
 2 | RAISE INFO 'Inserting employee %', NEW.empno; | 17004 |
5 | 1 | 0 | 8.4e-05
 2 | RAISE INFO '..New salary: %', NEW.sal; | 17004 |
6 | 0 | 0 | 0
 2 | RETURN NEW; | 17004 |
7 | 0 | 0 | 0
 2 | END IF; | 17004 |
8 | 0 | 0 | 0
 2 | IF TG_OP = 'UPDATE' THEN | 17004 |
9 | 0 | 0 | 0
 2 | sal_diff := NEW.sal - OLD.sal; | 17004 |
10 | 1 | 0 | 0.000355
 2 | RAISE INFO 'Updating employee %', OLD.empno; | 17004 |
11 | 1 | 0 | 0.000177
 2 | RAISE INFO '..Old salary: %', OLD.sal; | 17004 |
12 | 1 | 0 | 5.5e-05
 2 | RAISE INFO '..New salary: %', NEW.sal; | 17004 |
13 | 1 | 0 | 3.1e-05
 2 | RAISE INFO '..Raise : %', sal_diff; | 17004 |
14 | 1 | 0 | 2.8e-05

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

558

 2 | RETURN NEW; | 17004 |
15 | 1 | 0 | 2.7e-05
 2 | END IF; | 17004 |
16 | 1 | 0 | 1e-06
 2 | IF TG_OP = 'DELETE' THEN | 17004 |
17 | 0 | 0 | 0
 2 | RAISE INFO 'Deleting employee %', OLD.empno; | 17004 |
18 | 0 | 0 | 0
 2 | RAISE INFO '..Old salary: %', OLD.sal; | 17004 |
19 | 0 | 0 | 0
 2 | RETURN OLD; | 17004 |
20 | 0 | 0 | 0
 2 | END IF; | 17004 |
21 | 0 | 0 | 0
 2 | END; | 17004 |
22 | 0 | 0 | 0
 2 | | 17004 |
23 | 0 | 0 | 0
(68 rows)

11. Query the plsql_profiler_data view to review a subset of the information
found in plsql_profiler_rawdata table:

acctg=# SELECT * FROM plsql_profiler_data;
runid | unit_number | line# | total_occur | total_time | min_time | max_time | spare1 | spare2
| spare3 | spare4
-------+-------------+-------+-------------+------------+----------+----------+--------+------
--+--------+--------
 1 | 16999 | 1 | 0 | 0 | 0 | 0 | |
| |
 1 | 16999 | 2 | 0 | 0 | 0 | 0 | |
| |
 1 | 16999 | 3 | 0 | 0 | 0 | 0 | |
| |
 1 | 16999 | 4 | 0 | 0 | 0 | 0 | |
| |
 1 | 16999 | 5 | 0 | 0 | 0 | 0 | |
| |
 1 | 16999 | 6 | 0 | 0 | 0 | 0 | |
| |
 1 | 16999 | 7 | 0 | 0 | 0 | 0 | |
| |
 1 | 16999 | 8 | 1 | 0.001621 | 0.001621 | 0.001621 | |
| |
 1 | 16999 | 9 | 1 | 0.000301 | 0.000301 | 0.000301 | |
| |
 1 | 16999 | 10 | 1 | 4.6e-05 | 4.6e-05 | 4.6e-05 | |
| |
 1 | 16999 | 11 | 1 | 0.001114 | 0.001114 | 0.001114 | |
| |
 1 | 16999 | 12 | 15 | 0.000206 | 5e-06 | 7.8e-05 | |
| |
 1 | 16999 | 13 | 15 | 8.3e-05 | 2e-06 | 4.7e-05 | |
| |
 1 | 16999 | 14 | 14 | 0.000773 | 4.7e-05 | 0.000116 | |
| |
 1 | 16999 | 15 | 0 | 0 | 0 | 0 | |
| |
 1 | 16999 | 16 | 1 | 1e-05 | 1e-05 | 1e-05 | |
| |
 1 | 16999 | 17 | 1 | 0 | 0 | 0 | |
| |
 1 | 16999 | 18 | 0 | 0 | 0 | 0 | |
| |
 2 | 17002 | 1 | 0 | 0 | 0 | 0 | |
| |

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

559

 2 | 17002 | 2 | 0 | 0 | 0 | 0 | |
| |
 2 | 17002 | 3 | 0 | 0 | 0 | 0 | |
| |
 2 | 17002 | 4 | 0 | 0 | 0 | 0 | |
| |
 2 | 17002 | 5 | 0 | 0 | 0 | 0 | |
| |
 2 | 17002 | 6 | 1 | 0.000143 | 0.000143 | 0.000143 | |
| |
 2 | 17002 | 7 | 0 | 0 | 0 | 0 | |
| |
 2 | 17002 | 8 | 0 | 0 | 0 | 0 | |
| |
 2 | 17002 | 9 | 1 | 3.2e-05 | 3.2e-05 | 3.2e-05 | |
| |
 2 | 17002 | 10 | 0 | 0 | 0 | 0 | |
| |
 2 | 17002 | 11 | 0 | 0 | 0 | 0 | |
| |
 2 | 17002 | 12 | 0 | 0 | 0 | 0 | |
| |
 2 | 17002 | 13 | 1 | 0.000383 | 0.000383 | 0.000383 | |
| |
 2 | 17002 | 14 | 1 | 6.3e-05 | 6.3e-05 | 6.3e-05 | |
| |
 2 | 17002 | 15 | 1 | 3.6e-05 | 3.6e-05 | 3.6e-05 | |
| |
 2 | 17002 | 16 | 0 | 0 | 0 | 0 | |
| |
 2 | 17000 | 1 | 0 | 0 | 0 | 0 | |
| |
 2 | 17000 | 2 | 0 | 0 | 0 | 0 | |
| |
 2 | 17000 | 3 | 0 | 0 | 0 | 0 | |
| |
 2 | 17000 | 4 | 0 | 0 | 0 | 0 | |
| |
 2 | 17000 | 5 | 1 | 0.000647 | 0.000647 | 0.000647 | |
| |
 2 | 17000 | 6 | 1 | 2.6e-05 | 2.6e-05 | 2.6e-05 | |
| |
 2 | 17000 | 7 | 0 | 0 | 0 | 0 | |
| |
 2 | 17000 | 8 | 0 | 0 | 0 | 0 | |
| |
 2 | 17000 | 9 | 0 | 0 | 0 | 0 | |
| |
 2 | 17000 | 10 | 0 | 0 | 0 | 0 | |
| |
 2 | 17000 | 11 | 0 | 0 | 0 | 0 | |
| |
 2 | 17004 | 1 | 0 | 0 | 0 | 0 | |
| |
 2 | 17004 | 2 | 0 | 0 | 0 | 0 | |
| |
 2 | 17004 | 3 | 0 | 0 | 0 | 0 | |
| |
 2 | 17004 | 4 | 0 | 0 | 0 | 0 | |
| |
 2 | 17004 | 5 | 1 | 8.4e-05 | 8.4e-05 | 8.4e-05 | |
| |
 2 | 17004 | 6 | 0 | 0 | 0 | 0 | |
| |
 2 | 17004 | 7 | 0 | 0 | 0 | 0 | |
| |
 2 | 17004 | 8 | 0 | 0 | 0 | 0 | |
| |
 2 | 17004 | 9 | 0 | 0 | 0 | 0 | |
| |

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

560

 2 | 17004 | 10 | 1 | 0.000355 | 0.000355 | 0.000355 | |
| |
 2 | 17004 | 11 | 1 | 0.000177 | 0.000177 | 0.000177 | |
| |
 2 | 17004 | 12 | 1 | 5.5e-05 | 5.5e-05 | 5.5e-05 | |
| |
 2 | 17004 | 13 | 1 | 3.1e-05 | 3.1e-05 | 3.1e-05 | |
| |
 2 | 17004 | 14 | 1 | 2.8e-05 | 2.8e-05 | 2.8e-05 | |
| |
 2 | 17004 | 15 | 1 | 2.7e-05 | 2.7e-05 | 2.7e-05 | |
| |
 2 | 17004 | 16 | 1 | 1e-06 | 1e-06 | 1e-06 | |
| |
 2 | 17004 | 17 | 0 | 0 | 0 | 0 | |
| |
 2 | 17004 | 18 | 0 | 0 | 0 | 0 | |
| |
 2 | 17004 | 19 | 0 | 0 | 0 | 0 | |
| |
 2 | 17004 | 20 | 0 | 0 | 0 | 0 | |
| |
 2 | 17004 | 21 | 0 | 0 | 0 | 0 | |
| |
 2 | 17004 | 22 | 0 | 0 | 0 | 0 | |
| |
 2 | 17004 | 23 | 0 | 0 | 0 | 0 | |
| |
(68 rows)

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

561

8.6.2 DBMS_PROFILER Functions and Procedures

The DBMS_PROFILER package collects and stores performance information about the
PL/pgSQL and SPL statements that are executed during a profiling session; use the
functions and procedures listed below to control the profiling tool.

Table 8-5 DBMS_PROFILER Functions/Procedures

Function/Procedure Function or
Procedure

Return
Type Description

FLUSH_DATA Function and
Procedure

Status Code
or Exception

Flushes performance data collected in the
current session without terminating the
session (profiling continues).

GET_VERSION (major OUT, minor
OUT) Procedure n/a Returns the version number of this package.

INTERNAL_VERSION_CHECK Function Status Code Confirms that the current version of the
profiler will work with the current database.

PAUSE_PROFILER Function and
Procedure

Status Code
or Exception Pause data collection.

RESUME_PROFILER Function and
Procedure

Status Code
or Exception Resume data collection.

START_PROFILER[run_comment,
run_comment1, run_number OUT]

Functions and
Procedures

Status Code
or Exception Start data collection.

STOP_PROFILER Function and
Procedure

Status Code
or Exception

Stop data collection and flush performance
data to PLSQL_PROFILER_RAWDATA.

Return Values

The functions within the DBMS_PROFILER package return a status code to indicate
success or failure; the DBMS_PROFILER procedures raise an exception only if they
encounter a failure. The status codes and messages returned by the functions, and the
exceptions raised by the procedures are listed in the table below.

Status Code Message Exception Description
-1 error version version_mismatch The profiler version and the database are

incompatible.
0 success n/a The operation completed successfully.
1 error_param profiler_error The operation received an incorrect parameter.
2 error_io profiler_error The data flush operation has failed.

8.6.2.1 FLUSH_DATA

The FLUSH_DATA procedure or function flushes the data collected in the current session
without terminating the profiler session. The data is flushed to the tables listed in Section
6.3 of the Postgres Plus Advanced Server Performance Features Guide. The signature of
the FLUSH_DATA function is:

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

562

DBMS_PROFILER.FLUSH_DATA
 RETURN INTEGER;

The signature of the FLUSH_DATA procedure is:

DBMS_PROFILER.FLUSH_DATA;

8.6.2.2 GET_VERSION

The GET_VERSION procedure returns the version of DBMS_PROFILER. The procedure
signature is:

DBMS_PROFILER.GET_VERSION(major OUT INTEGER
 minor OUT INTEGER);

Parameters

major

The major version number of DBMS_PROFILER.

minor

The minor version number of DBMS_PROFILER.

8.6.2.3 INTERNAL_VERSION_CHECK

The INTERNAL_VERSION_CHECK function confirms that the current version of
DBMS_PROFILER will work with the current database. The function signature is:

DBMS_PROFILER.INTERNAL_VERSION_CHECK
 RETURN INTEGER;

8.6.2.4 PAUSE_PROFILER

The PAUSE_PROFILER function or procedure pauses a profiling session. The function
signature is:

DBMS_PROFILER.PAUSE_PROFILER
 RETURN INTEGER;

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

563

The signature of the PAUSE_PROFILER procedure is:

DBMS_PROFILER.PAUSE_PROFILER;

8.6.2.5 RESUME_PROFILER

The RESUME_PROFILER function or procedure resumes a paused profiling session. The
function signature is:

DBMS_PROFILER.RESUME_PROFILER
 RETURN INTEGER;

The signature of the RESUME_PROFILER procedure is:

DBMS_PROFILER.RESUME_PROFILER;

8.6.2.6 START_PROFILER

The START_PROFILER function or procedure starts a data collection session. The
START_PROFILER function has two forms:

DBMS_PROFILER.START_PROFILER(
 run_comment IN TEXT := sysdate,
 run_comment1 IN TEXT := '',
 run_number OUT INTEGER)
 RETURN INTEGER;
DBMS_PROFILER.START_PROFILER(
 run_comment IN TEXT := sysdate,
 run_comment1 IN TEXT := '')
 RETURN INTEGER;

The START_PROFILER procedure has two forms:

DBMS_PROFILER.START_PROFILER (
 run_comment IN TEXT := sysdate,
 run_comment1 IN TEXT := '');
DBMS_PROFILER.START_PROFILER (
 run_comment IN TEXT := sysdate,
 run_comment1 IN TEXT := '',
 run_number OUT INTEGER);

Parameters

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

564

run_comment

A user-defined comment for the profiler session; the default value is sysdate.

run_comment1

An additional user-defined comment for the profiler session; the default value is
''.

run_number

The session number of the profiler session.

8.6.2.7 STOP_PROFILER

The STOP_PROFILER function or procedure stops a profiling session and flushes the
performance information to the DBMS_PROFILER tables and view. The
STOP_PROFILER function signature is:

DBMS_PROFILER.STOP_PROFILER;
 RETURN INTEGER;

The signature of the START_PROFILER procedure is:

DBMS_PROFILER.STOP_PROFILER;

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

565

8.6.3 DBMS_PROFILER - Reference

The Advanced Server installer creates the following tables and views that you can query
to review PL/SQL performance profile information:

Table Name Description
PLSQL_PROFILER_RUNS Table containing information about all profiler runs, organized by

runid.
PLSQL_PROFILER_UNITS Table containing information about all profiler runs, organized by

unit.
PLSQL_PROFILER_DATA View containing performance statistics.
PLSQL_PROFILER_RAWDATA Table containing the performance statistics and the extended

performance statistics for DRITA counters and timers.

8.6.3.1 PLSQL_PROFILER_RUNS

The PLSQL_PROFILER_RUNS table contains the following columns:

Column Data Type Description
runid INTEGER (NOT NULL) Unique identifier (plsql_profiler_runnumber)
related_run INTEGER The runid of a related run.
run_owner TEXT The role that recorded the profiling session.
run_date TIMESTAMP WITHOUT

TIME ZONE
The profiling session start time.

run_comment TEXT User comments relevant to this run
run_total_time BIGINT Run time (in nanoseconds)
run_system_info TEXT Currently Unused
run_comment1 TEXT Additional user comments
spare1 TEXT Currently Unused

8.6.3.2 PLSQL_PROFILER_UNITS

The PLSQL_PROFILER_UNITS table contains the following columns:

Column Data Type Description
runid INTEGER Unique identifier (plsql_profiler_runnumber)
unit_number OID Corresponds to the OID of the row in the pg_proc

table that identifies the unit.
unit_type TEXT PL/SQL function, procedure, trigger or anonymous

block
unit_owner TEXT The identity of the role that owns the unit.
unit_name TEXT The complete signature of the unit.
unit_timestamp TIMESTAMP WITHOUT

TIME ZONE
Creation date of the unit (currently NULL).

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

566

Column Data Type Description
total_time BIGINT Time spent within the unit (in nanoseconds)
spare1 BIGINT Currently Unused
spare2 BIGINT Currently Unused

8.6.3.3 PLSQL_PROFILER_DATA

The PLSQL_PROFILER_DATA view contains the following columns:

Column Data Type Description
runid INTEGER Unique identifier (plsql_profiler_runnumber)
unit_number OID Object ID of the unit that contains the current line.
line# INTEGER Current line number of the profiled workload.
total_occur BIGINT The number of times that the line was executed.
total_time DOUBLE PRECISION The amount of time spent executing the line.
min_time DOUBLE PRECISION The minimum execution time for the line.
max_time DOUBLE PRECISION The maximum execution time for the line.
spare1 NUMBER Currently Unused
spare2 NUMBER Currently Unused
spare3 NUMBER Currently Unused
spare4 NUMBER Currently Unused

8.6.3.4 PLSQL_PROFILER_RAWDATA

The PLSQL_PROFILER_RAWDATA table contains the statistical information that is found
in the PLSQL_PROFILER_DATA view, as well as the performance statistics returned by
the DRITA counters and timers.

Column Data Type Description
runid INTEGER The run identifier (plsql_profiler_runnumber).
sourcecode TEXT The individual line of profiled code.
func_oid OID Object ID of the unit that contains the current line.
line_number INTEGER Current line number of the profiled workload.
exec_count BIGINT The number of times that the line was executed.
time_total DOUBLE

PRECISION
The amount of time spent executing the line.

time_shortest DOUBLE
PRECISION

The minimum execution time for the line.

time_longest DOUBLE
PRECISION

The maximum execution time for the line.

tuples_returned BIGINT Currently Unused
num_scans BIGINT Currently Unused
tuples_fetched BIGINT Currently Unused
tuples_inserted BIGINT Currently Unused
tuples_updated BIGINT Currently Unused
tuples_deleted BIGINT Currently Unused
blocks_fetched BIGINT Currently Unused

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

567

Column Data Type Description
blocks_hit BIGINT Currently Unused
wal_write BIGINT The server has waited for a write to the write-ahead

log buffer (expect this value to be high).
wal_flush BIGINT The server has waited for the write-ahead log to flush

to disk.
wal_file_sync BIGINT The server has waited for the write-ahead log to sync

to disk (related to the wal_sync_method parameter
which, by default, is 'fsync' - better performance can
be gained by changing this parameter to open_sync).

buffer_free_list_lock_acqu
ire

BIGINT The server has waited for the short-term lock that
synchronizes access to the list of free buffers (in
shared memory).

shmem_index_lock_acquire BIGINT The server has waited for the short-term lock that
synchronizes access to the shared-memory map.

oid_gen_lock_acquire BIGINT The server has waited for the short-term lock that
synchronizes access to the next available OID (object
ID).

xid_gen_lock_acquire BIGINT The server has waited for the short-term lock that
synchronizes access to the next available transaction
ID.

proc_array_lock_acquire BIGINT The server has waited for the short-term lock that
synchronizes access to the process array

sinval_lock_acquire BIGINT The server has waited for the short-term lock that
synchronizes access to the cache invalidation state.

freespace_lock_acquire BIGINT The server has waited for the short-term lock that
synchronizes access to the freespace map.

wal_insert_lock_acquire BIGINT The server has waited for the short-term lock that
synchronizes write access to the write-ahead log. A
high number may indicate that WAL buffers are
sized too small.

wal_write_lock_acquire BIGINT The server has waited for the short-term lock that
synchronizes write-ahead log flushes.

control_file_lock_acquire BIGINT The server has waited for the short-term lock that
synchronizes write access to the control file (this
should usually be a low number).

checkpoint_lock_acquire BIGINT A server process has waited for the short-term lock
that prevents simultaneous checkpoints.

clog_control_lock_acquire BIGINT The server has waited for the short-term lock that
synchronizes access to the commit log.

subtrans_control_lock_acqu
ire

BIGINT The server has waited for the short-term lock that
synchronizes access to the subtransaction log.

multi_xact_gen_lock_acquir
e

BIGINT The server has waited for the short-term lock that
synchronizes access to the next available multi-
transaction ID (when a SELECT...FOR SHARE
statement executes).

multi_xact_offset_lock_acq
uire

BIGINT The server has waited for the short-term lock that
synchronizes access to the multi-transaction offset
file (when a SELECT...FOR SHARE statement
executes).

multi_xact_member_lock_acq
uire

BIGINT The server has waited for the short-term lock that
synchronizes access to the multi-transaction member
file (when a SELECT...FOR SHARE statement
executes).

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

568

Column Data Type Description
rel_cache_init_lock_acquir
e

BIGINT The server has waited for the short-term lock that
prevents simultaneous relation-cache loads/unloads.

bgwriter_communication_loc
k_acquire

BIGINT The bgwriter (background writer) process has waited
for the short-term lock that synchronizes messages
between the bgwriter and a backend process.

two_phase_state_lock_acqui
re

BIGINT The server has waited for the short-term lock that
synchronizes access to the list of prepared
transactions.

tablespace_create_lock_acq
uire

BIGINT The server has waited for the short-term lock that
prevents simultaneous CREATE TABLESPACE or
DROP TABLESPACE commands.

btree_vacuum_lock_acquire BIGINT The server has waited for the short-term lock that
synchronizes access to the next available vacuum
cycle ID.

add_in_shmem_lock_acquire BIGINT Currently Unused
autovacuum_lock_acquire BIGINT The server has waited for the short-term lock that

synchronizes access to the shared autovacuum state.
autovacuum_schedule_lock_a
cquire

BIGINT The server has waited for the short-term lock that
synchronizes access to the autovacuum schedule.

syncscan_lock_acquire BIGINT The server has waited for the short-term lock that
coordinates synchronous scans.

icache_lock_acquire BIGINT The server has waited for the short-term lock that
synchronizes access to InfiniteCache state

breakpoint_lock_acquire BIGINT The server has waited for the short-term lock that
synchronizes access to the debugger breakpoint list.

lwlock_acquire BIGINT The server has waited for a short-term lock that has
not been described elsewhere in this section.

db_file_read BIGINT A server process has waited for the completion of a
read (from disk).

db_file_write BIGINT A server process has waited for the completion of a
write (to disk).

db_file_sync BIGINT A server process has waited for the operating system
to flush all changes to disk.

db_file_extend BIGINT A server process has waited for the operating system
while adding a new page to the end of a file.

sql_parse BIGINT Currently Unused
query_plan BIGINT The server has generated a query plan.
infinitecache_read BIGINT The server has waited for an Infinite Cache read

request.
infinitecache_write BIGINT The server has waited for an Infinite Cache write

request.
wal_write_time BIGINT The amount of time that the server has waited for a

write to the write-ahead log buffer (expect this value
to be high).

wal_flush_time BIGINT The amount of time that the server has waited for the
write-ahead log to flush to disk.

wal_file_sync_time BIGINT The amount of time that the server has waited for the
write-ahead log to sync to disk (related to the
wal_sync_method parameter which, by default, is
'fsync' - better performance can be gained by
changing this parameter to open_sync).

buffer_free_list_lock_acqu
ire_time

BIGINT The amount of time that the server has waited for the
short-term lock that synchronizes access to the list of

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

569

Column Data Type Description
free buffers (in shared memory).

shmem_index_lock_acquire_t
ime

BIGINT The amount of time that the server has waited for the
short-term lock that synchronizes access to the
shared-memory map.

oid_gen_lock_acquire_time BIGINT The amount of time that the server has waited for the
short-term lock that synchronizes access to the next
available OID (object ID).

xid_gen_lock_acquire_time BIGINT The amount of time that the server has waited for the
short-term lock that synchronizes access to the next
available transaction ID.

proc_array_lock_acquire_ti
me

BIGINT The amount of time that the server has waited for the
short-term lock that synchronizes access to the
process array.

sinval_lock_acquire_time BIGINT The amount of time that the server has waited for the
short-term lock that synchronizes access to the cache
invalidation state.

freespace_lock_acquire_tim
e

BIGINT The amount of time that the server has waited for the
short-term lock that synchronizes access to the
freespace map.

wal_insert_lock_acquire_ti
me

BIGINT The amount of time that the server has waited for the
short-term lock that synchronizes write access to the
write-ahead log. A high number may indicate that
WAL buffers are sized too small.

wal_write_lock_acquire_tim
e

BIGINT The amount of time that the server has waited for the
short-term lock that synchronizes write-ahead log
flushes.

control_file_lock_acquire_
time

BIGINT The amount of time that the server has waited for the
short-term lock that synchronizes write access to the
control file (this should usually be a low number).

checkpoint_lock_acquire_ti
me

BIGINT The amount of time that the server process has
waited for the short-term lock that prevents
simultaneous checkpoints.

clog_control_lock_acquire_
time

BIGINT The amount of time that the server has waited for the
short-term lock that synchronizes access to the
commit log.

subtrans_control_lock_acqu
ire_time

BIGINT The amount of time that the server has waited for the
short-term lock that synchronizes access to the
subtransaction log.

multi_xact_gen_lock_acquir
e_time

BIGINT The amount of time that the server has waited for the
short-term lock that synchronizes access to the next
available multi-transaction ID (when a
SELECT...FOR SHARE statement executes).

multi_xact_offset_lock_acq
uire_time

BIGINT The amount of time that the server has waited for the
short-term lock that synchronizes access to the multi-
transaction offset file (when a SELECT...FOR
SHARE statement executes).

multi_xact_member_lock_acq
uire_time

BIGINT The amount of time that the server has waited for the
short-term lock that synchronizes access to the multi-
transaction member file (when a SELECT...FOR
SHARE statement executes).

rel_cache_init_lock_acquir
e_time

BIGINT The amount of time that the server has waited for the
short-term lock that prevents simultaneous relation-
cache loads/unloads.

bgwriter_communication_loc BIGINT The amount of time that the bgwriter (background

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

570

Column Data Type Description
k_acquire_time writer) process has waited for the short-term lock that

synchronizes messages between the bgwriter and a
backend process.

two_phase_state_lock_acqui
re_time

BIGINT The amount of time that the server has waited for the
short-term lock that synchronizes access to the list of
prepared transactions.

tablespace_create_lock_acq
uire_time

BIGINT The amount of time that the server has waited for the
short-term lock that prevents simultaneous CREATE
TABLESPACE or DROP TABLESPACE
commands.

btree_vacuum_lock_acquire_
time

BIGINT The amount of time that the server has waited for the
short-term lock that synchronizes access to the next
available vacuum cycle ID.

add_in_shmem_lock_acquire_
time

BIGINT Obsolete/unused

autovacuum_lock_acquire_ti
me

BIGINT The amount of time that the server has waited for the
short-term lock that synchronizes access to the
shared autovacuum state.

autovacuum_schedule_lock_a
cquire_time

BIGINT The amount of time that the server has waited for the
short-term lock that synchronizes access to the
autovacuum schedule.

syncscan_lock_acquire_time BIGINT The amount of time that the server has waited for the
short-term lock that coordinates synchronous scans.

icache_lock_acquire_time BIGINT The amount of time that the server has waited for the
short-term lock that synchronizes access to
InfiniteCache state

breakpoint_lock_acquire_ti
me

BIGINT The amount of time that the server has waited for the
short-term lock that synchronizes access to the
debugger breakpoint list.

lwlock_acquire_time BIGINT The amount of time that the server has waited for a
short-term lock that has not been described elsewhere
in this section.

db_file_read_time BIGINT The amount of time that the server process has
waited for the completion of a read (from disk).

db_file_write_time BIGINT The amount of time that the server process has
waited for the completion of a write (to disk).

db_file_sync_time BIGINT The amount of time that the server process has
waited for the operating system to flush all changes
to disk.

db_file_extend_time BIGINT The amount of time that the server process has
waited for the operating system while adding a new
page to the end of a file.

sql_parse_time BIGINT The amount of time that the server has parsed a SQL
statement.

query_plan_time BIGINT The amount of time that the server has computed the
execution plan for a SQL statement.

infinitecache_read_time BIGINT The amount of time that the server has waited for an
Infinite Cache read request.

infinitecache_write_time BIGINT The amount of time that the server has waited for an
Infinite Cache write request.

totalwaits BIGINT The total number of event waits.
totalwaittime BIGINT The total time spent waiting for an event.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

571

8.7 Dynamic Runtime Instrumentation Tools Architecture
(DRITA)

The Dynamic Runtime Instrumentation Tools Architecture (DRITA) allows a DBA to
query catalog views to determine the wait events that affect the performance of individual
sessions or the system as a whole. DRITA records the number of times each event occurs
as well as the time spent waiting; you can use this information to diagnose performance
problems. DRITA offers this functionality, while consuming minimal system resources.

DRITA compares snapshots to evaluate the performance of a system. A snapshot is a
saved set of system performance data at a given point in time. Each snapshot is identified
by a unique ID number; you can use snapshot ID numbers with DRITA reporting
functions to return system performance statistics.

8.7.1 Configuring and Using DRITA

Advanced Server's postgresql.conf file includes a configuration parameter named
timed_statistics that controls the collection of timing data. The valid parameter
values are TRUE or FALSE; the default value is FALSE.

This is a dynamic parameter which can be modified in the postgresql.conf file, or
while a session is in progress. To enable DRITA, you must either:

Modify the postgresql.conf file, setting the timed_statistics parameter
to TRUE.

or

Connect to the server with the EDB-PSQL client, and invoke the command:

SET timed_statistics = TRUE

After modifying the timed_statistics parameter, take a starting snapshot. A
snapshot captures the current state of each timer and event counter. The server will
compare the starting snapshot to a later snapshot to gauge system performance.

Use the edbsnap() function to take the beginning snapshot:

edb=# SELECT * FROM edbsnap();
 edbsnap

 Statement processed.
(1 row)

Then, run the workload that you would like to evaluate; when the workload has
completed (or at a strategic point during the workload), take another snapshot:

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

572

edb=# SELECT * FROM edbsnap();
 edbsnap

 Statement processed.
(1 row)

You can capture multiple snapshots during a session. Then, use the DRITA functions
and reports to manage and compare the snapshots to evaluate performance information.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

573

8.8 DRITA Functions

You can use DRITA functions to gather wait information and manage snapshots. DRITA
functions are fully supported by Postgres Plus Advanced Server 9.5 when installed in
either Oracle-compatible or PostgreSQL-compatible mode.

8.8.1 get_snaps()

The get_snaps() function returns a list of the current snapshots. The signature is:

get_snaps()

The following example demonstrates using the get_snaps() function to display a list
of snapshots:

edb=# SELECT * FROM get_snaps();
 get_snaps

 1 11-FEB-10 10:41:05.668852
 2 11-FEB-10 10:42:27.26154
 3 11-FEB-10 10:45:48.999992
 4 11-FEB-10 11:01:58.345163
 5 11-FEB-10 11:05:14.092683
 6 11-FEB-10 11:06:33.151002
 7 11-FEB-10 11:11:16.405664
 8 11-FEB-10 11:13:29.458405
 9 11-FEB-10 11:23:57.595916
 10 11-FEB-10 11:29:02.214014
 11 11-FEB-10 11:31:44.244038
(11 rows)

The first column in the result list displays the snapshot identifier; the second column
displays the date and time that the snapshot was captured.

8.8.2 sys_rpt()

The sys_rpt() function returns system wait information. The signature is:

sys_rpt(beginning_id, ending_id, top_n)
Parameters

beginning_id

beginning_id is an integer value that represents the beginning session
identifier.

ending_id

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

574

ending_id is an integer value that represents the ending session identifier.

top_n

top_n represents the number of rows to return

This example demonstrates a call to the sys_rpt()function:

edb=# SELECT * FROM sys_rpt(9, 10, 10);
 sys_rpt

 WAIT NAME COUNT WAIT TIME % WAIT

 wal write 21250 104.723772 36.31
 db file read 121407 72.143274 25.01
 wal flush 84185 51.652495 17.91
 wal file sync 712 29.482206 10.22
 infinitecache write 84178 15.814444 5.48
 db file write 84177 14.447718 5.01
 infinitecache read 672 0.098691 0.03
 db file extend 190 0.040386 0.01
 query plan 52 0.024400 0.01
 wal insert lock acquire 4 0.000837 0.00
(12 rows)

The information displayed in the result set includes:

Column Name Description
WAIT NAME The name of the wait.
COUNT The number of times that the wait event occurred.
WAIT TIME The time of the wait event in milliseconds.

% WAIT The percentage of the total wait time used by this
wait for this session.

8.8.3 sess_rpt()

The sess_rpt() function returns session wait information. The signature is:

sess_rpt(beginning_id, ending_id, top_n)
Parameters

beginning_id

beginning_id is an integer value that represents the beginning session
identifier.

ending_id

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

575

ending_id is an integer value that represents the ending session identifier.

top_n

top_n represents the number of rows to return

The following example demonstrates a call to the sess_rpt()function:

SELECT * FROM sess_rpt(18, 19, 10);

 sess_rpt

ID USER WAIT NAME COUNT TIME(ms) %WAIT SES %WAIT ALL
 --

 17373 enterprise db file read 30 0.175713 85.24 85.24
 17373 enterprise query plan 18 0.014930 7.24 7.24
 17373 enterprise wal flush 6 0.004067 1.97 1.97
 17373 enterprise wal write 1 0.004063 1.97 1.97
 17373 enterprise wal file sync 1 0.003664 1.78 1.78
 17373 enterprise infinitecache read 38 0.003076 1.49 1.49
 17373 enterprise infinitecache write 5 0.000548 0.27 0.27
 17373 enterprise db file extend 190 0.04.386 0.03 0.03
 17373 enterprise db file write 5 0.000082 0.04 0.04
 (11 rows)

The information displayed in the result set includes:

Column Name Description
ID The processID of the session.
USER The name of the user incurring the wait.
WAIT NAME The name of the wait event.
COUNT The number of times that the wait event occurred.
TIME (ms) The length of the wait event in milliseconds.

% WAIT SES The percentage of the total wait time used by this
wait for this session.

% WAIT ALL The percentage of the total wait time used by this
wait (for all sessions).

8.8.4 sessid_rpt()

The sessid_rpt() function returns session ID information for a specified backend.
The signature is:

sessid_rpt(beginning_id, ending_id, backend_id)
Parameters

beginning_id

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

576

beginning_id is an integer value that represents the beginning session
identifier.

ending_id

ending_id is an integer value that represents the ending session identifier.

backend_id

backend_id is an integer value that represents the backend identifier.

The following code sample demonstrates a call to sessid_rpt():

SELECT * FROM sessid_rpt(18, 19, 17373);

 sessid_rpt

 ID USER WAIT NAME COUNT TIME(ms) %WAIT SES %WAIT ALL
 --
 17373 enterprise db file read 30 0.175713 85.24 85.24
 17373 enterprise query plan 18 0.014930 7.24 7.24
 17373 enterprise wal flush 6 0.004067 1.97 1.97
 17373 enterprise wal write 1 0.004063 1.97 1.97
 17373 enterprise wal file sync 1 0.003664 1.78 1.78
 17373 enterprise infinitecache read 38 0.003076 1.49 1.49
 17373 enterprise infinitecache write 5 0.000548 0.27 0.27
 17373 enterprise db file extend 190 0.040386 0.03 0.03
 17373 enterprise db file write 5 0.000082 0.04 0.04
(11 rows)

The information displayed in the result set includes:

Column Name Description
ID The process ID of the wait.
USER The name of the user that owns the session.
WAIT NAME The name of the wait event.
COUNT The number of times that the wait event occurred.
TIME (ms) The length of the wait in milliseconds.

% WAIT SES The percentage of the total wait time used by this wait for this
session.

% WAIT ALL The percentage of the total wait time used by this wait (for all
sessions).

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

577

8.8.5 sesshist_rpt()

The sesshist_rpt() function returns session wait information for a specified backend.
The signature is:

sesshist_rpt(snapshot_id, session_id)
Parameters

snapshot_id

snapshot_id is an integer value that identifies the snapshot.

session_id

session_id is an integer value that represents the session.

The following example demonstrates a call to the sesshist_rpt()function:

edb=# SELECT * FROM sesshist_rpt (9, 5531);
 sesshist_rpt
--
 ID USER SEQ WAIT NAME
 ELAPSED(ms) File Name # of Blk Sum of Blks
 --
 5531 enterprise 1 db file read
 18546 14309 session_waits_pk 1 1
 5531 enterprise 2 infinitecache read
 125 14309 session_waits_pk 1 1
 5531 enterprise 3 db file read
 376 14304 edb$session_waits 0 1
 5531 enterprise 4 infinitecache read
 166 14304 edb$session_waits 0 1
 5531 enterprise 5 db file read
 7978 1260 pg_authid 0 1
 5531 enterprise 6 infinitecache read
 154 1260 pg_authid 0 1
 5531 enterprise 7 db file read
 628 14302 system_waits_pk 1 1
 5531 enterprise 8 infinitecache read
 463 14302 system_waits_pk 1 1
 5531 enterprise 9 db file read
 3446 14297 edb$system_waits 0 1
 5531 enterprise 10 infinitecache read
 187 14297 edb$system_waits 0 1
 5531 enterprise 11 db file read
 14750 14295 snap_pk 1 1
 5531 enterprise 12 infinitecache read
 416 14295 snap_pk 1 1
 5531 enterprise 13 db file read
 7139 14290 edb$snap 0 1
 5531 enterprise 14 infinitecache read
 158 14290 edb$snap 0 1
 5531 enterprise 15 db file read
 27287 14288 snapshot_num_seq 0 1
 5531 enterprise 16 infinitecache read
(17 rows)

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

578

The information displayed in the result set includes:

Column Name Description
ID The system-assigned identifier of the wait.
USER The name of the user that incurred the wait.
SEQ The sequence number of the wait event.
WAIT NAME The name of the wait event.
ELAPSED (ms) The length of the wait event in milliseconds.
File The relfilenode number of the file.
Name If available, the name of the file name related to the wait event.
of Blk The block number read or written for a specific instance of the event .
Sum of Blks The number of blocks read.

8.8.6 purgesnap()

The purgesnap() function purges a range of snapshots from the snapshot tables. The
signature is:

purgesnap(beginning_id, ending_id)

Parameters

beginning_id

beginning_id is an integer value that represents the beginning session
identifier.

ending_id

ending_id is an integer value that represents the ending session identifier.

purgesnap()removes all snapshots between beginning_id and ending_id
(inclusive):

SELECT * FROM purgesnap(6, 9);

 purgesnap

 Snapshots in range 6 to 9 deleted.
(1 row)

A call to the get_snaps() function after executing the example shows that snapshots 6
through 9 have been purged from the snapshot tables:

edb=# SELECT * FROM get_snaps();
 get_snaps

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

579

 1 11-FEB-10 10:41:05.668852
 2 11-FEB-10 10:42:27.26154
 3 11-FEB-10 10:45:48.999992
 4 11-FEB-10 11:01:58.345163
 5 11-FEB-10 11:05:14.092683
 10 11-FEB-10 11:29:02.214014
 11 11-FEB-10 11:31:44.244038
(7 rows)

8.8.7 truncsnap()

Use the truncsnap() function to delete all records from the snapshot table. The
signature is:

truncsnap()

For example:

SELECT * FROM truncsnap();

 truncsnap

 Snapshots truncated.
(1 row)

A call to the get_snaps() function after calling the truncsnap() function shows that
all records have been removed from the snapshot tables:

SELECT * FROM get_snaps();
 get_snaps

(0 rows)

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

580

8.9 Simulating Statspack AWR Reports

The functions described in this section return information comparable to the information
contained in an Oracle Statspack/AWR (Automatic Workload Repository) report. When
taking a snapshot, performance data from system catalog tables is saved into history
tables. The reporting functions listed below report on the differences between two given
snapshots.

x stat_db_rpt()
x stat_tables_rpt()
x statio_tables_rpt()
x stat_indexes_rpt()
x statio_indexes_rpt()

The reporting functions can be executed individually or you can execute all five functions
by calling the edbreport() function.

8.9.1 edbreport()

The edbreport() function includes data from the other reporting functions, plus
additional system information. The signature is:

edbreport(beginning_id, ending_id)
Parameters

beginning_id

beginning_id is an integer value that represents the beginning session
identifier.

ending_id

ending_id is an integer value that represents the ending session identifier.

The call to the edbreport() function returns a composite report that contains system
information and the reports returned by the other statspack functions. :

edb=# SELECT * FROM edbreport(9, 10);

edbreport

 EnterpriseDB Report for database edb 23-AUG-15
 Version: EnterpriseDB 9.5.0.0 on i686-pc-linux-gnu
 Begin snapshot: 9 at 23-AUG-15 13:45:07.165123
 End snapshot: 10 at 23-AUG-15 13:45:35.653036

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

581

 Size of database edb is 155 MB
 Tablespace: pg_default Size: 179 MB Owner: enterprisedb
 Tablespace: pg_global Size: 435 kB Owner: enterprisedb

 Schema: pg_toast_temp_1 Size: 0 bytes Owner: enterprisedb
 Schema: public Size: 0 bytes Owner: enterprisedb
 Schema: enterprisedb Size: 143 MB Owner: enterprisedb
 Schema: pgagent Size: 192 kB Owner: enterprisedb
 Schema: dbms_job_procedure Size: 0 bytes Owner: enterprisedb

The information displayed in the report introduction includes the database name and
version, the current date, the beginning and ending snapshot date and times, database and
tablespace details and schema information.

 Top 10 Relations by pages

 TABLE RELPAGES
 --
 pgbench_accounts 15874
 pg_proc 102
 edb$statio_all_indexes 73
 edb$stat_all_indexes 73
 pg_attribute 67
 pg_depend 58
 edb$statio_all_tables 49
 edb$stat_all_tables 47
 pgbench_tellers 37
 pg_description 32

The information displayed in the Top 10 Relations by pages section includes:

Column Name Description
TABLE The name of the table.
RELPAGES The number of pages in the table.

 Top 10 Indexes by pages

 INDEX RELPAGES
 --
 pgbench_accounts_pkey 2198
 pg_depend_depender_index 32
 pg_depend_reference_index 31
 pg_proc_proname_args_nsp_index 30
 pg_attribute_relid_attnam_index 23
 pg_attribute_relid_attnum_index 17
 pg_description_o_c_o_index 15
 edb$statio_idx_pk 11
 edb$stat_idx_pk 11
 pg_proc_oid_index 9

The information displayed in the Top 10 Indexes by pages section includes:

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

582

Column Name Description
INDEX The name of the index.
RELPAGES The number of pages in the index.

 Top 10 Relations by DML

 SCHEMA RELATION UPDATES DELETES INSERTS

 enterprisedb pgbench_accounts 10400 0 1000000
 enterprisedb pgbench_tellers 10400 0 100
 enterprisedb pgbench_branches 10400 0 10
 enterprisedb pgbench_history 0 0 10400
 pgagent pga_jobclass 0 0 6
 pgagent pga_exception 0 0 0
 pgagent pga_job 0 0 0
 pgagent pga_jobagent 0 0 0
 pgagent pga_joblog 0 0 0
 pgagent pga_jobstep 0 0 0

The information displayed in the Top 10 Relations by DML section includes:

Column Name Description
SCHEMA The name of the schema in which the table resides.
RELATION The name of the table.
UPDATES The number of UPDATES performed on the table.
DELETES The number of DELETES performed on the table.
INSERTS The number of INSERTS performed on the table.

 DATA from pg_stat_database

 DATABASE NUMBACKENDS XACT COMMIT XACT ROLLBACK BLKS READ BLKS HIT
BLKS ICACHE HIT HIT RATIO ICACHE HIT RATIO
 --
 edb 0 142 0 78 10446
 0 99.26 0.00

 DATA from pg_buffercache not included because pg_buffercache is not
installed

The information displayed in the DATA from pg_stat_database section of the report
includes:

Column Name Description
DATABASE The name of the database.

NUMBACKENDS
Number of backends currently connected to this database. This is the
only column in this view that returns a value reflecting current state; all
other columns return the accumulated values since the last reset.

XACT COMMIT Number of transactions in this database that have been committed.
XACT ROLLBACK Number of transactions in this database that have been rolled back.
BLKS READ Number of disk blocks read in this database.

BLKS HIT Number of times disk blocks were found already in the buffer cache
(when a read was not necessary).

BLKS ICACHE HIT The number of blocks found in Infinite Cache.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

583

Column Name Description

HIT RATIO The percentage of times that a block was found in the shared buffer
cache.

ICACHE HIT RATIO The percentage of times that a block was found in Infinite Cache.

 DATA from pg_stat_all_tables ordered by seq scan

 SCHEMA RELATION SEQ SCAN REL TUP READ
IDX SCAN IDX TUP READ INS UPD DEL
 --
 pg_catalog pg_class 16 7162
546 319 0 1 0
 pg_catalog pg_am 13 13
0 0 0 0 0
 pg_catalog pg_database 4 16
42 42 0 0 0
 pg_catalog pg_index 4 660
145 149 0 0 0
 pg_catalog pg_namespace 4 100
49 49 0 0 0
 sys edb$snap 1 9
0 0 1 0 0
 pg_catalog pg_authid 1 1
25 25 0 0 0
 sys edb$session_wait_history 0 0
0 0 50 0 0
 sys edb$session_waits 0 0
0 0 2 0 0
 sys edb$stat_all_indexes 0 0
0 0 165 0 0

The information displayed in the DATA from pg_stat_all_tables ordered by
seq scan section includes:

Column Name Description
SCHEMA The name of the schema in which the table resides.
RELATION The name of the table.
SEQ SCAN The number of sequential scans initiated on this table..
REL TUP READ The number of tuples read in the table.
IDX SCAN The number of index scans initiated on the table.
IDX TUP READ The number of index tuples read.
INS The number of rows inserted.
UPD The number of rows updated.
DEL The number of rows deleted.

 DATA from pg_stat_all_tables ordered by rel tup read

 SCHEMA RELATION SEQ SCAN REL TUP READ
IDX SCAN IDX TUP READ INS UPD DEL
 --
 pg_catalog pg_class 16 7162
546 319 0 1 0
 pg_catalog pg_index 4 660
145 149 0 0 0

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

584

 pg_catalog pg_namespace 4 100
49 49 0 0 0
 pg_catalog pg_database 4 16
42 42 0 0 0
 pg_catalog pg_am 13 13
0 0 0 0 0
 sys edb$snap 1 9
0 0 1 0 0
 pg_catalog pg_authid 1 1
25 25 0 0 0
 sys edb$session_wait_history 0 0
0 0 50 0 0
 sys edb$session_waits 0 0
0 0 2 0 0
 sys edb$stat_all_indexes 0 0
0 0 165 0 0

The information displayed in the DATA from pg_stat_all_tables ordered by
rel tup read section includes:

Column Name Description
SCHEMA The name of the schema in which the table resides.
RELATION The name of the table.
SEQ SCAN The number of sequential scans performed on the table.
REL TUP READ The number of tuples read from the table.
IDX SCAN The number of index scans performed on the table.
IDX TUP READ The number of index tuples read.
INS The number of rows inserted.
UPD The number of rows updated.
DEL The number of rows deleted.

 DATA from pg_statio_all_tables

 SCHEMA RELATION HEAP HEAP HEAP IDX IDX
 READ HIT ICACHE READ HIT
 HIT

 IDX TOAST TOAST TOAST TIDX TIDX TIDX
 ICACHE READ HIT ICACHE READ HIT ICACHE
 HIT HIT HIT

 public pgbench_accounts 92766 67215 288 59 32126
 9 0 0 0 0 0 0
 pg_catalog pg_class 0 296 0 3 16
 0 0 0 0 0 0 0
 sys edb$stat_all_indexes 8 125 0 4 233
 0 0 0 0 0 0 0
 sys edb$statio_all_index 8 125 0 4 233
 0 0 0 0 0 0 0
 sys edb$stat_all_tables 6 91 0 2 174
 0 0 0 0 0 0 0
 sys edb$statio_all_table 6 91 0 2 174
 0 0 0 0 0 0 0
 pg_catalog pg_namespace 3 72 0 0 0
 0 0 0 0 0 0 0
 sys edb$session_wait_his 1 24 0 4 47
 0 0 0 0 0 0 0

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

585

 pg_catalog pg_opclass 3 13 0 2 0
 0 0 0 0 0 0 0
 pg_catalog pg_trigger 0 12 0 1 15
 0 0 0 0 0 0 0

The information displayed in the Data from pg_statio_all_tables section
includes:

Column Name Description
SCHEMA The name of the schema in which the table resides.
RELATION The name of the table.
HEAP READ The number of heap blocks read.
HEAP HIT The number of heap blocks hit.
HEAP ICACHE HIT The number of heap blocks in Infinite Cache.
IDX READ The number of index blocks read.
IDX HIT The number of index blocks hit.
IDX ICACHE HIT The number of index blocks in Infinite Cache.
TOAST READ The number of toast blocks read.
TOAST HIT The number of toast blocks hit.
TOAST ICACHE HIT The number of toast blocks in Infinite Cache.
TIDX READ The number of toast index blocks read.
TIDX HIT The number of toast index blocks hit.
TIDX ICACHE HIT The number of toast index blocks in Infinite Cache.

 DATA from pg_stat_all_indexes

 SCHEMA RELATION INDEX
IDX SCAN IDX TUP READ IDX TUP FETCH
 --
 pg_catalog pg_attribute
pg_attribute_relid_attnum_index 427 907 907
 pg_catalog pg_class pg_class_relname_nsp_index
289 62 62
 pg_catalog pg_class pg_class_oid_index
257 257 257
 pg_catalog pg_statistic
pg_statistic_relid_att_inh_index 207 196 196
 enterprisedb pgbench_accounts pgbench_accounts_pkey
200 255 200
 pg_catalog pg_cast pg_cast_source_target_index
199 50 50
 pg_catalog pg_proc pg_proc_oid_index
116 116 116
 pg_catalog edb_partition edb_partition_partrelid_index
112 0 0
 pg_catalog edb_policy edb_policy_object_name_index
112 0 0
 enterprisedb pgbench_branches pgbench_branches_pkey
101 110 0

The information displayed in the DATA from pg_stat_all_indexes section
includes:

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

586

Column Name Description
SCHEMA The name of the schema in which the index resides.
RELATION The name of the table on which the index is defined.
INDEX The name of the index.
IDX SCAN The number of indexes scans initiated on this index.
IDX TUP READ Number of index entries returned by scans on this index

IDX TUP FETCH Number of live table rows fetched by simple index scans using this
index.

 DATA from pg_statio_all_indexes

 SCHEMA RELATION INDEX
IDX BLKS READ IDX BLKS HIT IDX BLKS ICACHE HIT
 --
 pg_catalog pg_attribute
pg_attribute_relid_attnum_index 0 867 0
 enterprisedb pgbench_accounts pgbench_accounts_pkey
1 778 0
 pg_catalog pg_class pg_class_relname_nsp_index
0 590 0
 pg_catalog pg_class pg_class_oid_index
0 527 0
 pg_catalog pg_statistic
pg_statistic_relid_att_inh_index 0 441 0
 sys edb$stat_all_indexes edb$stat_idx_pk
1 332 0
 sys edb$statio_all_indexes edb$statio_idx_pk
1 332 0
 pg_catalog pg_proc pg_proc_oid_index
0 244 0
 sys edb$stat_all_tables edb$stat_tab_pk
0 241 0
 sys edb$statio_all_tables edb$statio_tab_pk
0 241 0

The information displayed in the DATA from pg_statio_all_indexes section
includes:

Column Name Description
SCHEMA The name of the schema in which the index resides.
RELATION The name of the table on which the index is defined.
INDEX The name of the index.
IDX BLKS READ The number of index blocks read.
IDX BLKS HIT The number of index blocks hit.
IDX BLKS ICACHE HIT The number of index blocks in Infinite Cache that were hit.

 System Wait Information

 WAIT NAME COUNT WAIT TIME % WAIT

 query plan 0 0.000407 100.00
 db file read 0 0.000000 0.00

The information displayed in the System Wait Information section includes:

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

587

Column Name Description
WAIT NAME The name of the wait.
COUNT The number of times that the wait event occurred.
WAIT TIME The length of the wait time in milliseconds.
% WAIT The percentage of the total wait time used by this wait for this session.

 Database Parameters from postgresql.conf

 PARAMETER SETTING
CONTEXT MINVAL MAXVAL
 --
 allow_system_table_mods off
postmaster
 application_name psql
user
 archive_command (disabled)
sighup
 archive_mode off
postmaster
 archive_timeout 0
sighup 0 2147483647
 array_nulls on
user
 authentication_timeout 60
sighup 1 600
 autovacuum on
sighup
 autovacuum_analyze_scale_factor 0.1
sighup 0 100
 autovacuum_analyze_threshold 50
sighup 0 2147483647
 autovacuum_freeze_max_age 200000000
postmaster 100000000 2000000000
 autovacuum_max_workers 3
postmaster 1 8388607
 autovacuum_naptime 60
sighup 1 2147483
 autovacuum_vacuum_cost_delay 20
...

The information displayed in the Database Parameters from postgresql.conf
section includes:

Column Name Description
PARAMETER The name of the parameter.
SETTING The current value assigned to the parameter.
CONTEXT The context required to set the parameter value.
MINVAL The minimum value allowed for the parameter.
MAXVAL The maximum value allowed for the parameter.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

588

8.9.2 stat_db_rpt()

The signature is:

stat_db_rpt(beginning_id, ending_id)
Parameters

beginning_id

beginning_id is an integer value that represents the beginning session
identifier.

ending_id

ending_id is an integer value that represents the ending session identifier.

The following example demonstrates the stat_db_rpt() function:

SELECT * FROM stat_db_rpt(9, 10);
 stat_db_rpt

 DATA from pg_stat_database

 DATABASE NUMBACKENDS XACT COMMIT XACT ROLLBACK BLKS READ BLKS HIT
 BLKS ICACHE HIT HIT RATIO ICACHE HIT RATIO

 edb 1 21 0 92928 101217
 301 52.05 0.15

The information displayed in the DATA from pg_stat_database section of the report
includes:

Column Name Description
DATABASE The name of the database.

NUMBACKENDS
Number of backends currently connected to this database. This is the
only column in this view that returns a value reflecting current state; all
other columns return the accumulated values since the last reset.

XACT COMMIT The number of transactions in this database that have been committed.
XACT ROLLBACK The number of transactions in this database that have been rolled back.
BLKS READ The number of blocks read.
BLKS HIT The number of blocks hit.
BLKS ICACHE HIT The number of blocks in Infinite Cache that were hit.

HIT RATIO The percentage of times that a block was found in the shared buffer
cache.

ICACHE HIT RATIO The percentage of times that a block was found in Infinite Cache.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

589

8.9.3 stat_tables_rpt()

The signature is:

function_name(beginning_id, ending_id, top_n, scope)
Parameters

beginning_id

beginning_id is an integer value that represents the beginning session
identifier.

ending_id

ending_id is an integer value that represents the ending session identifier.

top_n

top_n represents the number of rows to return

scope

scope determines which tables the function returns statistics about. Specify SYS,
USER or ALL:

x SYS indicates that the function should return information about system
defined tables. A table is considered a system table if it is stored in one of
the following schemas: pg_catalog, information_schema, sys, or
dbo.

x USER indicates that the function should return information about user-
defined tables.

x ALL specifies that the function should return information about all tables.

The stat_tables_rpt() function returns a two-part report. The first portion of the
report contains:

SELECT * FROM stat_tables_rpt(18, 19, 10, 'ALL');

stat_tables_rpt

DATA from pg_stat_all_tables ordered by seq scan

SCHEMA RELATION
 SEQ SCAN REL TUP READ IDX SCAN IDX TUP READ INS UPD DEL

pg_catalog pg_class

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

590

 8 2952 78 65 0 0 0
pg_catalog pg_index
 4 448 23 28 0 0 0
pg_catalog pg_namespace
 4 76 1 1 0 0 0
pg_catalog pg_database
 3 6 0 0 0 0 0
pg_catalog pg_authid
 2 1 0 0 0 0 0
sys edb$snap
 1 15 0 0 1 0 0
public accounts
 0 0 0 0 0 0 0
public branches
 0 0 0 0 0 0 0
sys edb$session_wait_history
 0 0 0 0 25 0 0
sys edb$session_waits
 0 0 0 0 10 0 0

The information displayed in the DATA from pg_stat_all_tables ordered by
seq scan section includes:

Column Name Description
SCHEMA The name of the schema in which the table resides.
RELATION The name of the table.
SEQ SCAN The number of sequential scans on the table.
REL TUP READ The number of tuples read from the table.
IDX SCAN The number of index scans performed on the table.
IDX TUP READ The number of index tuples read from the table.
INS The number of rows inserted.
UPD The number of rows updated.
DEL The number of rows deleted.

The second portion of the report contains:

DATA from pg_stat_all_tables ordered by rel tup read

SCHEMA RELATION
 SEQ SCAN REL TUP READ IDX SCAN IDX TUP READ INS UPD DEL

pg_catalog pg_class
 8 2952 78 65 0 0 0
pg_catalog pg_index
 4 448 23 28 0 0 0
pg_catalog pg_namespace
 4 76 1 1 0 0 0
sys edb$snap
 1 15 0 0 1 0 0
pg_catalog pg_database
 3 6 0 0 0 0 0
pg_catalog pg_authid
 2 1 0 0 0 0 0
public accounts
 0 0 0 0 0 0 0

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

591

public branches
 0 0 0 0 0 0 0
sys edb$session_wait_history
 0 0 0 0 25 0 0
sys edb$session_waits
 0 0 0 0 10 0 0
(29 rows)

The information displayed in the DATA from pg_stat_all_tables ordered by
rel tup read section includes:

Column Name Description
SCHEMA The name of the schema in which the table resides.
RELATION The name of the table.
SEQ SCAN The number of sequential scans performed on the table.
REL TUP READ The number of tuples read from the table.
IDX SCAN The number of index scans performed on the table.
IDX TUP READ The number of live rows fetched by index scans.
INS The number of rows inserted.
UPD The number of rows updated.
DEL The number of rows deleted.

8.9.4 statio_tables_rpt()

The signature is:

statio_tables_rpt(beginning_id, ending_id, top_n, scope)
Parameters

beginning_id

beginning_id is an integer value that represents the beginning session
identifier.

ending_id

ending_id is an integer value that represents the ending session identifier.

top_n

top_n represents the number of rows to return

scope

scope determines which tables the function returns statistics about. Specify SYS,
USER or ALL:

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

592

x SYS indicates that the function should return information about system
defined tables. A table is considered a system table if it is stored in one of
the following schemas: pg_catalog, information_schema, sys, or
dbo.

x USER indicates that the function should return information about user-
defined tables.

x ALL specifies that the function should return information about all tables.

The statio_tables_rpt() function returns a report that contains:

edb=# SELECT * FROM statio_tables_rpt(9, 10, 10, 'SYS');

 statio_tables_rpt

 DATA from pg_statio_all_tables

 SCHEMA RELATION HEAP HEAP HEAP IDX IDX
 READ HIT ICACHE READ HIT
 HIT

 IDX TOAST TOAST TOAST TIDX TIDX TIDX
 ICACHE READ HIT ICACHE READ HIT ICACHE
 HIT HIT HIT

 public pgbench_accounts 92766 67215 288 59 32126
 9 0 0 0 0 0 0
 pg_catalog pg_class 0 296 0 3 16
 0 0 0 0 0 0 0
 sys edb$stat_all_indexes 8 125 0 4 233
 0 0 0 0 0 0 0
 sys edb$statio_all_index 8 125 0 4 233
 0 0 0 0 0 0 0
 sys edb$stat_all_tables 6 91 0 2 174
 0 0 0 0 0 0 0
 sys edb$statio_all_table 6 91 0 2 174
 0 0 0 0 0 0 0
 pg_catalog pg_namespace 3 72 0 0 0
 0 0 0 0 0 0 0
 sys edb$session_wait_his 1 24 0 4 47
 0 0 0 0 0 0 0
 pg_catalog pg_opclass 3 13 0 2 0
 0 0 0 0 0 0 0
 pg_catalog pg_trigger 0 12 0 1 15
 0 0 0 0 0 0 0
(16 rows)

The information displayed in the Data from pg_statio_all_tables section
includes:

Column Name Description
SCHEMA The name of the schema in which the relation resides.
RELATION The name of the relation.
HEAP READ The number of heap blocks read.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

593

Column Name Description
HEAP HIT The number of heap blocks hit.
HEAP ICACHE HIT The number of heap blocks in Infinite Cache.
IDX READ The number of index blocks read.
IDX HIT The number of index blocks hit.
IDX ICACHE HIT The number of index blocks in Infinite Cache.
TOAST READ The number of toast blocks read.
TOAST HIT The number of toast blocks hit.
TOAST ICACHE HIT The number of toast blocks in Infinite Cache.
TIDX READ The number of toast index blocks read.
TIDX HIT The number of toast index blocks hit.
TIDX ICACHE HIT The number of toast index blocks in Infinite Cache.

8.9.5 stat_indexes_rpt()

The signature is:

stat_indexes_rpt(beginning_id, ending_id, top_n, scope)
Parameters

beginning_id

beginning_id is an integer value that represents the beginning session
identifier.

ending_id

ending_id is an integer value that represents the ending session identifier.

top_n

top_n represents the number of rows to return

scope

scope determines which tables the function returns statistics about. Specify SYS,
USER or ALL:

x SYS indicates that the function should return information about system
defined tables. A table is considered a system table if it is stored in one of
the following schemas: pg_catalog, information_schema, sys, or
dbo.

x USER indicates that the function should return information about user-
defined tables.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

594

x ALL specifies that the function should return information about all tables.

The stat_indexes_rpt() function returns a report that contains:

edb=# SELECT * FROM stat_indexes_rpt(9, 10, 10, 'ALL');

 stat_indexes_rpt

 DATA from pg_stat_all_indexes

 SCHEMA RELATION INDEX
 IDX SCAN IDX TUP READ IDX TUP FETCH

 pg_catalog pg_cast pg_cast_source_target_index
 30 7 7
 pg_catalog pg_class pg_class_oid_index
 15 15 15
 pg_catalog pg_trigger pg_trigger_tgrelid_tgname_index
 12 12 12
 pg_catalog pg_attribute pg_attribute_relid_attnum_index
 7 31 31
 pg_catalog pg_statistic pg_statistic_relid_att_index
 7 0 0
 pg_catalog pg_database pg_database_oid_index
 5 5 5
 pg_catalog pg_proc pg_proc_oid_index
 5 5 5
 pg_catalog pg_operator pg_operator_oprname_l_r_n_index
 3 1 1
 pg_catalog pg_type pg_type_typname_nsp_index
 3 1 1
 pg_catalog pg_amop pg_amop_opr_fam_index
 2 3 3
(14 rows)

The information displayed in the DATA from pg_stat_all_indexes section
includes:

Column Name Description
SCHEMA The name of the schema in which the relation resides.
RELATION The name of the relation.
INDEX The name of the index.
IDX SCAN The number of indexes scanned.
IDX TUP READ The number of index tuples read.
IDX TUP FETCH The number of index tuples fetched.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

595

8.9.6 statio_indexes_rpt()

The signature is:

statio_indexes_rpt(beginning_id, ending_id, top_n, scope)
Parameters

beginning_id

beginning_id is an integer value that represents the beginning session
identifier.

ending_id

ending_id is an integer value that represents the ending session identifier.

top_n

top_n represents the number of rows to return

scope

scope determines which tables the function returns statistics about. Specify SYS,
USER or ALL:

x SYS indicates that the function should return information about system
defined tables. A table is considered a system table if it is stored in one of
the following schemas: pg_catalog, information_schema, sys, or
dbo.

x USER indicates that the function should return information about user-
defined tables.

x ALL specifies that the function should return information about all tables.

The statio_indexes_rpt()function returns a report that contains:

edb=# SELECT * FROM statio_indexes_rpt(9, 10, 10, 'SYS');

 statio_indexes_rpt

 DATA from pg_statio_all_indexes

 SCHEMA RELATION INDEX
 IDX BLKS READ IDX BLKS HIT IDX BLKS ICACHE HIT

public pgbench_accounts pgbench_accounts_pkey
 59 32126 9
 sys edb$stat_all_indexes edb$stat_idx_pk

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

596

 4 233 0
 sys edb$statio_all_indexes edb$statio_idx_pk
 4 233 0
 sys edb$stat_all_tables edb$stat_tab_pk
 2 174 0
 sys edb$statio_all_tables edb$statio_tab_pk
 2 174 0
 sys edb$session_wait_history session_waits_hist_pk
 4 47 0
 pg_catalog pg_cast pg_cast_source_target_index
 1 29 0
 pg_catalog pg_trigger pg_trig_tgrelid_tgname_index
 1 15 0
 pg_catalog pg_class pg_class_oid_index
 1 14 0
 pg_catalog pg_statistic pg_statistic_relid_att_index
 2 12 0
(14 rows)

The information displayed in the DATA from pg_statio_all_indexes report
includes:

Column Name Description
SCHEMA The name of the schema in which the relation resides.
RELATION The name of the table on which the index is defined.
INDEX The name of the index.
IDX BLKS READ The number of index blocks read.
IDX BLKS HIT The number of index blocks hit.
IDX BLKS ICACHE HIT The number of index blocks in Infinite Cache that were hit.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

597

8.10 Performance Tuning Recommendations

To use DRITA reports for performance tuning, review the top five events in a given
report, looking for any event that takes a disproportionately large percentage of resources.
In a streamlined system, user I/O will probably make up the largest number of waits.
Waits should be evaluated in the context of CPU usage and total time; an event may not
be significant if it takes 2 minutes out of a total measurement interval of 2 hours, if the
rest of the time is consumed by CPU time. The component of response time (CPU
"work" time or other "wait" time) that consumes the highest percentage of overall time
should be evaluated.

When evaluating events, watch for:

Event type Description
Checkpoint waits Checkpoint waits may indicate that checkpoint parameters need to

be adjusted.
WAL-related waits WAL-related waits may indicate wal_buffers are under-sized.
SQL Parse waits If the number of waits is high, try to use prepared statements.
db file random reads If high, check that appropriate indexes and statistics exist.
db file random writes If high, may need to decrease bgwriter_delay.
btree random lock acquires May indicate indexes are being rebuilt. Schedule index builds during

less active time.

Performance reviews should also include careful scrutiny of the hardware, the operating
system, the network and the application SQL statements.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

598

8.11 Event Descriptions

Event Name Description

add in shmem lock
acquire Obsolete/unused
bgwriter
communication lock
acquire

The bgwriter (background writer) process has waited for the short-term lock
that synchronizes messages between the bgwriter and a backend process.

btree vacuum lock
acquire

The server has waited for the short-term lock that synchronizes access to the
next available vacuum cycle ID.

buffer free list
lock acquire

The server has waited for the short-term lock that synchronizes access to the
list of free buffers (in shared memory).

checkpoint lock
acquire:

A server process has waited for the short-term lock that prevents simultaneous
checkpoints.

checkpoint start
lock acquire

The server has waited for the short-term lock that synchronizes access to the
bgwriter checkpoint schedule.

clog control lock
acquire

The server has waited for the short-term lock that synchronizes access to the
commit log.

control file lock
acquire

The server has waited for the short-term lock that synchronizes write access to
the control file (this should usually be a low number).

db file extend A server process has waited for the operating system while adding a new page
to the end of a file.

db file read A server process has waited for the completion of a read (from disk).
db file write A server process has waited for the completion of a write (to disk).

db file sync A server process has waited for the operating system to flush all changes to
disk.

first buf mapping
lock acquire

The server has waited for a short-term lock that synchronizes access to the
shared-buffer mapping table.

freespace lock
acquire

The server has waited for the short-term lock that synchronizes access to the
freespace map.

Infinite Cache read The server has waited for an Infinite Cache read request.
Infinite Cache
write The server has waited for an Infinite Cache write request.

lwlock acquire The server has waited for a short-term lock that has not been described
elsewhere in this section.

multi xact gen lock
acquire

The server has waited for the short-term lock that synchronizes access to the
next available multi-transaction ID (when a SELECT...FOR SHARE
statement executes).

multi xact member
lock acquire

The server has waited for the short-term lock that synchronizes access to the
multi-transaction member file (when a SELECT...FOR SHARE statement
executes).

multi xact offset
lock acquire

The server has waited for the short-term lock that synchronizes access to the
multi-transaction offset file (when a SELECT...FOR SHARE statement
executes).

oid gen lock
acquire

The server has waited for the short-term lock that synchronizes access to the
next available OID (object ID).

query plan The server has computed the execution plan for a SQL statement.
rel cache init lock
acquire

The server has waited for the short-term lock that prevents simultaneous
relation-cache loads/unloads.

shmem index lock
acquire

The server has waited for the short-term lock that synchronizes access to the
shared-memory map.

sinval lock acquire The server has waited for the short-term lock that synchronizes access to the
cache invalidation state.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

599

sql parse The server has parsed a SQL statement.
subtrans control
lock acquire

The server has waited for the short-term lock that synchronizes access to the
subtransaction log.

tablespace create
lock acquire

The server has waited for the short-term lock that prevents simultaneous
CREATE TABLESPACE or DROP TABLESPACE commands.

two phase state
lock acquire

The server has waited for the short-term lock that synchronizes access to the
list of prepared transactions.

wal insert lock
acquire

The server has waited for the short-term lock that synchronizes write access to
the write-ahead log. A high number may indicate that WAL buffers are sized
too small.

wal write lock
acquire

The server has waited for the short-term lock that synchronizes write-ahead
log flushes.

wal file sync
The server has waited for the write-ahead log to sync to disk (related to the
wal_sync_method parameter which, by default, is 'fsync' - better performance
can be gained by changing this parameter to open_sync).

wal flush The server has waited for the write-ahead log to flush to disk.

wal write The server has waited for a write to the write-ahead log buffer (expect this
value to be high).

xid gen lock
acquire

The server has waited for the short-term lock that synchronizes access to the
next available transaction ID.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

600

8.12 Catalog Views

The following DRITA catalog views provide access to performance information relating
to system waits.

8.12.1 edb$system_waits

The edb$system_waits view summarizes the number of waits and the total wait time
per session for each wait named. It also displays the average and max wait times. The
following example shows the result of a SELECT statement on the edb$system_waits
view:

select * from sys.edb$system_waits;

 edb_id | dbname |wait_name | wait_count |avg_wait | max_wait | totalwait
--------+--------+-----------+------------+---------+----------+----------
 1 | edb |db fileread| 301 |0.011516 | 0.629986 | 2.742500
 1 | edb |wal flush | 26 |0.010364 | 0.085380 | 0.269452
 1 | edb |wal write | 26 |0.010355 | 0.085371 | 0.269232
 1 | edb |query plan | 277 |0.001367 | 0.049425 | 0.192442
 2 | edb |wal flush | 28 |0.040443 | 0.095150 | 0.431984
 2 | edb |wal write | 28 |0.040434 | 0.095093 | 0.431698
 2 | edb |query plan | 299 |0.001479 | 0.049425 | 0.262596

edb$system_waits summarizes the following information:

Column Name Type Description
edb_id BIGINT Wait identifier.
dbname NAME Name of the database in which the wait occurs.
wait_name TEXT Name of the wait event.
wait_count BIGINT Number of times the wait event has occurred.
avg_wait NUMERIC Average wait time in milliseconds.
max_wait NUMERIC(50,6) Maximum wait time in milliseconds.
totalwait NUMERIC(50,6) Total wait time in milliseconds.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

601

8.12.2 edb$session_waits

The edb$session_waits view summarizes the number of waits and the total wait time
per session for each wait named and identified by backend ID. It also displays the
average and max wait times. The following code sample shows the result of a SELECT
statement on the edb$session_waits view:

SELECT * FROM sys.edb$session_waits;

 edb_id | dbname | backend_id | wait_name | wait_count | avg_wait_time |
max_wait_time| total_wait_time | usename | current_query
--------+--------+------------+---------------+------------+---------------+-
-------------+-----------------+--------------+---------------------------
 1 | edb | 22935 | db file read | 175 | 0.008399 |
 0.629986 | 1.469887 | enterprisedb | <IDLE>
 1 | edb | 22988 | db file read | 116 | 0.009556 |
 0.040627 | 1.108438 | enterprisedb | select * from edbsnap();
 1 | edb | 22988 | wal flush | 26 | 0.010364 |
 0.085380 | 0.269452 | enterprisedb | select * from edbsnap();
(3 rows)

edb$session_waits summarizes the following information:

Column Name Type Description
edb_id BIGINT Wait identifier.
dbname NAME Name of the database in which the wait occurs.
backend_id BIGINT The backend ID of the process.
wait_name TEXT Name of the wait event.
wait_count BIGINT Number of times the wait event has occurred.
avg_wait_time NUMERIC(50,6) Average wait time in milliseconds.
max_wait_time NUMERIC Maximum wait time in milliseconds.
total_wait_time NUMERIC Total wait time in milliseconds.
use_name NAME The name of the user invoking the query.
current_query TEXT The query that is currently executing.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

602

8.12.3 edb$session_wait_history

The edb$session_wait_history view contains the last 25 wait events for each
backend ID active during the session. The following code sample shows the result of a
SELECT statement on the edb$session_wait_history view:

SELECT * FROM sys.edb$session_wait_history;

 edb_id | dbname | backend_id | seq | wait_name | elapsed | p1 | p2 | p3
--------+--------+------------+-----+---------------+---------+----+----+----
 1 | edb | 22935 | 1 | query plan | 54 | 0 | 0 | 0
 1 | edb | 22935 | 2 | db file read | 1116 |2689| 8 | 1
 1 | edb | 22935 | 3 | db file read | 983 |1255| 32 | 1
 1 | edb | 22935 | 4 | db file read | 13717 |2691| 19 | 1
 1 | edb | 22935 | 5 | query plan | 75 | 0| 0 | 0
 1 | edb | 22935 | 6 | db file read | 11053 |1255| 7 | 1
 1 | edb | 22935 | 7 | db file read | 404 |2689| 4 | 1
 (7 rows)

The edb$session_wait_history view includes the following information:

Column Name Type Description
edb_id BIGINT Wait identifier.
dbname TEXT Name of the database in which the wait occurs.
backend_id BIGINT The session identifier of the process in which the wait occurs.
seq BIGINT The sequence number of the event (value 1 through 25).
wait_name TEXT Name of the wait event.
elapsed BIGINT Elapsed time in milliseconds.
p1 BIGINT Wait specific – see table below.
p2 BIGINT Wait specific – see table below.
p3 BIGINT Wait specific – see table below.

The values contained in the p1, p2, and p3 columns are wait-specific. The following
waits include information in those columns:

Wait Name p1 p2 p3
wal file sync 0 means Fsync

1 means Fdatasync
2 means open
3 means Fsync writethrough
4 means open dsync
For more information, please
see the documentation for
WAL_SYNC_METHOD

unused unused

Infinite Cache
write

The Infinite Cache node ID that
was written

The file ID from
pg_class.relfilenode

The block number that
was written

Infinite Cache
read

The file ID from
pg_class.relfilenode

The block number that was
written

unused

db file extend The file ID from
pg_class.relfilenode

The block number that was
extended

Skip Fsync;
1 if True, 0 if False

db file read The file ID from The block number that was unused

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

603

pg_class.relfilenode read
db file write The file ID from

pg_class.relfilenode
The block number that was
written

unused

For all other event types, the p1, p2, and p3 columns are unused.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

604

9 Built-In Utility Packages
This chapter describes the built-in packages that are provided with Postgres Plus
Advanced Server. For certain packages, non-superusers must be explicitly granted the
EXECUTE privilege on the package before using any of the package‟s functions or
procedures. For most of the built-in packages, EXECUTE privilege has been granted to
PUBLIC by default. See the GRANT command for granting privileges.

All built-in packages are owned by the special sys user which must be specified when
granting or revoking privileges on built-in packages:

GRANT EXECUTE ON PACKAGE SYS.UTL_FILE TO john;

Note: When executing a built-in package procedure that has no IN OUT or OUT
parameters from within a PL/pgSQL function or trigger, the PERFORM statement must be
used as illustrated by the following example:

PERFORM DBMS_ALERT.SIGNAL('dept_alert', 'Alert message');

This differs from the manner in which a procedure is executed from within an SPL
anonymous block, procedure, function, or trigger as shown by the following example:

DBMS_ALERT.SIGNAL('dept_alert', 'Alert message');

Within an SPL program, the package-qualified procedure name is specified without the
PERFORM statement.

When executing a built-in package procedure that has a single IN OUT or OUT parameter
from within a PL/pgSQL function or trigger, a variable with a data type compatible with
the IN OUT or OUT parameter must be assigned the result of the evaluated function as
illustrated by the following example:

DECLARE
 v_item VARCHAR(100);
BEGIN
 .
 .
 .
 v_item := DBMS_PIPE.UNPACK_MESSAGE(v_item);

When executing a built-in package procedure that has more than one IN OUT or OUT
parameters from within a PL/pgSQL function or trigger, a variable of type RECORD must
be assigned the result of the evaluated function. The returned values of the individual IN
OUT and OUT parameters can then be referenced from the individual fields of the record in
the form, record_name.parameter_name where record_name is the RECORD type
variable name and parameter_name is the name of an IN OUT or OUT parameter

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

605

declared in the built-in package procedure parameter declaration as illustrated by the
following example:

DECLARE
 v_name VARCHAR2(30);
 v_msg VARCHAR2(80);
 v_status INTEGER;
 v_timeout NUMBER(3) := 120;
 v_waitany RECORD;
BEGIN
 .
 .
 .
 v_waitany := DBMS_ALERT.WAITANY(v_name,v_msg,v_status,v_timeout);
 RAISE INFO 'Alert name : %', v_waitany.name;
 RAISE INFO 'Alert msg : %', v_waitany.message;
 RAISE INFO 'Alert status : %', v_waitany.status;

See Section 9.1.5 for the parameter declarations of the DBMS_ALERT.WAITANY
procedure.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

606

9.1 DBMS_ALERT

The DBMS_ALERT package provides the capability to register for, send, and receive alerts.

Table 7-9-1 DBMS_ALERT Functions/Procedures

Function/Procedure Return
Type

Description

REGISTER(name) n/a Register to be able to receive alerts named,
name.

REMOVE(name) n/a Remove registration for the alert named, name.
REMOVEALL n/a Remove registration for all alerts.
SIGNAL(name, message) n/a Signals the alert named, name, with message.
WAITANY(name OUT, message OUT,
status OUT, timeout)

n/a Wait for any registered alert to occur.

WAITONE(name, message OUT, status
OUT, timeout)

n/a Wait for the specified alert, name, to occur.

Advanced Server allows a maximum of 500 concurrent alerts. You can use the
dbms_alert.max_alerts GUC variable (located in the postgresql.conf file) to
specify the maximum number of concurrent alerts allowed on a system.

To set a value for the dbms_alert.max_alerts variable, open the postgresql.conf file
(located by default in /opt/PostgresPlus/9.4AS/data) with your choice of editor,
and edit the dbms_alert.max_alerts parameter as shown:

dbms_alert.max_alerts = alert_count

alert_count

alert_count specifies the maximum number of concurrent alerts. By default, the value
of dbms_alert.max_alerts is 100. To disable this feature, set
dbms_alert.max_alerts to 0.

For the dbms_alert.max_alerts GUC to function correctly, the
custom_variable_classes parameter must contain dbms_alerts:

custom_variable_classes = 'dbms_alert, …'

After editing the postgresql.conf file parameters, you must restart the server for the
changes to take effect.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

607

9.1.1 REGISTER

The REGISTER procedure enables the current session to be notified of the specified alert.

REGISTER(name VARCHAR2)

Parameters

name

Name of the alert to be registered.

Examples

The following anonymous block registers for an alert named, alert_test, then waits
for the signal.

DECLARE
 v_name VARCHAR2(30) := 'alert_test';
 v_msg VARCHAR2(80);
 v_status INTEGER;
 v_timeout NUMBER(3) := 120;
BEGIN
 DBMS_ALERT.REGISTER(v_name);
 DBMS_OUTPUT.PUT_LINE('Registered for alert ' || v_name);
 DBMS_OUTPUT.PUT_LINE('Waiting for signal...');
 DBMS_ALERT.WAITONE(v_name,v_msg,v_status,v_timeout);
 DBMS_OUTPUT.PUT_LINE('Alert name : ' || v_name);
 DBMS_OUTPUT.PUT_LINE('Alert msg : ' || v_msg);
 DBMS_OUTPUT.PUT_LINE('Alert status : ' || v_status);
 DBMS_OUTPUT.PUT_LINE('Alert timeout: ' || v_timeout || ' seconds');
 DBMS_ALERT.REMOVE(v_name);
END;

Registered for alert alert_test
Waiting for signal...

9.1.2 REMOVE

The REMOVE procedure unregisters the session for the named alert.

REMOVE(name VARCHAR2)

Parameters

name

Name of the alert to be unregistered.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

608

9.1.3 REMOVEALL

The REMOVEALL procedure unregisters the session for all alerts.

REMOVEALL

9.1.4 SIGNAL

The SIGNAL procedure signals the occurrence of the named alert.

SIGNAL(name VARCHAR2, message VARCHAR2)

Parameters

name

Name of the alert.

message

Information to pass with this alert.

Examples

The following anonymous block signals an alert for alert_test.

DECLARE
 v_name VARCHAR2(30) := 'alert_test';
BEGIN
 DBMS_ALERT.SIGNAL(v_name,'This is the message from ' || v_name);
 DBMS_OUTPUT.PUT_LINE('Issued alert for ' || v_name);
END;

Issued alert for alert_test

9.1.5 WAITANY

The WAITANY procedure waits for any of the registered alerts to occur.

WAITANY(name OUT VARCHAR2, message OUT VARCHAR2,
 status OUT INTEGER, timeout NUMBER)

Parameters

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

609

name

Variable receiving the name of the alert.

message

Variable receiving the message sent by the SIGNAL procedure.

status

Status code returned by the operation. Possible values are: 0 – alert occurred; 1 –
timeout occurred.

timeout

Time to wait for an alert in seconds.

Examples

The following anonymous block uses the WAITANY procedure to receive an alert named,
alert_test or any_alert:

DECLARE
 v_name VARCHAR2(30);
 v_msg VARCHAR2(80);
 v_status INTEGER;
 v_timeout NUMBER(3) := 120;
BEGIN
 DBMS_ALERT.REGISTER('alert_test');
 DBMS_ALERT.REGISTER('any_alert');
 DBMS_OUTPUT.PUT_LINE('Registered for alert alert_test and any_alert');
 DBMS_OUTPUT.PUT_LINE('Waiting for signal...');
 DBMS_ALERT.WAITANY(v_name,v_msg,v_status,v_timeout);
 DBMS_OUTPUT.PUT_LINE('Alert name : ' || v_name);
 DBMS_OUTPUT.PUT_LINE('Alert msg : ' || v_msg);
 DBMS_OUTPUT.PUT_LINE('Alert status : ' || v_status);
 DBMS_OUTPUT.PUT_LINE('Alert timeout: ' || v_timeout || ' seconds');
 DBMS_ALERT.REMOVEALL;
END;

Registered for alert alert_test and any_alert
Waiting for signal...

An anonymous block in a second session issues a signal for any_alert:

DECLARE
 v_name VARCHAR2(30) := 'any_alert';
BEGIN
 DBMS_ALERT.SIGNAL(v_name,'This is the message from ' || v_name);
 DBMS_OUTPUT.PUT_LINE('Issued alert for ' || v_name);
END;

Issued alert for any_alert

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

610

Control returns to the first anonymous block and the remainder of the code is executed:

Registered for alert alert_test and any_alert
Waiting for signal...
Alert name : any_alert
Alert msg : This is the message from any_alert
Alert status : 0
Alert timeout: 120 seconds

9.1.6 WAITONE

The WAITONE procedure waits for the specified registered alert to occur.

WAITONE(name VARCHAR2, message OUT VARCHAR2,
 status OUT INTEGER, timeout NUMBER)

Parameters

name

Name of the alert.

message

Variable receiving the message sent by the SIGNAL procedure.

status

Status code returned by the operation. Possible values are: 0 – alert occurred; 1 –
timeout occurred.

timeout

Time to wait for an alert in seconds.

Examples

The following anonymous block is similar to the one used in the WAITANY example
except the WAITONE procedure is used to receive the alert named, alert_test.

DECLARE
 v_name VARCHAR2(30) := 'alert_test';
 v_msg VARCHAR2(80);
 v_status INTEGER;
 v_timeout NUMBER(3) := 120;
BEGIN
 DBMS_ALERT.REGISTER(v_name);
 DBMS_OUTPUT.PUT_LINE('Registered for alert ' || v_name);

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

611

 DBMS_OUTPUT.PUT_LINE('Waiting for signal...');
 DBMS_ALERT.WAITONE(v_name,v_msg,v_status,v_timeout);
 DBMS_OUTPUT.PUT_LINE('Alert name : ' || v_name);
 DBMS_OUTPUT.PUT_LINE('Alert msg : ' || v_msg);
 DBMS_OUTPUT.PUT_LINE('Alert status : ' || v_status);
 DBMS_OUTPUT.PUT_LINE('Alert timeout: ' || v_timeout || ' seconds');
 DBMS_ALERT.REMOVE(v_name);
END;

Registered for alert alert_test
Waiting for signal...

Signal sent for alert_test sent by an anonymous block in a second session:

DECLARE
 v_name VARCHAR2(30) := 'alert_test';
BEGIN
 DBMS_ALERT.SIGNAL(v_name,'This is the message from ' || v_name);
 DBMS_OUTPUT.PUT_LINE('Issued alert for ' || v_name);
END;

Issued alert for alert_test

First session is alerted, control returns to the anonymous block, and the remainder of the
code is executed:

Registered for alert alert_test
Waiting for signal...
Alert name : alert_test
Alert msg : This is the message from alert_test
Alert status : 0
Alert timeout: 120 seconds

9.1.7 Comprehensive Example

The following example uses two triggers to send alerts when the dept table or the emp
table is changed. An anonymous block listens for these alerts and displays messages
when an alert is received.

The following are the triggers on the dept and emp tables:

CREATE OR REPLACE FUNCTION dept_alert_trig() RETURNS TRIGGER
AS $$
DECLARE
 v_action VARCHAR(25);
BEGIN
 IF TG_OP = 'INSERT' THEN
 v_action := ' added department(s) ';
 ELSIF TG_OP = 'UPDATE' THEN
 v_action := ' updated department(s) ';
 ELSIF TG_OP = 'DELETE' THEN
 v_action := ' deleted department(s) ';
 END IF;
 PERFORM DBMS_ALERT.SIGNAL('dept_alert',USER || v_action || 'on ' ||

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

612

 TO_CHAR(CURRENT_TIMESTAMP, 'DD-MON-YY HH24:MI:SS'));
 RETURN NULL;
END;
$$ LANGUAGE 'plpgsql';

CREATE TRIGGER dept_alert_trig
 AFTER INSERT OR UPDATE OR DELETE ON dept
 FOR EACH STATEMENT EXECUTE PROCEDURE dept_alert_trig();

CREATE OR REPLACE FUNCTION emp_alert_trig() RETURNS TRIGGER
AS $$
DECLARE
 v_action VARCHAR(25);
BEGIN
 IF TG_OP = 'INSERT' THEN
 v_action := ' added employee(s) ';
 ELSIF TG_OP = 'UPDATE' THEN
 v_action := ' updated employee(s) ';
 ELSIF TG_OP = 'DELETE' THEN
 v_action := ' deleted employee(s) ';
 END IF;
 PERFORM DBMS_ALERT.SIGNAL('emp_alert',USER || v_action || 'on ' ||
 TO_CHAR(CURRENT_TIMESTAMP, 'DD-MON-YY HH24:MI:SS'));
 RETURN NULL;
END;
$$ LANGUAGE 'plpgsql';

CREATE TRIGGER emp_alert_trig
 AFTER INSERT OR UPDATE OR DELETE ON emp
 FOR EACH STATEMENT EXECUTE PROCEDURE emp_alert_trig();

The following anonymous block is executed in a session while updates to the dept and
emp tables occur in other sessions:

DECLARE
 v_dept_alert VARCHAR2(30) := 'dept_alert';
 v_emp_alert VARCHAR2(30) := 'emp_alert';
 v_name VARCHAR2(30);
 v_msg VARCHAR2(80);
 v_status INTEGER;
 v_timeout NUMBER(3) := 60;
BEGIN
 DBMS_ALERT.REGISTER(v_dept_alert);
 DBMS_ALERT.REGISTER(v_emp_alert);
 DBMS_OUTPUT.PUT_LINE('Registered for alerts dept_alert and emp_alert');
 DBMS_OUTPUT.PUT_LINE('Waiting for signal...');
 LOOP
 DBMS_ALERT.WAITANY(v_name,v_msg,v_status,v_timeout);
 EXIT WHEN v_status != 0;
 DBMS_OUTPUT.PUT_LINE('Alert name : ' || v_name);
 DBMS_OUTPUT.PUT_LINE('Alert msg : ' || v_msg);
 DBMS_OUTPUT.PUT_LINE('Alert status : ' || v_status);
 DBMS_OUTPUT.PUT_LINE('------------------------------------' ||
 '-------------------------');
 END LOOP;
 DBMS_OUTPUT.PUT_LINE('Alert status : ' || v_status);
 DBMS_ALERT.REMOVEALL;
END;

Registered for alerts dept_alert and emp_alert
Waiting for signal...

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

613

Note: In the following sessions with users mary and john, PSQL is executed in
AUTOCOMMIT off mode. This affects the number of alerts displayed by multiple SQL
statements against the same table by the same user. If the PSQL default AUTCOMMIT on
mode were used instead, two alerts for user mary on the emp table would be displayed
instead of one since there would be two INSERT statements in two separate transactions.

\set AUTOCOMMIT off

The following changes are made by user, mary:

INSERT INTO dept VALUES (50,'FINANCE','CHICAGO');
INSERT INTO emp (empno,ename,deptno) VALUES (9001,'JONES',50);
INSERT INTO emp (empno,ename,deptno) VALUES (9002,'ALICE',50);
COMMIT;

The following change is made by user, john:

INSERT INTO dept VALUES (60,'HR','LOS ANGELES');
COMMIT;

The following is the output displayed by the anonymous block receiving the signals from
the triggers:

Registered for alerts dept_alert and emp_alert
Waiting for signal...
Alert name : dept_alert
Alert msg : mary added department(s) on 05-FEB-14 14:45:16
Alert status : 0

Alert name : emp_alert
Alert msg : mary added employee(s) on 05-FEB-14 14:45:16
Alert status : 0

Alert name : dept_alert
Alert msg : john added department(s) on 05-FEB-14 14:45:31
Alert status : 0

Alert status : 1

EDB-SPL Procedure successfully completed

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

614

9.2 DBMS_CRYPTO

The DBMS_CRYPTO package provides functions and procedures that allow you to encrypt
or decrypt RAW, BLOB or CLOB data. You can also use DBMS_CRYPTO functions to
generate cryptographically strong random values.

Table 7.7.2 DBMS_CRYPTO Functions and Procedures

Function/Procedure Return Type Description
DECRYPT(src, typ, key, iv) RAW Decrypts RAW data.
DECRYPT(dst INOUT, src, typ, key,
iv)

N/A Decrypts BLOB data.

DECRYPT(dst INOUT, src, typ, key,
iv)

N/A Decrypts CLOB data.

ENCRYPT(src, typ, key, iv) RAW Encrypts RAW data.
ENCRYPT(dst INOUT, src, typ, key,
iv)

N/A Encrypts BLOB data.

ENCRYPT(dst INOUT, src, typ, key,
iv)

N/A Encrypts CLOB data.

HASH(src, typ) RAW Applies a hash algorithm to RAW data.
HASH(src) RAW Applies a hash algorithm to CLOB data.
MAC(src, typ, key) RAW Returns the hashed MAC value of the given

RAW data using the specified hash algorithm
and key.

MAC(src, typ, key) RAW Returns the hashed MAC value of the given
CLOB data using the specified hash algorithm
and key.

RANDOMBYTES(number_bytes) RAW Returns a specified number of
cryptographically strong random bytes.

RANDOMINTEGER() INTEGER Returns a random INTEGER.
RANDOMNUMBER() NUMBER Returns a random NUMBER.

DBMS_CRYPTO functions and procedures support the following error messages:

ORA-28239 - DBMS_CRYPTO.KeyNull
ORA-28829 - DBMS_CRYPTO.CipherSuiteNull
ORA-28827 - DBMS_CRYPTO.CipherSuiteInvalid

Advanced Server will not return error ORA-28233 if you re-encrypt previously encrypted
information.

Please note that RAW and BLOB are synonyms for the PostgreSQL BYTEA data type, and
CLOB is a synonym for TEXT.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

615

9.2.1 DECRYPT

The DECRYPT function or procedure decrypts data using a user-specified cipher
algorithm, key and optional initialization vector. The signature of the DECRYPT function
is:

DECRYPT
 (src IN RAW, typ IN INTEGER, key IN RAW, iv IN RAW
 DEFAULT NULL) RETURN RAW

The signature of the DECRYPT procedure is:

DECRYPT
 (dst INOUT BLOB, src IN BLOB, typ IN INTEGER, key IN RAW,
 iv IN RAW DEFAULT NULL)

or

DECRYPT
 (dst INOUT CLOB, src IN CLOB, typ IN INTEGER, key IN RAW,
 iv IN RAW DEFAULT NULL)

When invoked as a procedure, DECRYPT returns BLOB or CLOB data to a user-specified
BLOB.

Parameters

dst

dst specifies the name of a BLOB to which the output of the DECRYPT procedure
will be written. The DECRYPT procedure will overwrite any existing data
currently in dst.

src

src specifies the source data that will be decrypted. If you are invoking
DECRYPT as a function, specify RAW data; if invoking DECRYPT as a procedure,
specify BLOB or CLOB data.

typ

typ specifies the block cipher type and any modifiers. This should match the
type specified when the src was encrypted. Advanced Server supports the
following block cipher algorithms, modifiers and cipher suites:

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

616

Block Cipher Algorithms
 ENCRYPT_DES CONSTANT INTEGER := 1;
 ENCRYPT_3DES CONSTANT INTEGER := 3;
 ENCRYPT_AES CONSTANT INTEGER := 4;
 ENCRYPT_AES128 CONSTANT INTEGER := 6;
Block Cipher Modifiers
 CHAIN_CBC CONSTANT INTEGER := 256;
 CHAIN_ECB CONSTANT INTEGER := 768;
Block Cipher Padding Modifiers
 PAD_PKCS5 CONSTANT INTEGER := 4096;
 PAD_NONE CONSTANT INTEGER := 8192;
Block Cipher Suites
 DES_CBC_PKCS5 CONSTANT INTEGER := ENCRYPT_DES + CHAIN_CBC +

PAD_PKCS5;
 DES3_CBC_PKCS5 CONSTANT INTEGER := ENCRYPT_3DES + CHAIN_CBC

+ PAD_PKCS5;
 AES_CBC_PKCS5 CONSTANT INTEGER := ENCRYPT_AES + CHAIN_CBC +

PAD_PKCS5;

key

key specifies the user-defined decryption key. This should match the key
specified when the src was encrypted.

iv

iv (optional) specifies an initialization vector. If an initialization vector was
specified when the src was encrypted, you must specify an initialization vector
when decrypting the src. The default is NULL.

Examples

The following example uses the DBMS_CRYPTO.DECRYPT function to decrypt an
encrypted password retrieved from the passwords table:

CREATE TABLE passwords
(
 principal VARCHAR(90) PRIMARY KEY, -- username
 ciphertext RAW(9) -- encrypted password
);

CREATE OR REPLACE FUNCTION get_password (
 username VARCHAR2
) RETURNS RAW
AS $$
DECLARE
 typ INTEGER := 4353; -- DBMS_CRYPTO.DES_CBC_PKCS5
 key RAW(128) := 'my secret key';
 iv RAW(100) := 'my initialization vector';
 password RAW(2048);
BEGIN
 SELECT ciphertext INTO password FROM passwords WHERE principal =
username;
 RETURN dbms_crypto.decrypt(password, typ, key, iv);
END;

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

617

$$ LANGUAGE 'plpgsql';

Note that when calling DECRYPT, you must pass the same cipher type, key value and
initialization vector that was used when ENCRYPTING the target.

9.2.2 ENCRYPT

The ENCRYPT function or procedure uses a user-specified algorithm, key, and optional
initialization vector to encrypt RAW, BLOB or CLOB data. The signature of the ENCRYPT
function is:

ENCRYPT
 (src IN RAW, typ IN INTEGER, key IN RAW,
 iv IN RAW DEFAULT NULL) RETURN RAW

The signature of the ENCRYPT procedure is:

ENCRYPT
 (dst INOUT BLOB, src IN BLOB, typ IN INTEGER, key IN RAW,
 iv IN RAW DEFAULT NULL)

or

ENCRYPT
 (dst INOUT BLOB, src IN CLOB, typ IN INTEGER, key IN RAW,
 iv IN RAW DEFAULT NULL)

When invoked as a procedure, ENCRYPT returns BLOB or CLOB data to a user-specified
BLOB.

Parameters

dst

dst specifies the name of a BLOB to which the output of the ENCRYPT procedure
will be written. The ENCRYPT procedure will overwrite any existing data
currently in dst.

src

src specifies the source data that will be encrypted. If you are invoking
ENCRYPT as a function, specify RAW data; if invoking ENCRYPT as a procedure,
specify BLOB or CLOB data.

typ

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

618

typ specifies the block cipher type that will be used by ENCRYPT, and any
modifiers. Advanced Server supports the block cipher algorithms, modifiers and
cipher suites listed below:

Block Cipher Algorithms
 ENCRYPT_DES CONSTANT INTEGER := 1;
 ENCRYPT_3DES CONSTANT INTEGER := 3;
 ENCRYPT_AES CONSTANT INTEGER := 4;
 ENCRYPT_AES128 CONSTANT INTEGER := 6;
Block Cipher Modifiers
 CHAIN_CBC CONSTANT INTEGER := 256;
 CHAIN_ECB CONSTANT INTEGER := 768;
Block Cipher Padding Modifiers
 PAD_PKCS5 CONSTANT INTEGER := 4096;
 PAD_NONE CONSTANT INTEGER := 8192;
Block Cipher Suites
 DES_CBC_PKCS5 CONSTANT INTEGER := ENCRYPT_DES + CHAIN_CBC +

PAD_PKCS5;
 DES3_CBC_PKCS5 CONSTANT INTEGER := ENCRYPT_3DES + CHAIN_CBC

+ PAD_PKCS5;
 AES_CBC_PKCS5 CONSTANT INTEGER := ENCRYPT_AES + CHAIN_CBC +

PAD_PKCS5;

key

key specifies the encryption key.

iv

iv (optional) specifies an initialization vector. By default, iv is NULL.

Examples

The following example uses the DBMS_CRYPTO.DES_CBC_PKCS5 Block Cipher Suite (a
pre-defined set of algorithms and modifiers) to encrypt a value retrieved from the
passwords table:

CREATE TABLE passwords
(
 principal VARCHAR(90) PRIMARY KEY, -- username
 ciphertext RAW(9) -- encrypted password
);

CREATE OR REPLACE FUNCTION set_password (
 username VARCHAR,
 cleartext RAW
) RETURNS VOID
AS $$
DECLARE
 typ INTEGER := 4353; -- DBMS_CRYPTO.DES_CBC_PKCS5
 key RAW(128) := 'my secret key';
 iv RAW(100) := 'my initialization vector';
 encrypted RAW(2048);

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

619

BEGIN
 encrypted := dbms_crypto.encrypt(cleartext, typ, key, iv);
 UPDATE passwords SET ciphertext = encrypted WHERE principal = username;
 RETURN;
END;
$$ LANGUAGE 'plpgsql';

ENCRYPT uses a key value of my secret key and an initialization vector of my
initialization vector when encrypting the password; specify the same key and
initialization vector when decrypting the password.

9.2.3 HASH

The HASH function uses a user-specified algorithm to return the hash value of a RAW or
CLOB value. The HASH function is available in three forms:

HASH
 (src IN RAW, typ IN INTEGER) RETURN RAW

HASH
 (src IN CLOB, typ IN INTEGER) RETURN RAW

Parameters

src

src specifies the value for which the hash value will be generated. You can
specify a RAW, a BLOB, or a CLOB value.

typ

typ specifies the HASH function type. Advanced Server supports the HASH
function types listed below:

HASH Functions
 HASH_MD4 CONSTANT INTEGER := 1;
 HASH_MD5 CONSTANT INTEGER := 2;
 HASH_SH1 CONSTANT INTEGER := 3;

Examples

The following example uses DBMS_CRYPTO.HASH to find the md5 hash value of the
string, cleartext source:

DECLARE

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

620

 typ INTEGER := DBMS_CRYPTO.HASH_MD5;
 hash_value RAW(100);
BEGIN
 hash_value := DBMS_CRYPTO.HASH('cleartext source', typ);
END;

9.2.4 MAC

The MAC function uses a user-specified MAC function to return the hashed MAC value of a
RAW or CLOB value. The MAC function is available in three forms:

MAC
 (src IN RAW, typ IN INTEGER, key IN RAW) RETURN RAW

MAC
 (src IN CLOB, typ IN INTEGER, key IN RAW) RETURN RAW

Parameters

src

src specifies the value for which the MAC value will be generated. Specify a
RAW, BLOB, or CLOB value.

typ

typ specifies the MAC function used. Advanced Server supports the MAC
functions listed below.

MAC Functions
 HMAC_MD5 CONSTANT INTEGER := 1;
 HMAC_SH1 CONSTANT INTEGER := 2;

key

key specifies the key that will be used to calculate the hashed MAC value.

Examples

The following example finds the hashed MAC value of the string cleartext source:

DECLARE
 typ INTEGER := DBMS_CRYPTO.HMAC_MD5;
 key RAW(100) := 'my secret key';
 mac_value RAW(100);
BEGIN
 mac_value := DBMS_CRYPTO.MAC('cleartext source', typ, key);
END;

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

621

DBMS_CRYPTO.MAC uses a key value of my secret key when calculating the MAC value
of cleartext source.

9.2.5 RANDOMBYTES

The RANDOMBYTES function returns a RAW value of the specified length, containing
cryptographically random bytes. The signature is:

RANDOMBYTES
 (number_bytes IN INTEGER) RETURNS RAW

Parameters

number_bytes

number_bytes specifies the number of random bytes to be returned

Examples

The following example uses RANDOMBYTES to return a value that is 1024 bytes long:

DECLARE
 result RAW(1024);
BEGIN
 result := DBMS_CRYPTO.RANDOMBYTES(1024);
END;

9.2.6 RANDOMINTEGER

The RANDOMINTEGER() function returns a random INTEGER between 0 and
268,435,455. The signature is:

RANDOMINTEGER() RETURNS INTEGER

Examples

The following example uses the RANDOMINTEGER function to return a cryptographically
strong random INTEGER value:

DECLARE
 result INTEGER;
BEGIN
 result := DBMS_CRYPTO.RANDOMINTEGER();
 DBMS_OUTPUT.PUT_LINE(result);

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

622

END;

9.2.7 RANDOMNUMBER

The RANDOMNUMBER() function returns a random NUMBER between 0 and
268,435,455. The signature is:

RANDOMNUMBER() RETURNS NUMBER

Examples

The following example uses the RANDOMNUMBER function to return a cryptographically
strong random number:

DECLARE
 result NUMBER;
BEGIN
 result := DBMS_CRYPTO.RANDOMNUMBER();
 DBMS_OUTPUT.PUT_LINE(result);
END;

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

623

9.3 DBMS_JOB

The DBMS_JOB package provides for the creation, scheduling, and managing of jobs. A
job runs a stored procedure which has been previously stored in the database. The
SUBMIT procedure is used to create and store a job definition. A job identifier is assigned
to a job along with its associated stored procedure and the attributes describing when and
how often the job is to be run.

This package relies on the pgAgent scheduler. By default, the Postgres Plus Advanced
Server installer installs pgAgent, but you must start the pgAgent service manually prior
to using DBMS_JOB. See the readme file, README-pgagent.txt, located in the
POSTGRES_PLUS_HOME/doc directory for information on starting pgAgent. If you
attempt to use this package to schedule a job after un-installing pgAgent, DBMS_JOB
will throw an error. DBMS_JOB verifies that pgAgent is installed, but does not verify
that the service is running.

Table 9-2 DBMS_JOB Functions/Procedures

Function/Procedure Function or
Procedure

Return
Type

Description

BROKEN(job, broken [, next_date
])

Procedure n/a Specify that a given job is either broken or
not broken.

CHANGE(job, what, next_date,
interval, instance, force)

Procedure n/a Change the job‟s parameters.

INTERVAL(job, interval) Procedure n/a Set the execution frequency by means of a
date function that is recalculated each time
the job is run. This value becomes the next
date/time for execution.

NEXT_DATE(job, next_date) Procedure n/a Set the next date/time the job is to be run.
REMOVE(job) Procedure n/a Delete the job definition from the database.
RUN(job) Procedure n/a Forces execution of a job even if it is

marked broken.
SUBMIT(job OUT, what [, next_date
[, interval [, no_parse]]])

Procedure n/a Creates a job and stores its definition in the
database.

WHAT(job, what) Procedure n/a Change the stored procedure run by a job.

When and how often a job is run is dependent upon two interacting parameters –
next_date and interval. The next_date parameter is a date/time value that
specifies the next date/time when the job is to be executed. The interval parameter is
a string that contains a date function that evaluates to a date/time value.

Just prior to any execution of the job, the expression in the interval parameter is
evaluated. The resulting value replaces the next_date value stored with the job. The
job is then executed. In this manner, the expression in interval is repeatedly re-

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

624

evaluated prior to each job execution, supplying the next_date date/time for the next
execution.

The following examples use the following stored procedure, job_proc, which simply
inserts a timestamp into table, jobrun, containing a single VARCHAR2 column.

CREATE TABLE jobrun (
 runtime VARCHAR2(40)
);

CREATE OR REPLACE PROCEDURE job_proc
IS
BEGIN
 INSERT INTO jobrun VALUES ('job_proc run at ' || TO_CHAR(SYSDATE,
 'yyyy-mm-dd hh24:mi:ss'));
END;

9.3.1 BROKEN

The BROKEN procedure sets the state of a job to either broken or not broken. A broken job
cannot be executed except by using the RUN procedure.

BROKEN(job BINARY_INTEGER, broken BOOLEAN [, next_date DATE])

Parameters

job

Identifier of the job to be set as broken or not broken.

broken

If set to TRUE the job‟s state is set to broken. If set to FALSE the job‟s state is set
to not broken. Broken jobs cannot be run except by using the RUN procedure.

next_date

Date/time when the job is to be run. The default is SYSDATE.

Examples

Set the state of a job with job identifier 104 to broken:

BEGIN
 DBMS_JOB.BROKEN(104,true);
END;

Change the state back to not broken:

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

625

BEGIN
 DBMS_JOB.BROKEN(104,false);
END;

9.3.2 CHANGE

The CHANGE procedure modifies certain job attributes including the stored procedure to
be run, the next date/time the job is to be run, and how often it is to be run.

CHANGE(job BINARY_INTEGER what VARCHAR2, next_date DATE,
 interval VARCHAR2, instance BINARY_INTEGER, force BOOLEAN)

Parameters

job

Identifier of the job to modify.

what

Stored procedure name. Set this parameter to null if the existing value is to
remain unchanged.

next_date

Date/time when the job is to be run next. Set this parameter to null if the existing
value is to remain unchanged.

interval

Date function that when evaluated, provides the next date/time the job is to run.
Set this parameter to null if the existing value is to remain unchanged.

instance

This argument is ignored, but is included for compatibility.

force

This argument is ignored, but is included for compatibility.

Examples

Change the job to run next on December 13, 2007. Leave other parameters unchanged.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

626

BEGIN
 DBMS_JOB.CHANGE(104,NULL,TO_DATE('13-DEC-07','DD-MON-YY'),NULL, NULL,
 NULL);
END;

9.3.3 INTERVAL

The INTERVAL procedure sets the frequency of how often a job is to be run.

INTERVAL(job BINARY_INTEGER, interval VARCHAR2)

Parameters

job

Identifier of the job to modify.

interval

Date function that when evaluated, provides the next date/time the job is to be
run.

Examples

Change the job to run once a week:

BEGIN
 DBMS_JOB.INTERVAL(104,'SYSDATE + 7');
END;

9.3.4 NEXT_DATE

The NEXT_DATE procedure sets the date/time of when the job is to be run next.

NEXT_DATE(job BINARY_INTEGER, next_date DATE)

Parameters

job

Identifier of the job whose next run date is to be set.

next_date

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

627

Date/time when the job is to be run next.

Examples

Change the job to run next on December 14, 2007:

BEGIN
 DBMS_JOB.NEXT_DATE(104, TO_DATE('14-DEC-07','DD-MON-YY'));
END;

9.3.5 REMOVE

The REMOVE procedure deletes the specified job from the database. The job must be
resubmitted using the SUBMIT procedure in order to have it executed again. Note that the
stored procedure that was associated with the job is not deleted.

REMOVE(job BINARY_INTEGER)

Parameters

job

Identifier of the job that is to be removed from the database.

Examples

Remove a job from the database:

BEGIN
 DBMS_JOB.REMOVE(104);
END;

9.3.6 RUN

The RUN procedure forces the job to be run, even if its state is broken.

RUN(job BINARY_INTEGER)

Parameters

job

Identifier of the job to be run.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

628

Examples

Force a job to be run.

BEGIN
 DBMS_JOB.RUN(104);
END;

9.3.7 SUBMIT

The SUBMIT procedure creates a job definition and stores it in the database. A job
consists of a job identifier, the stored procedure to be executed, when the job is to be first
run, and a date function that calculates the next date/time the job is to be run.

SUBMIT(job OUT BINARY_INTEGER, what VARCHAR2
 [, next_date DATE [, interval VARCHAR2 [, no_parse BOOLEAN]]])

Parameters

job

Identifier assigned to the job.

what

Name of the stored procedure to be executed by the job.

next_date

Date/time when the job is to be run next. The default is SYSDATE.

interval

Date function that when evaluated, provides the next date/time the job is to run. If
interval is set to null, then the job is run only once. Null is the default.

no_parse

If set to TRUE, do not syntax-check the stored procedure upon job creation –
check only when the job first executes. If set to FALSE, check the procedure upon
job creation. The default is FALSE.

Note: The no_parse option is not supported in this implementation of
SUBMIT(). It is included for compatibility only.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

629

Examples

The following example creates a job using stored procedure, job_proc. The job will
execute immediately and run once a day thereafter as set by the interval parameter,
SYSDATE + 1.

DECLARE
 jobid INTEGER;
BEGIN
 DBMS_JOB.SUBMIT(jobid,'job_proc;',SYSDATE,
 'SYSDATE + 1');
 DBMS_OUTPUT.PUT_LINE('jobid: ' || jobid);
END;

jobid: 104

The job immediately executes procedure, job_proc, populating table, jobrun, with a
row:

SELECT * FROM jobrun;

 runtime

 job_proc run at 2007-12-11 11:43:25
(1 row)

9.3.8 WHAT

The WHAT procedure changes the stored procedure that the job will execute.

WHAT(job BINARY_INTEGER, what VARCHAR2)

Parameters

job

Identifier of the job for which the stored procedure is to be changed.

what

Name of the stored procedure to be executed.

Examples

Change the job to run the list_emp procedure:

BEGIN
 DBMS_JOB.WHAT(104,'list_emp;');
END;

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

630

9.4 DBMS_LOB

The DBMS_LOB package provides the capability to operate on large objects.

Table 9-3 DBMS_LOB Functions/Procedures

Function/Procedure Function
or

Procedure

Return
Type

Description

APPEND(dest_lob IN OUT, src_lob) Procedure n/a Appends one large object to another.
COMPARE(lob_1, lob_2 [, amount
[, offset_1 [, offset_2]]])

Function INTEGER Compares two large objects.

CONVERTOBLOB(dest_lob IN OUT,
src_clob, amount, dest_offset IN
OUT, src_offset IN OUT,
blob_csid, lang_context IN OUT,
warning OUT)

Procedure n/a Converts character data to binary.

CONVERTTOCLOB(dest_lob IN OUT,
src_blob, amount, dest_offset IN
OUT, src_offset IN OUT,
blob_csid, lang_context IN OUT,
warning OUT)

Procedure n/a Converts binary data to character.

COPY(dest_lob IN OUT, src_lob,
amount [, dest_offset [,
src_offset]])

Procedure n/a Copies one large object to another.

ERASE(lob_loc IN OUT, amount IN
OUT [, offset])

Procedure n/a Erase a large object.

GET_STORAGE_LIMIT(lob_loc) Function INTEGER Get the storage limit for large objects.
GETLENGTH(lob_loc) Function INTEGER Get the length of the large object.
INSTR(lob_loc, pattern [, offset
[, nth]])

Function INTEGER Get the position of the nth occurrence of a
pattern in the large object starting at
offset.

READ(lob_loc, amount IN OUT,
offset, buffer OUT)

Procedure n/a Read a large object.

SUBSTR(lob_loc [, amount [,
offset]])

Function RAW,
VARCHAR2

Get part of a large object.

TRIM(lob_loc IN OUT, newlen) Procedure n/a Trim a large object to the specified length.
WRITE(lob_loc IN OUT, amount,
offset, buffer)

Procedure n/a Write data to a large object.

WRITEAPPEND(lob_loc IN OUT,
amount, buffer)

Procedure n/a Write data from the buffer to the end of a
large object.

The following table lists the public variables available in the package.

Table 9-4 DBMS_LOB Public Variables

Public Variables Data Type Value
compress off INTEGER 0
compress_on INTEGER 1
deduplicate_off INTEGER 0
deduplicate_on INTEGER 4

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

631

Public Variables Data Type Value
default_csid INTEGER 0
default_lang_ctx INTEGER 0
encrypt_off INTEGER 0
encrypt_on INTEGER 1
file_readonly INTEGER 0
lobmaxsize INTEGER 1073741823
lob_readonly INTEGER 0
lob_readwrite INTEGER 1
no_warning INTEGER 0
opt_compress INTEGER 1
opt_deduplicate INTEGER 4
opt_encrypt INTEGER 2
warn_inconvertible_char INTEGER 1

In the following sections, lengths and offsets are measured in bytes if the large objects are
BLOBs. Lengths and offsets are measured in characters if the large objects are CLOBs.

9.4.1 APPEND

The APPEND procedure provides the capability to append one large object to another.
Both large objects must be of the same type.

APPEND(dest_lob IN OUT { BLOB | CLOB }, src_lob { BLOB | CLOB })

Parameters

dest_lob

Large object locator for the destination object. Must be the same data type as
src_lob.

src_lob

Large object locator for the source object. Must be the same data type as
dest_lob.

9.4.2 COMPARE

The COMPARE procedure performs an exact byte-by-byte comparison of two large objects
for a given length at given offsets. The large objects being compared must be the same
data type.

status INTEGER COMPARE(lob_1 { BLOB | CLOB },
 lob_2 { BLOB | CLOB }

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

632

 [, amount INTEGER [, offset_1 INTEGER [, offset_2 INTEGER]]])

Parameters

lob_1

Large object locator of the first large object to be compared. Must be the same
data type as lob_2.

lob_2

Large object locator of the second large object to be compared. Must be the same
data type as lob_1.

amount

If the data type of the large objects is BLOB, then the comparison is made for
amount bytes. If the data type of the large objects is CLOB, then the comparison is
made for amount characters. The default is the maximum size of a large object.

offset_1

Position within the first large object to begin the comparison. The first
byte/character is offset 1. The default is 1.

offset_2

Position within the second large object to begin the comparison. The first
byte/character is offset 1. The default is 1.

status

Zero if both large objects are exactly the same for the specified length for the
specified offsets. Non-zero, if the objects are not the same. NULL if amount,
offset_1, or offset_2 are less than zero.

9.4.3 CONVERTTOBLOB

The CONVERTTOBLOB procedure provides the capability to convert character data to
binary.

CONVERTTOBLOB(dest_lob IN OUT BLOB, src_clob CLOB,
 amount INTEGER, dest_offset IN OUT INTEGER,
 src_offset IN OUT INTEGER, blob_csid NUMBER,

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

633

 lang_context IN OUT INTEGER, warning OUT INTEGER)

Parameters

dest_lob

BLOB large object locator to which the character data is to be converted.

src_clob

CLOB large object locator of the character data to be converted.

amount

Number of characters of src_clob to be converted.

dest_offset IN

Position in bytes in the destination BLOB where writing of the source CLOB should
begin. The first byte is offset 1.

dest_offset OUT

Position in bytes in the destination BLOB after the write operation completes. The
first byte is offset 1.

src_offset IN

Position in characters in the source CLOB where conversion to the destination
BLOB should begin. The first character is offset 1.

src_offset OUT

Position in characters in the source CLOB after the conversion operation
completes. The first character is offset 1.

blob_csid

Character set ID of the converted, destination BLOB.

lang_context IN

Language context for the conversion. The default value of 0 is typically used for
this setting.

lang_context OUT

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

634

Language context after the conversion completes.

warning

0 if the conversion was successful, 1 if an inconvertible character was
encountered.

9.4.4 CONVERTTOCLOB

The CONVERTTOCLOB procedure provides the capability to convert binary data to
character.

CONVERTTOCLOB(dest_lob IN OUT CLOB, src_blob BLOB,
 amount INTEGER, dest_offset IN OUT INTEGER,
 src_offset IN OUT INTEGER, blob_csid NUMBER,
 lang_context IN OUT INTEGER, warning OUT INTEGER)

Parameters

dest_lob

CLOB large object locator to which the binary data is to be converted.

src_blob

BLOB large object locator of the binary data to be converted.

amount

Number of bytes of src_blob to be converted.

dest_offset IN

Position in characters in the destination CLOB where writing of the source BLOB
should begin. The first character is offset 1.

dest_offset OUT

Position in characters in the destination CLOB after the write operation completes.
The first character is offset 1.

src_offset IN

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

635

Position in bytes in the source BLOB where conversion to the destination CLOB
should begin. The first byte is offset 1.

src_offset OUT

Position in bytes in the source BLOB after the conversion operation completes.
The first byte is offset 1.

blob_csid

Character set ID of the converted, destination CLOB.

lang_context IN

Language context for the conversion. The default value of 0 is typically used for
this setting.

lang_context OUT

Language context after the conversion completes.

warning

0 if the conversion was successful, 1 if an inconvertible character was
encountered.

9.4.5 COPY

The COPY procedure provides the capability to copy one large object to another. The
source and destination large objects must be the same data type.

COPY(dest_lob IN OUT { BLOB | CLOB }, src_lob { BLOB | CLOB },
 amount INTEGER
 [, dest_offset INTEGER [, src_offset INTEGER]])

Parameters

dest_lob

Large object locator of the large object to which src_lob is to be copied. Must
be the same data type as src_lob.

src_lob

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

636

Large object locator of the large object to be copied to dest_lob. Must be the
same data type as dest_lob.

amount

Number of bytes/characters of src_lob to be copied.

dest_offset

Position in the destination large object where writing of the source large object
should begin. The first position is offset 1. The default is 1.

src_offset

Position in the source large object where copying to the destination large object
should begin. The first position is offset 1. The default is 1.

9.4.6 ERASE

The ERASE procedure provides the capability to erase a portion of a large object. To erase
a large object means to replace the specified portion with zero-byte fillers for BLOBs or
with spaces for CLOBs. The actual size of the large object is not altered.

ERASE(lob_loc IN OUT { BLOB | CLOB }, amount IN OUT INTEGER
 [, offset INTEGER])

Parameters

lob_loc

Large object locator of the large object to be erased.

amount IN

Number of bytes/characters to be erased.

amount OUT

Number of bytes/characters actually erased. This value can be smaller than the
input value if the end of the large object is reached before amount
bytes/characters have been erased.

offset

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

637

Position in the large object where erasing is to begin. The first byte/character is
position 1. The default is 1.

9.4.7 GET_STORAGE_LIMIT

The GET_STORAGE_LIMIT function returns the limit on the largest allowable large
object.

size INTEGER GET_STORAGE_LIMIT(lob_loc BLOB)

size INTEGER GET_STORAGE_LIMIT(lob_loc CLOB)

Parameters

size

Maximum allowable size of a large object in this database.

lob_loc

This parameter is ignored, but is included for compatibility.

9.4.8 GETLENGTH

The GETLENGTH function returns the length of a large object.

amount INTEGER GETLENGTH(lob_loc BLOB)

amount INTEGER GETLENGTH(lob_loc CLOB)

Parameters

lob_loc

Large object locator of the large object whose length is to be obtained.

amount

Length of the large object in bytes for BLOBs or characters for CLOBs.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

638

9.4.9 INSTR

The INSTR function returns the location of the nth occurrence of a given pattern within a
large object.

position INTEGER INSTR(lob_loc { BLOB | CLOB },
 pattern { RAW | VARCHAR2 } [, offset INTEGER [, nth INTEGER]])

Parameters

lob_loc

Large object locator of the large object in which to search for pattern.

pattern

Pattern of bytes or characters to match against the large object, lob. pattern
must be RAW if lob_loc is a BLOB. pattern must be VARCHAR2 if lob_loc is a
CLOB.

offset

Position within lob_loc to start search for pattern. The first byte/character is
position 1. The default is 1.

nth

Search for pattern, nth number of times starting at the position given by
offset. The default is 1.

position

Position within the large object where pattern appears the nth time specified by
nth starting from the position given by offset.

9.4.10 READ

The READ procedure provides the capability to read a portion of a large object into a
buffer.

READ(lob_loc { BLOB | CLOB }, amount IN OUT BINARY_INTEGER,
 offset INTEGER, buffer OUT { RAW | VARCHAR2 })

Parameters

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

639

lob_loc

Large object locator of the large object to be read.

amount IN

Number of bytes/characters to read.

amount OUT

Number of bytes/characters actually read. If there is no more data to be read, then
amount returns 0 and a DATA_NOT_FOUND exception is thrown.

offset

Position to begin reading. The first byte/character is position 1.

buffer

Variable to receive the large object. If lob_loc is a BLOB, then buffer must be
RAW. If lob_loc is a CLOB, then buffer must be VARCHAR2.

9.4.11 SUBSTR

The SUBSTR function provides the capability to return a portion of a large object.

data { RAW | VARCHAR2 } SUBSTR(lob_loc { BLOB | CLOB }
 [, amount INTEGER [, offset INTEGER]])

Parameters

lob_loc

Large object locator of the large object to be read.

amount

Number of bytes/characters to be returned. Default is 32,767.

offset

Position within the large object to begin returning data. The first byte/character is
position 1. The default is 1.

data

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

640

Returned portion of the large object to be read. If lob_loc is a BLOB, the return
data type is RAW. If lob_loc is a CLOB, the return data type is VARCHAR2.

9.4.12 TRIM

The TRIM procedure provides the capability to truncate a large object to the specified
length.

TRIM(lob_loc IN OUT { BLOB | CLOB }, newlen INTEGER)

Parameters

lob_loc

Large object locator of the large object to be trimmed.

newlen

Number of bytes/characters to which the large object is to be trimmed.

9.4.13 WRITE

The WRITE procedure provides the capability to write data into a large object. Any
existing data in the large object at the specified offset for the given length is overwritten
by data given in the buffer.

WRITE(lob_loc IN OUT { BLOB | CLOB }, amount BINARY_INTEGER,
 offset INTEGER, buffer { RAW | VARCHAR2 })

Parameters

lob_loc

Large object locator of the large object to be written.

amount

The number of bytes/characters in buffer to be written to the large object.

offset

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

641

The offset in bytes/characters from the beginning of the large object (origin is 1)
for the write operation to begin.

buffer

Contains data to be written to the large object. If lob_loc is a BLOB, then
buffer must be RAW. If lob_loc is a CLOB, then buffer must be VARCHAR2.

9.4.14 WRITEAPPEND

The WRITEAPPEND procedure provides the capability to add data to the end of a large
object.

WRITEAPPEND(lob_loc IN OUT { BLOB | CLOB },
 amount BINARY_INTEGER, buffer { RAW | VARCHAR2 })

Parameters

lob_loc

Large object locator of the large object to which data is to be appended.

amount

Number of bytes/characters from buffer to be appended the large object.

buffer

Data to be appended to the large object. If lob_loc is a BLOB, then buffer must
be RAW. If lob_loc is a CLOB, then buffer must be VARCHAR2.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

642

9.5 DBMS_LOCK

Advanced Server provides support for the DBMS_LOCK.SLEEP procedure.

Table 7.7.2 DBMS_LOCK Procedure

Function/Procedure Return Type Description
SLEEP(seconds) n/a Suspends a session for the specified number

of seconds.

9.5.1 SLEEP

The SLEEP procedure suspends the current session for the specified number of seconds.

SLEEP(seconds NUMBER)

Parameters

seconds

seconds specifies the number of seconds for which you wish to suspend the
session. seconds can be a fractional value; for example, enter 1.75 to specify
one and three-fourths of a second.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

643

9.6 DBMS_MVIEW

Use procedures in the DBMS_MVIEW package to manage and refresh materialized views
and their dependencies. Advanced Server provides support for the following
DBMS_MVIEW procedures:

Table 7.7.2 DBMS_MVIEW Procedures

Procedure Return
Type

Description

GET_MV_DEPENDENCIES(list VARCHAR2,
deplist VARCHAR2);

n/a The GET_MV_DEPENDENCIES procedure
returns a list of dependencies for a specified
view.

REFRESH(list VARCHAR2, method
VARCHAR2, rollback_seg VARCHAR2 ,
push_deferred_rpc BOOLEAN,
refresh_after_errors BOOLEAN ,
purge_option NUMBER, parallelism
NUMBER, heap_size NUMBER ,
atomic_refresh BOOLEAN , nested
BOOLEAN);

n/a This variation of the REFRESH procedure
refreshes all views named in a comma-
separated list of view names.

REFRESH(tab dbms_utility.uncl_array,
method VARCHAR2, rollback_seg
VARCHAR2, push_deferred_rpc BOOLEAN,
refresh_after_errors BOOLEAN,
purge_option NUMBER, parallelism
NUMBER, heap_size NUMBER,
atomic_refresh BOOLEAN, nested
BOOLEAN);

n/a This variation of the REFRESH procedure
refreshes all views named in a table of
dbms_utility.uncl_array values.

REFRESH_ALL_MVIEWS(number_of_failures
BINARY_INTEGER, method VARCHAR2,
rollback_seg VARCHAR2,
refresh_after_errors BOOLEAN,
atomic_refresh BOOLEAN);

n/a The REFRESH_ALL_MVIEWS procedure
refreshes all materialized views.

REFRESH_DEPENDENT(number_of_failures
BINARY_INTEGER, list VARCHAR2, method
VARCHAR2, rollback_seg VARCHAR2,
refresh_after_errors BOOLEAN,
atomic_refresh BOOLEAN, nested
BOOLEAN);

n/a This variation of the REFRESH_DEPENDENT
procedure refreshes all views that are
dependent on the views listed in a comma-
separated list.

REFRESH_DEPENDENT(number_of_failures
BINARY_INTEGER, tab
dbms_utility.uncl_array, method
VARCHAR2, rollback_seg VARCHAR2,
refresh_after_errors BOOLEAN,
atomic_refresh BOOLEAN, nested
BOOLEAN);

n/a This variation of the REFRESH_DEPENDENT
procedure refreshes all views that are
dependent on the views listed in a table of
dbms_utility.uncl_array values.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

644

9.6.1 GET_MV_DEPENDENCIES

When given the name of a materialized view, GET_MV_DEPENDENCIES returns a list of
items that depend on the specified view. The signature is:

GET_MV_DEPENDENCIES(
 list IN VARCHAR2,
 deplist OUT VARCHAR2);

Parameters

list

list specifies the name of a materialized view, or a comma-separated list of
materialized view names.

deplist

deplist is a comma-separated list of schema-qualified dependencies. deplist
is a VARCHAR2 value.

Examples

The following example:

DECLARE
 deplist VARCHAR2(1000);
BEGIN
 DBMS_MVIEW.GET_MV_DEPENDENCIES('public.emp_view', deplist);
 DBMS_OUTPUT.PUT_LINE('deplist: ' || deplist);
END;

Displays a list of the dependencies on a materialized view named public.emp_view.

9.6.2 REFRESH

Use the REFRESH procedure to refresh all views specified in either a comma-separated
list of view names, or a table of DBMS_UTILITY.UNCL_ARRAY values. The procedure
has two signatures; use the first form when specifying a comma-separated list of view
names:

REFRESH(
 list IN VARCHAR2,
 method IN VARCHAR2 DEFAULT NULL,
 rollback_seg IN VARCHAR2 DEFAULT NULL,
 push_deferred_rpc IN BOOLEAN DEFAULT TRUE,

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

645

 refresh_after_errors IN BOOLEAN DEFAULT FALSE,
 purge_option IN NUMBER DEFAULT 1,
 parallelism IN NUMBER DEFAULT 0,
 heap_size IN NUMBER DEFAULT 0,
 atomic_refresh IN BOOLEAN DEFAULT TRUE,
 nested IN BOOLEAN DEFAULT FALSE);

Use the second form to specify view names in a table of DBMS_UTILITY.UNCL_ARRAY
values:

REFRESH(
 tab IN OUT DBMS_UTILITY.UNCL_ARRAY,
 method IN VARCHAR2 DEFAULT NULL,
 rollback_seg IN VARCHAR2 DEFAULT NULL,
 push_deferred_rpc IN BOOLEAN DEFAULT TRUE,
 refresh_after_errors IN BOOLEAN DEFAULT FALSE,
 purge_option IN NUMBER DEFAULT 1,
 parallelism IN NUMBER DEFAULT 0,
 heap_size IN NUMBER DEFAULT 0,
 atomic_refresh IN BOOLEAN DEFAULT TRUE,
 nested IN BOOLEAN DEFAULT FALSE);

Parameters

list

list is a VARCHAR2 value that specifies the name of a materialized view, or a
comma-separated list of materialized view names. The names may be schema-
qualified.

tab

tab is a table of DBMS_UTILITY.UNCL_ARRAY values that specify the name (or
names) of a materialized view.

method

method is a VARCHAR2 value that specifies the refresh method that will be
applied to the specified view (or views). The only supported method is C; this
performs a complete refresh of the view.

rollback_seg

rollback_seg is accepted for compatibility and ignored. The default is NULL.

push_deferred_rpc

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

646

push_deferred_rpc is accepted for compatibility and ignored. The default is
TRUE.

refresh_after_errors

refresh_after_errors is accepted for compatibility and ignored. The default
is FALSE.

purge_option

purge_option is accepted for compatibility and ignored. The default is 1.

parallelism

parallelism is accepted for compatibility and ignored. The default is 0.

heap_size IN NUMBER DEFAULT 0,

heap_size is accepted for compatibility and ignored. The default is 0.

atomic_refresh

atomic_refresh is accepted for compatibility and ignored. The default is
TRUE.

nested

nested is accepted for compatibility and ignored. The default is FALSE.

Examples

The following example uses DBMS_MVIEW.REFRESH to perform a COMPLETE refresh on
the public.emp_view materialized view:

EXEC DBMS_MVIEW.REFRESH(list => 'public.emp_view', method => 'C');

9.6.3 REFRESH_ALL_MVIEWS

Use the REFRESH_ALL_MVIEWS procedure to refresh any materialized views that have
not been refreshed since the table or view on which the view depends has been modified.
The signature is:

REFRESH_ALL_MVIEWS(
 number_of_failures OUT BINARY_INTEGER,
 method IN VARCHAR2 DEFAULT NULL,

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

647

 rollback_seg IN VARCHAR2 DEFAULT NULL,
 refresh_after_errors IN BOOLEAN DEFAULT FALSE,
 atomic_refresh IN BOOLEAN DEFAULT TRUE);

Parameters

number_of_failures

number_of_failures is a BINARY_INTEGER that specifies the number of
failures that occurred during the refresh operation.

method

method is a VARCHAR2 value that specifies the refresh method that will be
applied to the specified view (or views). The only supported method is C; this
performs a complete refresh of the view.

rollback_seg

rollback_seg is accepted for compatibility and ignored. The default is NULL.

refresh_after_errors

refresh_after_errors is accepted for compatibility and ignored. The default
is FALSE.

atomic_refresh

atomic_refresh is accepted for compatibility and ignored. The default is
TRUE.

Examples

The following example performs a COMPLETE refresh on all materialized views:

DECLARE
 errors INTEGER;
BEGIN
 DBMS_MVIEW.REFRESH_ALL_MVIEWS(errors, method => 'C');
END;

Upon completion, errors contains the number of failures.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

648

9.6.4 REFRESH_DEPENDENT

Use the REFRESH_DEPENDENT procedure to refresh all material views that are dependent
on the views specified in the call to the procedure. You can specify a comma-separated
list or provide the view names in a table of DBMS_UTILITY.UNCL_ARRAY values.

Use the first form of the procedure to refresh all material views that are dependent on the
views specified in a comma-separated list:

REFRESH_DEPENDENT(
 number_of_failures OUT BINARY_INTEGER,
 list IN VARCHAR2,
 method IN VARCHAR2 DEFAULT NULL,
 rollback_seg IN VARCHAR2 DEFAULT NULL
 refresh_after_errors IN BOOLEAN DEFAULT FALSE,
 atomic_refresh IN BOOLEAN DEFAULT TRUE,
 nested IN BOOLEAN DEFAULT FALSE);

Use the second form of the procedure to refresh all material views that are dependent on
the views specified in a table of DBMS_UTILITY.UNCL_ARRAY values:

REFRESH_DEPENDENT(
 number_of_failures OUT BINARY_INTEGER,
 tab IN DBMS_UTILITY.UNCL_ARRAY,
 method IN VARCHAR2 DEFAULT NULL,
 rollback_seg IN VARCHAR2 DEFAULT NULL,
 refresh_after_errors IN BOOLEAN DEFAULT FALSE,
 atomic_refresh IN BOOLEAN DEFAULT TRUE,
 nested IN BOOLEAN DEFAULT FALSE);

Parameters

number_of_failures

number_of_failures is a BINARY_INTEGER that contains the number of
failures that occurred during the refresh operation.

list

list is a VARCHAR2 value that specifies the name of a materialized view, or a
comma-separated list of materialized view names. The names may be schema-
qualified.

tab

tab is a table of DBMS_UTILITY.UNCL_ARRAY values that specify the name (or
names) of a materialized view.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

649

method

method is a VARCHAR2 value that specifies the refresh method that will be
applied to the specified view (or views). The only supported method is C; this
performs a complete refresh of the view.

rollback_seg

rollback_seg is accepted for compatibility and ignored. The default is NULL.

refresh_after_errors

refresh_after_errors is accepted for compatibility and ignored. The default
is FALSE.

atomic_refresh

atomic_refresh is accepted for compatibility and ignored. The default is
TRUE.

nested

nested is accepted for compatibility and ignored. The default is FALSE.

Examples

The following example performs a COMPLETE refresh on all materialized views
dependent on a materialized view named emp_view that resides in the public schema:

DECLARE
 errors INTEGER;
BEGIN
 DBMS_MVIEW.REFRESH_DEPENDENT(errors, list => 'public.emp_view', method =>
'C');
END;

Upon completion, errors contains the number of failures.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

650

9.7 DBMS_OUTPUT

The DBMS_OUTPUT package provides the capability to send messages (lines of text) to a
message buffer, or get messages from the message buffer. A message buffer is local to a
single session. Use the DBMS_PIPE package to send messages between sessions.

The procedures and functions available in the DBMS_OUTPUT package are listed in the
following table.

Table 7-9-5 DBMS_OUTPUT Functions/Procedures

Function/Procedure Return
Type

Description

DISABLE n/a Disable the capability to send and receive
messages.

ENABLE(buffer_size) n/a Enable the capability to send and receive
messages.

GET_LINE(line OUT, status OUT) n/a Get a line from the message buffer.
GET_LINES(lines OUT, numlines IN
OUT)

n/a Get multiple lines from the message buffer.

NEW_LINE n/a Puts an end-of-line character sequence.
PUT(item) n/a Puts a partial line without an end-of-line

character sequence.
PUT_LINE(item) n/a Puts a complete line with an end-of-line

character sequence.
SERVEROUTPUT(stdout) n/a Direct messages from PUT, PUT_LINE, or

NEW_LINE to either standard output or the
message buffer.

The following table lists the public variables available in the DBMS_OUTPUT package.

Table 7-9-6 DBMS_OUTPUT Public Variables

Public Variables Data Type Value Description
chararr TABLE For message lines.

9.7.1 CHARARR

The CHARARR is for storing multiple message lines.

TYPE chararr IS TABLE OF VARCHAR2(32767) INDEX BY BINARY_INTEGER;

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

651

9.7.2 DISABLE

The DISABLE procedure clears out the message buffer. Any messages in the buffer at the
time the DISABLE procedure is executed will no longer be accessible. Any messages
subsequently sent with the PUT, PUT_LINE, or NEW_LINE procedures are discarded. No
error is returned to the sender when the PUT, PUT_LINE, or NEW_LINE procedures are
executed and messages have been disabled.

Use the ENABLE procedure or SERVEROUTPUT(TRUE) procedure to re-enable the
sending and receiving of messages.

DISABLE

Examples

This anonymous block disables the sending and receiving messages in the current
session.

BEGIN
 DBMS_OUTPUT.DISABLE;
END;

9.7.3 ENABLE

The ENABLE procedure enables the capability to send messages to the message buffer or
retrieve messages from the message buffer. Running SERVEROUTPUT(TRUE) also
implicitly performs the ENABLE procedure.

The destination of a message sent with PUT, PUT_LINE, or NEW_LINE depends upon the
state of SERVEROUTPUT.

x If the last state of SERVEROUTPUT is TRUE, the message goes to standard output
of the command line.

x If the last state of SERVEROUTPUT is FALSE, the message goes to the message
buffer.

ENABLE [(buffer_size INTEGER)]

Parameters

buffer_size

Maximum length of the message buffer in bytes. If a buffer_size of less than
2000 is specified, the buffer size is set to 2000.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

652

Examples

The following anonymous block enables messages. Setting SERVEROUTPUT(TRUE)
forces them to standard output.

BEGIN
 DBMS_OUTPUT.ENABLE;
 DBMS_OUTPUT.SERVEROUTPUT(TRUE);
 DBMS_OUTPUT.PUT_LINE('Messages enabled');
END;

Messages enabled

The same effect could have been achieved by simply using SERVEROUTPUT(TRUE).

BEGIN
 DBMS_OUTPUT.SERVEROUTPUT(TRUE);
 DBMS_OUTPUT.PUT_LINE('Messages enabled');
END;

Messages enabled

The following anonymous block enables messages, but setting SERVEROUTPUT(FALSE)
directs messages to the message buffer.

BEGIN
 DBMS_OUTPUT.ENABLE;
 DBMS_OUTPUT.SERVEROUTPUT(FALSE);
 DBMS_OUTPUT.PUT_LINE('Message sent to buffer');
END;

9.7.4 GET_LINE

The GET_LINE procedure provides the capability to retrieve a line of text from the
message buffer. Only text that has been terminated by an end-of-line character sequence
is retrieved – that is complete lines generated using PUT_LINE, or by a series of PUT
calls followed by a NEW_LINE call.

GET_LINE(line OUT VARCHAR2, status OUT INTEGER)

Parameters

line

Variable receiving the line of text from the message buffer.

status

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

653

0 if a line was returned from the message buffer, 1 if there was no line to return.

Examples

The following anonymous block writes the emp table out to the message buffer as a
comma-delimited string for each row.

EXEC DBMS_OUTPUT.SERVEROUTPUT(FALSE);

DECLARE
 v_emprec VARCHAR2(120);
 CURSOR emp_cur IS SELECT * FROM emp ORDER BY empno;
BEGIN
 DBMS_OUTPUT.ENABLE;
 FOR i IN emp_cur LOOP
 v_emprec := i.empno || ',' || i.ename || ',' || i.job || ',' ||
 NVL(LTRIM(TO_CHAR(i.mgr,'9999')),'') || ',' || i.hiredate ||
 ',' || i.sal || ',' ||
 NVL(LTRIM(TO_CHAR(i.comm,'9990.99')),'') || ',' || i.deptno;
 DBMS_OUTPUT.PUT_LINE(v_emprec);
 END LOOP;
END;

The following anonymous block reads the message buffer and inserts the messages
written by the prior example into a table named messages. The rows in messages are
then displayed.

CREATE TABLE messages (
 status INTEGER,
 msg VARCHAR2(100)
);

DECLARE
 v_line VARCHAR2(100);
 v_status INTEGER := 0;
BEGIN
 DBMS_OUTPUT.GET_LINE(v_line,v_status);
 WHILE v_status = 0 LOOP
 INSERT INTO messages VALUES(v_status, v_line);
 DBMS_OUTPUT.GET_LINE(v_line,v_status);
 END LOOP;
END;

SELECT msg FROM messages;

 msg

 7369,SMITH,CLERK,7902,17-DEC-80 00:00:00,800.00,,20
 7499,ALLEN,SALESMAN,7698,20-FEB-81 00:00:00,1600.00,300.00,30
 7521,WARD,SALESMAN,7698,22-FEB-81 00:00:00,1250.00,500.00,30
 7566,JONES,MANAGER,7839,02-APR-81 00:00:00,2975.00,,20
 7654,MARTIN,SALESMAN,7698,28-SEP-81 00:00:00,1250.00,1400.00,30
 7698,BLAKE,MANAGER,7839,01-MAY-81 00:00:00,2850.00,,30
 7782,CLARK,MANAGER,7839,09-JUN-81 00:00:00,2450.00,,10
 7788,SCOTT,ANALYST,7566,19-APR-87 00:00:00,3000.00,,20
 7839,KING,PRESIDENT,,17-NOV-81 00:00:00,5000.00,,10
 7844,TURNER,SALESMAN,7698,08-SEP-81 00:00:00,1500.00,0.00,30
 7876,ADAMS,CLERK,7788,23-MAY-87 00:00:00,1100.00,,20

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

654

 7900,JAMES,CLERK,7698,03-DEC-81 00:00:00,950.00,,30
 7902,FORD,ANALYST,7566,03-DEC-81 00:00:00,3000.00,,20
 7934,MILLER,CLERK,7782,23-JAN-82 00:00:00,1300.00,,10
(14 rows)

9.7.5 GET_LINES

The GET_LINES procedure provides the capability to retrieve one or more lines of text
from the message buffer into a collection. Only text that has been terminated by an end-
of-line character sequence is retrieved – that is complete lines generated using
PUT_LINE, or by a series of PUT calls followed by a NEW_LINE call.

GET_LINES(lines OUT CHARARR, numlines IN OUT INTEGER)

Parameters

lines

Table receiving the lines of text from the message buffer. See CHARARR for a
description of lines.

numlines IN

Number of lines to be retrieved from the message buffer.

numlines OUT

Actual number of lines retrieved from the message buffer. If the output value of
numlines is less than the input value, then there are no more lines left in the
message buffer.

Examples

The following example uses the GET_LINES procedure to store all rows from the emp
table that were placed on the message buffer, into an array.

EXEC DBMS_OUTPUT.SERVEROUTPUT(FALSE);

DECLARE
 v_emprec VARCHAR2(120);
 CURSOR emp_cur IS SELECT * FROM emp ORDER BY empno;
BEGIN
 DBMS_OUTPUT.ENABLE;
 FOR i IN emp_cur LOOP
 v_emprec := i.empno || ',' || i.ename || ',' || i.job || ',' ||
 NVL(LTRIM(TO_CHAR(i.mgr,'9999')),'') || ',' || i.hiredate ||
 ',' || i.sal || ',' ||
 NVL(LTRIM(TO_CHAR(i.comm,'9990.99')),'') || ',' || i.deptno;

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

655

 DBMS_OUTPUT.PUT_LINE(v_emprec);
 END LOOP;
END;

DECLARE
 v_lines DBMS_OUTPUT.CHARARR;
 v_numlines INTEGER := 14;
 v_status INTEGER := 0;
BEGIN
 DBMS_OUTPUT.GET_LINES(v_lines,v_numlines);
 FOR i IN 1..v_numlines LOOP
 INSERT INTO messages VALUES(v_numlines, v_lines(i));
 END LOOP;
END;

SELECT msg FROM messages;

 msg

 7369,SMITH,CLERK,7902,17-DEC-80 00:00:00,800.00,,20
 7499,ALLEN,SALESMAN,7698,20-FEB-81 00:00:00,1600.00,300.00,30
 7521,WARD,SALESMAN,7698,22-FEB-81 00:00:00,1250.00,500.00,30
 7566,JONES,MANAGER,7839,02-APR-81 00:00:00,2975.00,,20
 7654,MARTIN,SALESMAN,7698,28-SEP-81 00:00:00,1250.00,1400.00,30
 7698,BLAKE,MANAGER,7839,01-MAY-81 00:00:00,2850.00,,30
 7782,CLARK,MANAGER,7839,09-JUN-81 00:00:00,2450.00,,10
 7788,SCOTT,ANALYST,7566,19-APR-87 00:00:00,3000.00,,20
 7839,KING,PRESIDENT,,17-NOV-81 00:00:00,5000.00,,10
 7844,TURNER,SALESMAN,7698,08-SEP-81 00:00:00,1500.00,0.00,30
 7876,ADAMS,CLERK,7788,23-MAY-87 00:00:00,1100.00,,20
 7900,JAMES,CLERK,7698,03-DEC-81 00:00:00,950.00,,30
 7902,FORD,ANALYST,7566,03-DEC-81 00:00:00,3000.00,,20
 7934,MILLER,CLERK,7782,23-JAN-82 00:00:00,1300.00,,10
(14 rows)

9.7.6 NEW_LINE

The NEW_LINE procedure writes an end-of-line character sequence in the message buffer.

NEW_LINE

Parameters

The NEW_LINE procedure expects no parameters.

9.7.7 PUT

The PUT procedure writes a string to the message buffer. No end-of-line character
sequence is written at the end of the string. Use the NEW_LINE procedure to add an end-
of-line character sequence.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

656

PUT(item VARCHAR2)

Parameters

item

Text written to the message buffer.

Examples

The following example uses the PUT procedure to display a comma-delimited list of
employees from the emp table.

DECLARE
 CURSOR emp_cur IS SELECT * FROM emp ORDER BY empno;
BEGIN
 FOR i IN emp_cur LOOP
 DBMS_OUTPUT.PUT(i.empno);
 DBMS_OUTPUT.PUT(',');
 DBMS_OUTPUT.PUT(i.ename);
 DBMS_OUTPUT.PUT(',');
 DBMS_OUTPUT.PUT(i.job);
 DBMS_OUTPUT.PUT(',');
 DBMS_OUTPUT.PUT(i.mgr);
 DBMS_OUTPUT.PUT(',');
 DBMS_OUTPUT.PUT(i.hiredate);
 DBMS_OUTPUT.PUT(',');
 DBMS_OUTPUT.PUT(i.sal);
 DBMS_OUTPUT.PUT(',');
 DBMS_OUTPUT.PUT(i.comm);
 DBMS_OUTPUT.PUT(',');
 DBMS_OUTPUT.PUT(i.deptno);
 DBMS_OUTPUT.NEW_LINE;
 END LOOP;
END;

7369,SMITH,CLERK,7902,17-DEC-80 00:00:00,800.00,,20
7499,ALLEN,SALESMAN,7698,20-FEB-81 00:00:00,1600.00,300.00,30
7521,WARD,SALESMAN,7698,22-FEB-81 00:00:00,1250.00,500.00,30
7566,JONES,MANAGER,7839,02-APR-81 00:00:00,2975.00,,20
7654,MARTIN,SALESMAN,7698,28-SEP-81 00:00:00,1250.00,1400.00,30
7698,BLAKE,MANAGER,7839,01-MAY-81 00:00:00,2850.00,,30
7782,CLARK,MANAGER,7839,09-JUN-81 00:00:00,2450.00,,10
7788,SCOTT,ANALYST,7566,19-APR-87 00:00:00,3000.00,,20
7839,KING,PRESIDENT,,17-NOV-81 00:00:00,5000.00,,10
7844,TURNER,SALESMAN,7698,08-SEP-81 00:00:00,1500.00,0.00,30
7876,ADAMS,CLERK,7788,23-MAY-87 00:00:00,1100.00,,20
7900,JAMES,CLERK,7698,03-DEC-81 00:00:00,950.00,,30
7902,FORD,ANALYST,7566,03-DEC-81 00:00:00,3000.00,,20
7934,MILLER,CLERK,7782,23-JAN-82 00:00:00,1300.00,,10

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

657

9.7.8 PUT_LINE

The PUT_LINE procedure writes a single line to the message buffer including an end-of-
line character sequence.

PUT_LINE(item VARCHAR2)

Parameters

item

Text to be written to the message buffer.

Examples

The following example uses the PUT_LINE procedure to display a comma-delimited list
of employees from the emp table.

DECLARE
 v_emprec VARCHAR2(120);
 CURSOR emp_cur IS SELECT * FROM emp ORDER BY empno;
BEGIN
 FOR i IN emp_cur LOOP
 v_emprec := i.empno || ',' || i.ename || ',' || i.job || ',' ||
 NVL(LTRIM(TO_CHAR(i.mgr,'9999')),'') || ',' || i.hiredate ||
 ',' || i.sal || ',' ||
 NVL(LTRIM(TO_CHAR(i.comm,'9990.99')),'') || ',' || i.deptno;
 DBMS_OUTPUT.PUT_LINE(v_emprec);
 END LOOP;
END;

7369,SMITH,CLERK,7902,17-DEC-80 00:00:00,800.00,,20
7499,ALLEN,SALESMAN,7698,20-FEB-81 00:00:00,1600.00,300.00,30
7521,WARD,SALESMAN,7698,22-FEB-81 00:00:00,1250.00,500.00,30
7566,JONES,MANAGER,7839,02-APR-81 00:00:00,2975.00,,20
7654,MARTIN,SALESMAN,7698,28-SEP-81 00:00:00,1250.00,1400.00,30
7698,BLAKE,MANAGER,7839,01-MAY-81 00:00:00,2850.00,,30
7782,CLARK,MANAGER,7839,09-JUN-81 00:00:00,2450.00,,10
7788,SCOTT,ANALYST,7566,19-APR-87 00:00:00,3000.00,,20
7839,KING,PRESIDENT,,17-NOV-81 00:00:00,5000.00,,10
7844,TURNER,SALESMAN,7698,08-SEP-81 00:00:00,1500.00,0.00,30
7876,ADAMS,CLERK,7788,23-MAY-87 00:00:00,1100.00,,20
7900,JAMES,CLERK,7698,03-DEC-81 00:00:00,950.00,,30
7902,FORD,ANALYST,7566,03-DEC-81 00:00:00,3000.00,,20
7934,MILLER,CLERK,7782,23-JAN-82 00:00:00,1300.00,,10

9.7.9 SERVEROUTPUT

The SERVEROUTPUT procedure provides the capability to direct messages to standard
output of the command line or to the message buffer. Setting SERVEROUTPUT(TRUE)
also performs an implicit execution of ENABLE.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

658

In PSQL, SERVEROUTPUT(TRUE) is the default setting.

SERVEROUTPUT(stdout BOOLEAN)

Parameters

stdout

Set to TRUE if subsequent PUT, PUT_LINE, or NEW_LINE commands are to send
text directly to standard output of the command line. Set to FALSE if text is to be
sent to the message buffer.

Examples

The following anonymous block sends the first message to the command line and the
second message to the message buffer.

BEGIN
 DBMS_OUTPUT.SERVEROUTPUT(TRUE);
 DBMS_OUTPUT.PUT_LINE('This message goes to the command line');
 DBMS_OUTPUT.SERVEROUTPUT(FALSE);
 DBMS_OUTPUT.PUT_LINE('This message goes to the message buffer');
END;

This message goes to the command line

If within the same session, the following anonymous block is executed, the message
stored in the message buffer from the prior example is flushed and displayed on the
command line as well as the new message.

BEGIN
 DBMS_OUTPUT.SERVEROUTPUT(TRUE);
 DBMS_OUTPUT.PUT_LINE('Flush messages from the buffer');
END;

This message goes to the message buffer
Flush messages from the buffer

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

659

9.8 DBMS_PIPE

The DBMS_PIPE package provides the capability to send messages through a pipe within
or between sessions connected to the same database cluster.

The procedures and functions available in the DBMS_PIPE package are listed in the
following table.

Table 7-9-7 DBMS_PIPE Functions/Procedures

Function/Procedure Return
Type

Description

CREATE_PIPE(pipename [,
maxpipesize] [, private])

INTEGER Explicitly create a private pipe if private is
“true” (the default) or a public pipe if private
is “false”.

NEXT_ITEM_TYPE INTEGER Determine the data type of the next item in a
received message.

PACK_MESSAGE(item) n/a Place item in the session‟s local message buffer.
PURGE(pipename) n/a Remove unreceived messages from the specified

pipe.
RECEIVE_MESSAGE(pipename [,
timeout])

INTEGER Get a message from a specified pipe.

REMOVE_PIPE(pipename) INTEGER Delete an explicitly created pipe.
RESET_BUFFER n/a Reset the local message buffer.
SEND_MESSAGE(pipename [, timeout
] [, maxpipesize])

INTEGER Send a message on a pipe.

UNIQUE_SESSION_NAME VARCHAR2 Obtain a unique session name.
UNPACK_MESSAGE(item OUT) n/a Retrieve the next data item from a message into

a type-compatible variable, item.

Pipes are categorized as implicit or explicit. An implicit pipe is created if a reference is
made to a pipe name that was not previously created by the CREATE_PIPE function. For
example, if the SEND_MESSAGE function is executed using a non-existent pipe name, a
new implicit pipe is created with that name. An explicit pipe is created using the
CREATE_PIPE function whereby the first parameter specifies the pipe name for the new
pipe.

Pipes are also categorized as private or public. A private pipe can only be accessed by the
user who created the pipe. Even a superuser cannot access a private pipe that was created
by another user. A public pipe can be accessed by any user who has access to the
DBMS_PIPE package.

A public pipe can only be created by using the CREATE_PIPE function with the third
parameter set to FALSE. The CREATE_PIPE function can be used to create a private pipe
by setting the third parameter to TRUE or by omitting the third parameter. All implicit
pipes are private.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

660

The individual data items or “lines” of a message are first built-in a local message buffer,
unique to the current session. The PACK_MESSAGE procedure builds the message in the
session‟s local message buffer. The SEND_MESSAGE function is then used to send the
message through the pipe.

Receipt of a message involves the reverse operation. The RECEIVE_MESSAGE function is
used to get a message from the specified pipe. The message is written to the session‟s
local message buffer. The UNPACK_MESSAGE procedure is then used to transfer the
message data items from the message buffer to program variables. If a pipe contains
multiple messages, RECEIVE_MESSAGE gets the messages in FIFO (first-in-first-out)
order.

Each session maintains separate message buffers for messages created with the
PACK_MESSAGE procedure and messages retrieved by the RECEIVE_MESSAGE function.
Thus messages can be both built and received in the same session. However, if
consecutive RECEIVE_MESSAGE calls are made, only the message from the last
RECEIVE_MESSAGE call will be preserved in the local message buffer.

9.8.1 CREATE_PIPE

The CREATE_PIPE function creates an explicit public pipe or an explicit private pipe
with a specified name.

status INTEGER CREATE_PIPE(pipename VARCHAR2
 [, maxpipesize INTEGER] [, private BOOLEAN])

Parameters

pipename

Name of the pipe.

maxpipesize

Maximum capacity of the pipe in bytes. Default is 8192 bytes.

private

Create a public pipe if set to FALSE. Create a private pipe if set to TRUE. This is
the default.

status

Status code returned by the operation. 0 indicates successful creation.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

661

Examples

The following example creates a private pipe named messages:

DECLARE
 v_status INTEGER;
BEGIN
 v_status := DBMS_PIPE.CREATE_PIPE('messages');
 DBMS_OUTPUT.PUT_LINE('CREATE_PIPE status: ' || v_status);
END;
CREATE_PIPE status: 0

The following example creates a public pipe named mailbox:

DECLARE
 v_status INTEGER;
BEGIN
 v_status := DBMS_PIPE.CREATE_PIPE('mailbox',8192,FALSE);
 DBMS_OUTPUT.PUT_LINE('CREATE_PIPE status: ' || v_status);
END;
CREATE_PIPE status: 0

9.8.2 NEXT_ITEM_TYPE

The NEXT_ITEM_TYPE function returns an integer code identifying the data type of the
next data item in a message that has been retrieved into the session‟s local message
buffer. As each item is moved off of the local message buffer with the UNPACK_MESSAGE
procedure, the NEXT_ITEM_TYPE function will return the data type code for the next
available item. A code of 0 is returned when there are no more items left in the message.

typecode INTEGER NEXT_ITEM_TYPE

Parameters

typecode

Code identifying the data type of the next data item as shown in Table 7-9-8.

Table 7-9-8 NEXT_ITEM_TYPE Data Type Codes

Type Code Data Type
0 No more data items
9 NUMBER
11 VARCHAR2
13 DATE
23 RAW

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

662

Examples

The following example shows a pipe packed with a NUMBER item, a VARCHAR2 item, a
DATE item, and a RAW item. A second anonymous block then uses the NEXT_ITEM_TYPE
function to display the type code of each item.

DECLARE
 v_number NUMBER := 123;
 v_varchar VARCHAR2(20) := 'Character data';
 v_date DATE := SYSDATE;
 v_raw RAW(4) := '21222324';
 v_status INTEGER;
BEGIN
 DBMS_PIPE.PACK_MESSAGE(v_number);
 DBMS_PIPE.PACK_MESSAGE(v_varchar);
 DBMS_PIPE.PACK_MESSAGE(v_date);
 DBMS_PIPE.PACK_MESSAGE(v_raw);
 v_status := DBMS_PIPE.SEND_MESSAGE('datatypes');
 DBMS_OUTPUT.PUT_LINE('SEND_MESSAGE status: ' || v_status);
EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('SQLERRM: ' || SQLERRM);
 DBMS_OUTPUT.PUT_LINE('SQLCODE: ' || SQLCODE);
END;

SEND_MESSAGE status: 0

DECLARE
 v_number NUMBER;
 v_varchar VARCHAR2(20);
 v_date DATE;
 v_timestamp TIMESTAMP;
 v_raw RAW(4);
 v_status INTEGER;
BEGIN
 v_status := DBMS_PIPE.RECEIVE_MESSAGE('datatypes');
 DBMS_OUTPUT.PUT_LINE('RECEIVE_MESSAGE status: ' || v_status);
 DBMS_OUTPUT.PUT_LINE('----------------------------------');

 v_status := DBMS_PIPE.NEXT_ITEM_TYPE;
 DBMS_OUTPUT.PUT_LINE('NEXT_ITEM_TYPE: ' || v_status);
 DBMS_PIPE.UNPACK_MESSAGE(v_number);
 DBMS_OUTPUT.PUT_LINE('NUMBER Item : ' || v_number);
 DBMS_OUTPUT.PUT_LINE('----------------------------------');

 v_status := DBMS_PIPE.NEXT_ITEM_TYPE;
 DBMS_OUTPUT.PUT_LINE('NEXT_ITEM_TYPE: ' || v_status);
 DBMS_PIPE.UNPACK_MESSAGE(v_varchar);
 DBMS_OUTPUT.PUT_LINE('VARCHAR2 Item : ' || v_varchar);
 DBMS_OUTPUT.PUT_LINE('----------------------------------');

 v_status := DBMS_PIPE.NEXT_ITEM_TYPE;
 DBMS_OUTPUT.PUT_LINE('NEXT_ITEM_TYPE: ' || v_status);
 DBMS_PIPE.UNPACK_MESSAGE(v_date);
 DBMS_OUTPUT.PUT_LINE('DATE Item : ' || v_date);
 DBMS_OUTPUT.PUT_LINE('----------------------------------');

 v_status := DBMS_PIPE.NEXT_ITEM_TYPE;
 DBMS_OUTPUT.PUT_LINE('NEXT_ITEM_TYPE: ' || v_status);
 DBMS_PIPE.UNPACK_MESSAGE(v_raw);

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

663

 DBMS_OUTPUT.PUT_LINE('RAW Item : ' || v_raw);
 DBMS_OUTPUT.PUT_LINE('----------------------------------');

 v_status := DBMS_PIPE.NEXT_ITEM_TYPE;
 DBMS_OUTPUT.PUT_LINE('NEXT_ITEM_TYPE: ' || v_status);
 DBMS_OUTPUT.PUT_LINE('---------------------------------');
EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('SQLERRM: ' || SQLERRM);
 DBMS_OUTPUT.PUT_LINE('SQLCODE: ' || SQLCODE);
END;

RECEIVE_MESSAGE status: 0

NEXT_ITEM_TYPE: 9
NUMBER Item : 123

NEXT_ITEM_TYPE: 11
VARCHAR2 Item : Character data

NEXT_ITEM_TYPE: 13
DATE Item : 02-OCT-07 11:11:43

NEXT_ITEM_TYPE: 23
RAW Item : 21222324

NEXT_ITEM_TYPE: 0

9.8.3 PACK_MESSAGE

The PACK_MESSAGE procedure places an item of data in the session‟s local message
buffer. PACK_MESSAGE must be executed at least once before issuing a SEND_MESSAGE
call.

PACK_MESSAGE(item { DATE | NUMBER | VARCHAR2 | RAW })

Use the UNPACK_MESSAGE procedure to obtain data items once the message is retrieved
using a RECEIVE_MESSAGE call.

Parameters

item

An expression evaluating to any of the acceptable parameter data types. The value
is added to the session‟s local message buffer.

9.8.4 PURGE

The PURGE procedure removes the unreceived messages from a specified implicit pipe.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

664

PURGE(pipename VARCHAR2)

Use the REMOVE_PIPE function to delete an explicit pipe.

Parameters

pipename

Name of the pipe.

Examples

Two messages are sent on a pipe:

DECLARE
 v_status INTEGER;
BEGIN
 DBMS_PIPE.PACK_MESSAGE('Message #1');
 v_status := DBMS_PIPE.SEND_MESSAGE('pipe');
 DBMS_OUTPUT.PUT_LINE('SEND_MESSAGE status: ' || v_status);

 DBMS_PIPE.PACK_MESSAGE('Message #2');
 v_status := DBMS_PIPE.SEND_MESSAGE('pipe');
 DBMS_OUTPUT.PUT_LINE('SEND_MESSAGE status: ' || v_status);
END;

SEND_MESSAGE status: 0
SEND_MESSAGE status: 0

Receive the first message and unpack it:

DECLARE
 v_item VARCHAR2(80);
 v_status INTEGER;
BEGIN
 v_status := DBMS_PIPE.RECEIVE_MESSAGE('pipe',1);
 DBMS_OUTPUT.PUT_LINE('RECEIVE_MESSAGE status: ' || v_status);
 DBMS_PIPE.UNPACK_MESSAGE(v_item);
 DBMS_OUTPUT.PUT_LINE('Item: ' || v_item);
END;

RECEIVE_MESSAGE status: 0
Item: Message #1

Purge the pipe:

EXEC DBMS_PIPE.PURGE('pipe');

Try to retrieve the next message. The RECEIVE_MESSAGE call returns status code 1
indicating it timed out because no message was available.

DECLARE
 v_item VARCHAR2(80);
 v_status INTEGER;

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

665

BEGIN
 v_status := DBMS_PIPE.RECEIVE_MESSAGE('pipe',1);
 DBMS_OUTPUT.PUT_LINE('RECEIVE_MESSAGE status: ' || v_status);
END;

RECEIVE_MESSAGE status: 1

9.8.5 RECEIVE_MESSAGE

The RECEIVE_MESSAGE function obtains a message from a specified pipe.

status INTEGER RECEIVE_MESSAGE(pipename VARCHAR2
 [, timeout INTEGER])

Parameters

pipename

Name of the pipe.

timeout

Wait time (seconds). Default is 86400000 (1000 days).

status

Status code returned by the operation.

The possible status codes are:

Table 7-9-9 RECEIVE_MESSAGE Status Codes

Status Code Description
0 Success
1 Time out
2 Message too large .for the buffer

9.8.6 REMOVE_PIPE

The REMOVE_PIPE function deletes an explicit private or explicit public pipe.

status INTEGER REMOVE_PIPE(pipename VARCHAR2)

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

666

Use the REMOVE_PIPE function to delete explicitly created pipes – i.e., pipes created
with the CREATE_PIPE function.

Parameters

pipename

Name of the pipe.

status

Status code returned by the operation. A status code of 0 is returned even if the
named pipe is non-existent.

Examples

Two messages are sent on a pipe:

DECLARE
 v_status INTEGER;
BEGIN
 v_status := DBMS_PIPE.CREATE_PIPE('pipe');
 DBMS_OUTPUT.PUT_LINE('CREATE_PIPE status : ' || v_status);

 DBMS_PIPE.PACK_MESSAGE('Message #1');
 v_status := DBMS_PIPE.SEND_MESSAGE('pipe');
 DBMS_OUTPUT.PUT_LINE('SEND_MESSAGE status: ' || v_status);

 DBMS_PIPE.PACK_MESSAGE('Message #2');
 v_status := DBMS_PIPE.SEND_MESSAGE('pipe');
 DBMS_OUTPUT.PUT_LINE('SEND_MESSAGE status: ' || v_status);
END;

CREATE_PIPE status : 0
SEND_MESSAGE status: 0
SEND_MESSAGE status: 0

Receive the first message and unpack it:

DECLARE
 v_item VARCHAR2(80);
 v_status INTEGER;
BEGIN
 v_status := DBMS_PIPE.RECEIVE_MESSAGE('pipe',1);
 DBMS_OUTPUT.PUT_LINE('RECEIVE_MESSAGE status: ' || v_status);
 DBMS_PIPE.UNPACK_MESSAGE(v_item);
 DBMS_OUTPUT.PUT_LINE('Item: ' || v_item);
END;

RECEIVE_MESSAGE status: 0
Item: Message #1

Remove the pipe:

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

667

SELECT DBMS_PIPE.REMOVE_PIPE('pipe') FROM DUAL;

remove_pipe

 0
(1 row)

Try to retrieve the next message. The RECEIVE_MESSAGE call returns status code 1
indicating it timed out because the pipe had been deleted.

DECLARE
 v_item VARCHAR2(80);
 v_status INTEGER;
BEGIN
 v_status := DBMS_PIPE.RECEIVE_MESSAGE('pipe',1);
 DBMS_OUTPUT.PUT_LINE('RECEIVE_MESSAGE status: ' || v_status);
END;

RECEIVE_MESSAGE status: 1

9.8.7 RESET_BUFFER

The RESET_BUFFER procedure resets a “pointer” to the session‟s local message buffer
back to the beginning of the buffer. This has the effect of causing subsequent
PACK_MESSAGE calls to overwrite any data items that existed in the message buffer prior
to the RESET_BUFFER call.

RESET_BUFFER

Examples

A message to John is written to the local message buffer. It is replaced by a message to
Bob by calling RESET_BUFFER. The message is sent on the pipe.

DECLARE
 v_status INTEGER;
BEGIN
 DBMS_PIPE.PACK_MESSAGE('Hi, John');
 DBMS_PIPE.PACK_MESSAGE('Can you attend a meeting at 3:00, today?');
 DBMS_PIPE.PACK_MESSAGE('If not, is tomorrow at 8:30 ok with you?');
 DBMS_PIPE.RESET_BUFFER;
 DBMS_PIPE.PACK_MESSAGE('Hi, Bob');
 DBMS_PIPE.PACK_MESSAGE('Can you attend a meeting at 9:30, tomorrow?');
 v_status := DBMS_PIPE.SEND_MESSAGE('pipe');
 DBMS_OUTPUT.PUT_LINE('SEND_MESSAGE status: ' || v_status);
END;

SEND_MESSAGE status: 0

The message to Bob is in the received message.

DECLARE

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

668

 v_item VARCHAR2(80);
 v_status INTEGER;
BEGIN
 v_status := DBMS_PIPE.RECEIVE_MESSAGE('pipe',1);
 DBMS_OUTPUT.PUT_LINE('RECEIVE_MESSAGE status: ' || v_status);
 DBMS_PIPE.UNPACK_MESSAGE(v_item);
 DBMS_OUTPUT.PUT_LINE('Item: ' || v_item);
 DBMS_PIPE.UNPACK_MESSAGE(v_item);
 DBMS_OUTPUT.PUT_LINE('Item: ' || v_item);
END;

RECEIVE_MESSAGE status: 0
Item: Hi, Bob
Item: Can you attend a meeting at 9:30, tomorrow?

9.8.8 SEND_MESSAGE

The SEND_MESSAGE function sends a message from the session‟s local message buffer to
the specified pipe.

status SEND_MESSAGE(pipename VARCHAR2 [, timeout INTEGER]
 [, maxpipesize INTEGER])

Parameters

pipename

Name of the pipe.

timeout

Wait time (seconds). Default is 86400000 (1000 days).

maxpipesize

Maximum capacity of the pipe in bytes. Default is 8192 bytes.

status

Status code returned by the operation.

The possible status codes are:

Table 7-9-10 SEND_MESSAGE Status Codes

Status Code Description
0 Success
1 Time out
3 Function interrupted

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

669

9.8.9 UNIQUE_SESSION_NAME

The UNIQUE_SESSION_NAME function returns a name, unique to the current session.

name VARCHAR2 UNIQUE_SESSION_NAME

Parameters

name

Unique session name.

Examples

The following anonymous block retrieves and displays a unique session name.

DECLARE
 v_session VARCHAR2(30);
BEGIN
 v_session := DBMS_PIPE.UNIQUE_SESSION_NAME;
 DBMS_OUTPUT.PUT_LINE('Session Name: ' || v_session);
END;

Session Name: PG$PIPE$5$2752

9.8.10 UNPACK_MESSAGE

The UNPACK_MESSAGE procedure copies the data items of a message from the local
message buffer to a specified program variable. The message must be placed in the local
message buffer with the RECEIVE_MESSAGE function before using UNPACK_MESSAGE.

UNPACK_MESSAGE(item OUT { DATE | NUMBER | VARCHAR2 | RAW })

Parameters

item

Type-compatible variable that receives a data item from the local message buffer.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

670

9.8.11 Comprehensive Example

The following example uses a pipe as a “mailbox”. The procedures to create the mailbox,
add a multi-item message to the mailbox (up to three items), and display the full contents
of the mailbox are enclosed in a package named, mailbox.

CREATE OR REPLACE PACKAGE mailbox
IS
 PROCEDURE create_mailbox;
 PROCEDURE add_message (
 p_mailbox VARCHAR2,
 p_item_1 VARCHAR2,
 p_item_2 VARCHAR2 DEFAULT 'END',
 p_item_3 VARCHAR2 DEFAULT 'END'
);
 PROCEDURE empty_mailbox (
 p_mailbox VARCHAR2,
 p_waittime INTEGER DEFAULT 10
);
END mailbox;

CREATE OR REPLACE PACKAGE BODY mailbox
IS
 PROCEDURE create_mailbox
 IS
 v_mailbox VARCHAR2(30);
 v_status INTEGER;
 BEGIN
 v_mailbox := DBMS_PIPE.UNIQUE_SESSION_NAME;
 v_status := DBMS_PIPE.CREATE_PIPE(v_mailbox,1000,FALSE);
 IF v_status = 0 THEN
 DBMS_OUTPUT.PUT_LINE('Created mailbox: ' || v_mailbox);
 ELSE
 DBMS_OUTPUT.PUT_LINE('CREATE_PIPE failed - status: ' ||
 v_status);
 END IF;
 END create_mailbox;

 PROCEDURE add_message (
 p_mailbox VARCHAR2,
 p_item_1 VARCHAR2,
 p_item_2 VARCHAR2 DEFAULT 'END',
 p_item_3 VARCHAR2 DEFAULT 'END'
)
 IS
 v_item_cnt INTEGER := 0;
 v_status INTEGER;
 BEGIN
 DBMS_PIPE.PACK_MESSAGE(p_item_1);
 v_item_cnt := 1;
 IF p_item_2 != 'END' THEN
 DBMS_PIPE.PACK_MESSAGE(p_item_2);
 v_item_cnt := v_item_cnt + 1;
 END IF;
 IF p_item_3 != 'END' THEN
 DBMS_PIPE.PACK_MESSAGE(p_item_3);
 v_item_cnt := v_item_cnt + 1;
 END IF;
 v_status := DBMS_PIPE.SEND_MESSAGE(p_mailbox);
 IF v_status = 0 THEN

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

671

 DBMS_OUTPUT.PUT_LINE('Added message with ' || v_item_cnt ||
 ' item(s) to mailbox ' || p_mailbox);
 ELSE
 DBMS_OUTPUT.PUT_LINE('SEND_MESSAGE in add_message failed - ' ||
 'status: ' || v_status);
 END IF;
 END add_message;

 PROCEDURE empty_mailbox (
 p_mailbox VARCHAR2,
 p_waittime INTEGER DEFAULT 10
)
 IS
 v_msgno INTEGER DEFAULT 0;
 v_itemno INTEGER DEFAULT 0;
 v_item VARCHAR2(100);
 v_status INTEGER;
 BEGIN
 v_status := DBMS_PIPE.RECEIVE_MESSAGE(p_mailbox,p_waittime);
 WHILE v_status = 0 LOOP
 v_msgno := v_msgno + 1;
 DBMS_OUTPUT.PUT_LINE('****** Start message #' || v_msgno ||
 ' ******');
 BEGIN
 LOOP
 v_status := DBMS_PIPE.NEXT_ITEM_TYPE;
 EXIT WHEN v_status = 0;
 DBMS_PIPE.UNPACK_MESSAGE(v_item);
 v_itemno := v_itemno + 1;
 DBMS_OUTPUT.PUT_LINE('Item #' || v_itemno || ': ' ||
 v_item);
 END LOOP;
 DBMS_OUTPUT.PUT_LINE('******* End message #' || v_msgno ||
 ' *******');
 DBMS_OUTPUT.PUT_LINE('*');
 v_itemno := 0;
 v_status := DBMS_PIPE.RECEIVE_MESSAGE(p_mailbox,1);
 END;
 END LOOP;
 DBMS_OUTPUT.PUT_LINE('Number of messages received: ' || v_msgno);
 v_status := DBMS_PIPE.REMOVE_PIPE(p_mailbox);
 IF v_status = 0 THEN
 DBMS_OUTPUT.PUT_LINE('Deleted mailbox ' || p_mailbox);
 ELSE
 DBMS_OUTPUT.PUT_LINE('Could not delete mailbox - status: '
 || v_status);
 END IF;
 END empty_mailbox;
END mailbox;

The following demonstrates the execution of the procedures in mailbox. The first
procedure creates a public pipe using a name generated by the UNIQUE_SESSION_NAME
function.

EXEC mailbox.create_mailbox;

Created mailbox: PG$PIPE$13$3940

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

672

Using the mailbox name, any user in the same database with access to the mailbox
package and DBMS_PIPE package can add messages:

EXEC mailbox.add_message('PG$PIPE$13$3940','Hi, John','Can you attend a
meeting at 3:00, today?','-- Mary');

Added message with 3 item(s) to mailbox PG$PIPE$13$3940

EXEC mailbox.add_message('PG$PIPE$13$3940','Don''t forget to submit your
report','Thanks,','-- Joe');

Added message with 3 item(s) to mailbox PG$PIPE$13$3940

Finally, the contents of the mailbox can be emptied:

EXEC mailbox.empty_mailbox('PG$PIPE$13$3940');

****** Start message #1 ******
Item #1: Hi, John
Item #2: Can you attend a meeting at 3:00, today?
Item #3: -- Mary
******* End message #1 *******
*
****** Start message #2 ******
Item #1: Don't forget to submit your report
Item #2: Thanks,
Item #3: Joe
******* End message #2 *******
*
Number of messages received: 2
Deleted mailbox PG$PIPE$13$3940

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

673

9.9 DBMS_PROFILER

The DBMS_PROFILER package collects and stores performance information about the
PL/pgSQL and SPL statements that are executed during a performance profiling session;
use the functions and procedures listed below to control the profiling tool.

For more information about the DBMS_PROFILER built-in package (including usage
examples and a reference guide to the DBMS_PROFILER tables and views), see Section
9.9.

Table 9-11 DBMS_PROFILER Functions/Procedures

Function/Procedure Function or
Procedure

Return
Type

Description

FLUSH_DATA Both Status Code
or Exception

Flushes performance data collected in the
current session without terminating the
session (profiling continues).

GET_VERSION(major OUT, minor OUT) Procedure n/a Returns the version number of this package.
INTERNAL_VERSION_CHECK Function Status Code Confirms that the current version of the

profiler will work with the current database.
PAUSE_PROFILER Both Status Code

or Exception
Pause data collection.

RESUME_PROFILER Both Status Code
or Exception

Resume data collection.

START_PROFILER(run_comment,
run_comment1 [, run_number OUT])

Both Status Code
or Exception

Start data collection.

STOP_PROFILER Both Status Code
or Exception

Stop data collection and flush performance
data to the PLSQL_PROFILER_RAWDATA
table.

The functions within the DBMS_PROFILER package return a status code to indicate
success or failure; the DBMS_PROFILER procedures raise an exception only if they
encounter a failure. The status codes and messages returned by the functions, and the
exceptions raised by the procedures are listed in the table below.

Table 9-12 DBMS_PROFILER Status Codes and Exceptions

Status Code Message Exception Description

-1 error version version_mismatch The profiler version and the database are
incompatible.

0 success n/a The operation completed successfully.
1 error_param profiler_error The operation received an incorrect parameter.
2 error_io profiler_error The data flush operation has failed.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

674

9.9.1 FLUSH_DATA

The FLUSH_DATA function/procedure flushes the data collected in the current session
without terminating the profiler session. The data is flushed to the tables described in the
Postgres Plus Advanced Server Performance Features Guide. The function and procedure
signatures are:

status INTEGER FLUSH_DATA

FLUSH_DATA

Parameters

status

Status code returned by the operation.

9.9.2 GET_VERSION

The GET_VERSION procedure returns the version of DBMS_PROFILER. The procedure
signature is:

GET_VERSION(major OUT INTEGER, minor OUT INTEGER)

Parameters

major

The major version number of DBMS_PROFILER.

minor

The minor version number of DBMS_PROFILER.

9.9.3 INTERNAL_VERSION_CHECK

The INTERNAL_VERSION_CHECK function confirms that the current version of
DBMS_PROFILER will work with the current database. The function signature is:

status INTEGER INTERNAL_VERSION_CHECK

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

675

Parameters

status

Status code returned by the operation.

9.9.4 PAUSE_PROFILER

The PAUSE_PROFILER function/procedure pauses a profiling session. The function and
procedure signatures are:

status INTEGER PAUSE_PROFILER

PAUSE_PROFILER

Parameters

status

Status code returned by the operation.

9.9.5 RESUME_PROFILER

The RESUME_PROFILER function/procedure pauses a profiling session. The function and
procedure signatures are:

status INTEGER RESUME_PROFILER

RESUME_PROFILER

Parameters

status

Status code returned by the operation.

9.9.6 START_PROFILER

The START_PROFILER function/procedure starts a data collection session. The function
and procedure signatures are:

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

676

status INTEGER START_PROFILER(run_comment TEXT := SYSDATE,
 run_comment1 TEXT := '' [, run_number OUT INTEGER])

START_PROFILER(run_comment TEXT := SYSDATE,
 run_comment1 TEXT := '' [, run_number OUT INTEGER])

Parameters

run_comment

A user-defined comment for the profiler session. The default value is SYSDATE.

run_comment1

An additional user-defined comment for the profiler session. The default value is
''.

run_number

The session number of the profiler session.

status

Status code returned by the operation.

9.9.7 STOP_PROFILER

The STOP_PROFILER function/procedure stops a profiling session and flushes the
performance information to the DBMS_PROFILER tables and view. The function and
procedure signatures are:

status INTEGER STOP_PROFILER

STOP_PROFILER

Parameters

status

Status code returned by the operation.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

677

9.10 DBMS_RANDOM

The DBMS_RANDOM package provides a number of methods to generate random values.
The procedures and functions available in the DBMS_RANDOM package are listed in the
following table.

Table 7. DBMS_RANDOM Functions/Procedures

Function/Procedure Return Type Description
INITIALIZE(val) n/a Initializes the DBMS_RANDOM package with the

specified seed value. Deprecated, but
supported for backward compatibility.

NORMAL() NUMBER Returns a random NUMBER.
RANDOM INTEGER Returns a random INTEGER with a value greater

than or equal to -2^31 and less than 2^31.
Deprecated, but supported for backward
compatibility.

SEED(val) n/a Resets the seed with the specified value.
SEED(val) n/a Resets the seed with the specified value.
STRING(opt, len) VARCHAR2 Returns a random string.
TERMINATE n/a TERMINATE has no effect. Deprecated, but

supported for backward compatibility.
VALUE NUMBER Returns a random number with a value greater

than or equal to 0 and less than 1, with 38 digit
precision.

VALUE(low, high) NUMBER Returns a random number with a value greater
than or equal to low and less than high.

9.10.1 INITIALIZE

The INITIALIZE procedure initializes the DBMS_RANDOM package with a seed value.
The signature is:

INITIALIZE(val IN INTEGER)

This procedure should be considered deprecated; it is included for backward
compatibility only.

Parameters

val

val is the seed value used by the DBMS_RANDOM package algorithm.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

678

Example

The following code snippet demonstrates a call to the INITIALIZE procedure that
initializes the DBMS_RANDOM package with the seed value, 6475.

DBMS_RANDOM.INITIALIZE(6475);

9.10.2 NORMAL

The NORMAL function returns a random number of type NUMBER. The signature is:

result NUMBER NORMAL()

Parameters

result

result is a random value of type NUMBER.

Example

The following code snippet demonstrates a call to the NORMAL function:

x:= DBMS_RANDOM.NORMAL();

9.10.3 RANDOM

The RANDOM function returns a random INTEGER value that is greater than or equal to -2
^31 and less than 2 ^31. The signature is:

result INTEGER RANDOM()

This function should be considered deprecated; it is included for backward compatibility
only.

Parameters

result

result is a random value of type INTEGER.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

679

Example

The following code snippet demonstrates a call to the RANDOM function. The call returns
a random number:

x := DBMS_RANDOM.RANDOM();

9.10.4 SEED

The first form of the SEED procedure resets the seed value for the DBMS_RANDOM
package with an INTEGER value. The SEED procedure is available in two forms; the
signature of the first form is:

SEED(val IN INTEGER)

Parameters

val

val is the seed value used by the DBMS_RANDOM package algorithm.

Example

The following code snippet demonstrates a call to the SEED procedure; the call sets the
seed value at 8495.

DBMS_RANDOM.SEED(8495);

9.10.5 SEED

The second form of the SEED procedure resets the seed value for the DBMS_RANDOM
package with a string value. The SEED procedure is available in two forms; the signature
of the second form is:

SEED(val IN VARCHAR2)

Parameters

val

val is the seed value used by the DBMS_RANDOM package algorithm.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

680

Example

The following code snippet demonstrates a call to the SEED procedure; the call sets the
seed value to abc123.

DBMS_RANDOM.SEED('abc123');

9.10.6 STRING

The STRING function returns a random VARCHAR2 string in a user-specified format. The
signature of the STRING function is:

result VARCHAR2 STRING(opt IN CHAR, len IN NUMBER)

Parameters

opt

Formatting option for the returned string. option may be:

Option Specifies Formatting Option
u or U Uppercase alpha string
l or L Lowercase alpha string
a or A Mixed case string
x or X Uppercase alpha-numeric string
p or P Any printable characters

len

The length of the returned string.

result

result is a random value of type VARCHAR2.

Example

The following code snippet demonstrates a call to the STRING function; the call returns a
random alpha-numeric character string that is 10 characters long.

x := DBMS_RANDOM.STRING('X', 10);

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

681

9.10.7 TERMINATE

The TERMINATE procedure has no effect. The signature is:

TERMINATE

The TERMINATE procedure should be considered deprecated; the procedure is supported
for compatibility only.

9.10.8 VALUE

The VALUE function returns a random NUMBER that is greater than or equal to 0, and less
than 1, with 38 digit precision. The VALUE function has two forms; the signature of the
first form is:

result NUMBER VALUE()

Parameters

result

result is a random value of type NUMBER.

Example

The following code snippet demonstrates a call to the VALUE function. The call returns a
random NUMBER:

x := DBMS_RANDOM.VALUE();

9.10.9 VALUE

The VALUE function returns a random NUMBER with a value that is between user-specified
boundaries. The VALUE function has two forms; the signature of the second form is:

result NUMBER VALUE(low IN NUMBER, high IN NUMBER)

Parameters

low

low specifies the lower boundary for the random value. The random value may
be equal to low.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

682

high

high specifies the upper boundary for the random value; the random value will
be less than high.

result

result is a random value of type NUMBER.

Example

The following code snippet demonstrates a call to the VALUE function. The call returns a
random NUMBER with a value that is greater than or equal to 1 and less than 100:

x := DBMS_RANDOM.VALUE(1, 100);

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

683

9.11 DBMS_RLS

The DBMS_RLS package enables the implementation of Virtual Private Database on
certain Advanced Server database objects.

Table 9-13 DBMS_RLS Functions/Procedures

Function/Procedure Function or
Procedure

Return
Type

Description

ADD_POLICY(object_schema,
object_name, policy_name,
function_schema, policy_function
[, statement_types [,
update_check [, enable [,
static_policy [, policy_type [,
long_predicate [,
sec_relevant_cols [,
sec_relevant_cols_opt]]]]]]]])

Procedure n/a Add a security policy to a database object.

DROP_POLICY(object_schema,
object_name, policy_name)

Procedure n/a Remove a security policy from a database
object.

ENABLE_POLICY(object_schema,
object_name, policy_name, enable)

Procedure n/a Enable or disable a security policy.

Virtual Private Database is a type of fine-grained access control using security policies.
Fine-grained access control in Virtual Private Database means that access to data can be
controlled down to specific rows as defined by the security policy.

The rules that encode a security policy are defined in a policy function, which is an SPL
function with certain input parameters and return value. The security policy is the named
association of the policy function to a particular database object, typically a table.

Note: In Advanced Server, the policy function can be written in any language supported
by Advanced Server such as SQL and PL/pgSQL in addition to SPL.

Note: The database objects currently supported by Advanced Server Virtual Private
Database are tables. Policies cannot be applied to views or synonyms.

The advantages of using Virtual Private Database are the following:

x Provides a fine-grained level of security. Database object level privileges given by
the GRANT command determine access privileges to the entire instance of a
database object, while Virtual Private Database provides access control for the
individual rows of a database object instance.

x A different security policy can be applied depending upon the type of SQL
command (INSERT, UPDATE, DELETE, or SELECT).

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

684

x The security policy can vary dynamically for each applicable SQL command
affecting the database object depending upon factors such as the session user of
the application accessing the database object.

x Invocation of the security policy is transparent to all applications that access the
database object and thus, individual applications do not have to be modified to
apply the security policy.

x Once a security policy is enabled, it is not possible for any application (including
new applications) to circumvent the security policy except by the system privilege
noted by the following.

x Even superusers cannot circumvent the security policy except by the system
privilege noted by the following.

Note: The only way security policies can be circumvented is if the EXEMPT ACCESS
POLICY system privilege has been granted to a user. The EXEMPT ACCESS POLICY
privilege should be granted with extreme care as a user with this privilege is exempted
from all policies in the database.

The DBMS_RLS package provides procedures to create policies, remove policies, enable
policies, and disable policies.

The process for implementing Virtual Private Database is as follows:

x Create a policy function. The function must have two input parameters of type
VARCHAR2. The first input parameter is for the schema containing the database
object to which the policy is to apply and the second input parameter is for the
name of that database object. The function must have a VARCHAR2 return type.
The function must return a string in the form of a WHERE clause predicate. This
predicate is dynamically appended as an AND condition to the SQL command that
acts upon the database object. Thus, rows that do not satisfy the policy function
predicate are filtered out from the SQL command result set.

x Use the ADD_POLICY procedure to define a new policy, which is the association
of a policy function with a database object. With the ADD_POLICY procedure, you
can also specify the types of SQL commands (INSERT, UPDATE, DELETE, or
SELECT) to which the policy is to apply, whether or not to enable the policy at the
time of its creation, and if the policy should apply to newly inserted rows or the
modified image of updated rows.

x Use the ENABLE_POLICY procedure to disable or enable an existing policy.
x Use the DROP_POLICY procedure to remove an existing policy. The

DROP_POLICY procedure does not drop the policy function or the associated
database object.

Once policies are created, they can be viewed in the catalog views ALL_POLICIES (see
Section 10.11), DBA_POLICIES (see Section 10.35), or USER_POLICIES (see Section
10.62).

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

685

The SYS_CONTEXT function is often used with DBMS_RLS. The signature is:

SYS_CONTEXT(namespace, attribute)

Where:

namespace is a VARCHAR2; the only accepted value is USERENV. Any other
value will return NULL.

attribute is a VARCHAR2. attribute may be:

attribute Value Equivalent Value
SESSION_USER pg_catalog.session_user
CURRENT_USER pg_catalog.current_user
CURRENT_SCHEMA pg_catalog.current_schema
HOST pg_catalog.inet_host
IP_ADDRESS pg_catalog.inet_client_addr
SERVER_HOST pg_catalog.inet_server_addr

Note: The examples used to illustrate the DBMS_RLS package are based on a modified
copy of the sample emp table provided with Postgres Plus Advanced Server along with a
role named salesmgr that is granted all privileges on the table. You can create the
modified copy of the emp table named vpemp and the salesmgr role as shown by the
following:

CREATE TABLE public.vpemp AS SELECT empno, ename, job, sal, comm, deptno FROM
emp;
ALTER TABLE vpemp ADD authid VARCHAR2(12);
UPDATE vpemp SET authid = 'researchmgr' WHERE deptno = 20;
UPDATE vpemp SET authid = 'salesmgr' WHERE deptno = 30;
SELECT * FROM vpemp;

empno | ename | job | sal | comm | deptno | authid
-------+--------+-----------+---------+---------+--------+-------------
 7782 | CLARK | MANAGER | 2450.00 | | 10 |
 7839 | KING | PRESIDENT | 5000.00 | | 10 |
 7934 | MILLER | CLERK | 1300.00 | | 10 |
 7369 | SMITH | CLERK | 800.00 | | 20 | researchmgr
 7566 | JONES | MANAGER | 2975.00 | | 20 | researchmgr
 7788 | SCOTT | ANALYST | 3000.00 | | 20 | researchmgr
 7876 | ADAMS | CLERK | 1100.00 | | 20 | researchmgr
 7902 | FORD | ANALYST | 3000.00 | | 20 | researchmgr
 7499 | ALLEN | SALESMAN | 1600.00 | 300.00 | 30 | salesmgr
 7521 | WARD | SALESMAN | 1250.00 | 500.00 | 30 | salesmgr
 7654 | MARTIN | SALESMAN | 1250.00 | 1400.00 | 30 | salesmgr
 7698 | BLAKE | MANAGER | 2850.00 | | 30 | salesmgr
 7844 | TURNER | SALESMAN | 1500.00 | 0.00 | 30 | salesmgr
 7900 | JAMES | CLERK | 950.00 | | 30 | salesmgr
(14 rows)

CREATE ROLE salesmgr WITH LOGIN PASSWORD 'password';
GRANT ALL ON vpemp TO salesmgr;

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

686

9.11.1 ADD_POLICY

The ADD_POLICY procedure creates a new policy by associating a policy function with a
database object.

You must be a superuser to execute this procedure.

ADD_POLICY(object_schema VARCHAR2, object_name VARCHAR2,
 policy_name VARCHAR2, function_schema VARCHAR2,
 policy_function VARCHAR2
 [, statement_types VARCHAR2
 [, update_check BOOLEAN
 [, enable BOOLEAN
 [, static_policy BOOLEAN
 [, policy_type INTEGER
 [, long_predicate BOOLEAN
 [, sec_relevant_cols VARCHAR2
 [, sec_relevant_cols_opt INTEGER]]]]]]]])

Parameters

object_schema

Name of the schema containing the database object to which the policy is to be
applied.

object_name

Name of the database object to which the policy is to be applied. A given database
object may have more than one policy applied to it.

policy_name

Name assigned to the policy. The combination of database object (identified by
object_schema and object_name) and policy name must be unique within the
database.

function_schema

Name of the schema containing the policy function.

Note: The policy function may belong to a package in which case
function_schema must contain the name of the schema in which the package is
defined.

policy_function

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

687

Name of the SPL function that defines the rules of the security policy. The same
function may be specified in more than one policy.

Note: The policy function may belong to a package in which case
policy_function must also contain the package name in dot notation (that is,
package_name.function_name).

statement_types

Comma-separated list of SQL commands to which the policy applies. Valid SQL
commands are INSERT, UPDATE, DELETE, and SELECT. The default is
INSERT,UPDATE,DELETE,SELECT.

Note: Advanced Server accepts INDEX as a statement type, but it is ignored.
Policies are not applied to index operations in Advanced Server.

update_check

Applies to INSERT and UPDATE SQL commands only.

When set to TRUE, the policy is applied to newly inserted rows and to the
modified image of updated rows. If any of the new or modified rows do not
qualify according to the policy function predicate, then the INSERT or UPDATE
command throws an exception and no rows are inserted or modified by the
INSERT or UPDATE command.

When set to FALSE, the policy is not applied to newly inserted rows or the
modified image of updated rows. Thus, a newly inserted row may not appear in
the result set of a subsequent SQL command that invokes the same policy.
Similarly, rows which qualified according to the policy prior to an UPDATE
command may not appear in the result set of a subsequent SQL command that
invokes the same policy.

The default is FALSE.

enable

When set to TRUE, the policy is enabled and applied to the SQL commands given
by the statement_types parameter. When set to FALSE the policy is disabled
and not applied to any SQL commands. The policy can be enabled using the
ENABLE_POLICY procedure. The default is TRUE.

static_policy

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

688

The intended purpose of this parameter is when set to TRUE, the policy is static,
which means the policy function is evaluated once per database object the first
time it is invoked by a policy on that database object. The resulting policy
function predicate string is saved in memory and reused for all invocations of that
policy on that database object while the database server instance is running.

When set to FALSE, the policy is dynamic, which means the policy function is re-
evaluated and the policy function predicate string regenerated for all invocations
of the policy.

The default is FALSE.

Note: The setting of static_policy is ignored by Advanced Server. Advanced
Server implements only the dynamic policy, regardless of the setting of the
static_policy parameter.

policy_type

Its intended purpose is to determine when the policy function is re-evaluated, and
hence, if and when the predicate string returned by the policy function changes.
The default is NULL.

Note: The setting of this parameter is ignored by Advanced Server. Advanced
Server always assumes a dynamic policy.

long_predicate

Its intended purpose is to allow predicates up to 32K bytes if set to TRUE,
otherwise predicates are limited to 4000 bytes. The default is FALSE.

Note: The setting of this parameter is ignored by Advanced Server. An Advanced
Server policy function can return a predicate of unlimited length for all practical
purposes.

sec_relevant_cols

Comma-separated list of columns of object_name. Provides column-level
Virtual Private Database for the listed columns. The policy is enforced if any of
the listed columns are referenced in a SQL command of a type listed in
statement_types. The policy is not enforced if no such columns are
referenced.

The default is NULL, which has the same effect as if all of the database object‟s
columns were included in sec_relevant_cols.

sec_relevant_cols_opt

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

689

Its intended purpose is when sec_relevant_cols_opt is set to
DBMS_RLS.ALL_ROWS (INTEGER constant of value 1), then the columns listed in
sec_relevant_cols return NULL on all rows where the applied policy
predicate is false. (If sec_relevant_cols_opt is not set to
DBMS_RLS.ALL_ROWS, these rows would not be returned at all in the result set.)
The default is NULL.

Note: Advanced Server does not support the DBMS_RLS.ALL_ROWS
functionality. Advanced Server throws an error if sec_relevant_cols_opt is
set to DBMS_RLS.ALL_ROWS (INTEGER value of 1).

Examples

This example uses the following policy function:

CREATE OR REPLACE FUNCTION verify_session_user (
 p_schema VARCHAR2,
 p_object VARCHAR2
)
RETURN VARCHAR2
IS
BEGIN
 RETURN 'authid = SYS_CONTEXT(''USERENV'', ''SESSION_USER'')';
END;

This function generates the predicate authid = SYS_CONTEXT('USERENV',
'SESSION_USER'), which is added to the WHERE clause of any SQL command of the
type specified in the ADD_POLICY procedure.

This limits the effect of the SQL command to those rows where the content of the
authid column is the same as the session user.

Note: This example uses the SYS_CONTEXT function to return the login user name. The
first parameter of the SYS_CONTEXT function is the name of an application context while
the second parameter is the name of an attribute set within the application context.
USERENV is a special built-in namespace that describes the current session. Postgres Plus
Advanced Server does not support application contexts, but only this specific usage of the
SYS_CONTEXT function.

The following anonymous block calls the ADD_POLICY procedure to create a policy
named secure_update to be applied to the vpemp table using function
verify_session_user whenever an INSERT, UPDATE, or DELETE SQL command is
given referencing the vpemp table.

DECLARE
 v_object_schema VARCHAR2(30) := 'public';
 v_object_name VARCHAR2(30) := 'vpemp';
 v_policy_name VARCHAR2(30) := 'secure_update';
 v_function_schema VARCHAR2(30) := 'enterprisedb';

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

690

 v_policy_function VARCHAR2(30) := 'verify_session_user';
 v_statement_types VARCHAR2(30) := 'INSERT,UPDATE,DELETE';
 v_update_check BOOLEAN := TRUE;
 v_enable BOOLEAN := TRUE;
BEGIN
 DBMS_RLS.ADD_POLICY(
 v_object_schema,
 v_object_name,
 v_policy_name,
 v_function_schema,
 v_policy_function,
 v_statement_types,
 v_update_check,
 v_enable
);
END;

After successful creation of the policy, a terminal session is started by user salesmgr.
The following query shows the content of the vpemp table:

edb=# \c edb salesmgr
Password for user salesmgr:
You are now connected to database "edb" as user "salesmgr".
edb=> SELECT * FROM vpemp;
 empno | ename | job | sal | comm | deptno | authid
-------+--------+-----------+---------+---------+--------+-------------
 7782 | CLARK | MANAGER | 2450.00 | | 10 |
 7839 | KING | PRESIDENT | 5000.00 | | 10 |
 7934 | MILLER | CLERK | 1300.00 | | 10 |
 7369 | SMITH | CLERK | 800.00 | | 20 | researchmgr
 7566 | JONES | MANAGER | 2975.00 | | 20 | researchmgr
 7788 | SCOTT | ANALYST | 3000.00 | | 20 | researchmgr
 7876 | ADAMS | CLERK | 1100.00 | | 20 | researchmgr
 7902 | FORD | ANALYST | 3000.00 | | 20 | researchmgr
 7499 | ALLEN | SALESMAN | 1600.00 | 300.00 | 30 | salesmgr
 7521 | WARD | SALESMAN | 1250.00 | 500.00 | 30 | salesmgr
 7654 | MARTIN | SALESMAN | 1250.00 | 1400.00 | 30 | salesmgr
 7698 | BLAKE | MANAGER | 2850.00 | | 30 | salesmgr
 7844 | TURNER | SALESMAN | 1500.00 | 0.00 | 30 | salesmgr
 7900 | JAMES | CLERK | 950.00 | | 30 | salesmgr
(14 rows)

An unqualified UPDATE command (no WHERE clause) is issued by the salesmgr user:

edb=> UPDATE vpemp SET comm = sal * .75;
UPDATE 6

Instead of updating all rows in the table, the policy restricts the effect of the update to
only those rows where the authid column contains the value salesmgr as specified by
the policy function predicate authid = SYS_CONTEXT('USERENV',
'SESSION_USER').

The following query shows that the comm column has been changed only for those rows
where authid contains salesmgr. All other rows are unchanged.

edb=> SELECT * FROM vpemp;

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

691

 empno | ename | job | sal | comm | deptno | authid
-------+--------+-----------+---------+---------+--------+-------------
 7782 | CLARK | MANAGER | 2450.00 | | 10 |
 7839 | KING | PRESIDENT | 5000.00 | | 10 |
 7934 | MILLER | CLERK | 1300.00 | | 10 |
 7369 | SMITH | CLERK | 800.00 | | 20 | researchmgr
 7566 | JONES | MANAGER | 2975.00 | | 20 | researchmgr
 7788 | SCOTT | ANALYST | 3000.00 | | 20 | researchmgr
 7876 | ADAMS | CLERK | 1100.00 | | 20 | researchmgr
 7902 | FORD | ANALYST | 3000.00 | | 20 | researchmgr
 7499 | ALLEN | SALESMAN | 1600.00 | 1200.00 | 30 | salesmgr
 7521 | WARD | SALESMAN | 1250.00 | 937.50 | 30 | salesmgr
 7654 | MARTIN | SALESMAN | 1250.00 | 937.50 | 30 | salesmgr
 7698 | BLAKE | MANAGER | 2850.00 | 2137.50 | 30 | salesmgr
 7844 | TURNER | SALESMAN | 1500.00 | 1125.00 | 30 | salesmgr
 7900 | JAMES | CLERK | 950.00 | 712.50 | 30 | salesmgr
(14 rows)

Furthermore, since the update_check parameter was set to TRUE in the ADD_POLICY
procedure, the following INSERT command throws an exception since the value given for
the authid column, researchmgr, does not match the session user, which is
salesmgr, and hence, fails the policy.

edb=> INSERT INTO vpemp VALUES (9001,'SMITH','ANALYST',3200.00,NULL,20,
'researchmgr');
ERROR: policy with check option violation
DETAIL: Policy predicate was evaluated to FALSE with the updated values

If update_check was set to FALSE, the preceding INSERT command would have
succeeded.

The following example illustrates the use of the sec_relevant_cols parameter to
apply a policy only when certain columns are referenced in the SQL command. The
following policy function is used for this example, which selects rows where the
employee salary is less than 2000.

CREATE OR REPLACE FUNCTION sal_lt_2000 (
 p_schema VARCHAR2,
 p_object VARCHAR2
)
RETURN VARCHAR2
IS
BEGIN
 RETURN 'sal < 2000';
END;

The policy is created so that it is enforced only if a SELECT command includes columns
sal or comm:

DECLARE
 v_object_schema VARCHAR2(30) := 'public';
 v_object_name VARCHAR2(30) := 'vpemp';
 v_policy_name VARCHAR2(30) := 'secure_salary';
 v_function_schema VARCHAR2(30) := 'enterprisedb';
 v_policy_function VARCHAR2(30) := 'sal_lt_2000';

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

692

 v_statement_types VARCHAR2(30) := 'SELECT';
 v_sec_relevant_cols VARCHAR2(30) := 'sal,comm';
BEGIN
 DBMS_RLS.ADD_POLICY(
 v_object_schema,
 v_object_name,
 v_policy_name,
 v_function_schema,
 v_policy_function,
 v_statement_types,
 sec_relevant_cols => v_sec_relevant_cols
);
END;

If a query does not reference columns sal or comm, then the policy is not applied. The
following query returns all 14 rows of table vpemp:

edb=# SELECT empno, ename, job, deptno, authid FROM vpemp;
 empno | ename | job | deptno | authid
-------+--------+-----------+--------+-------------
 7782 | CLARK | MANAGER | 10 |
 7839 | KING | PRESIDENT | 10 |
 7934 | MILLER | CLERK | 10 |
 7369 | SMITH | CLERK | 20 | researchmgr
 7566 | JONES | MANAGER | 20 | researchmgr
 7788 | SCOTT | ANALYST | 20 | researchmgr
 7876 | ADAMS | CLERK | 20 | researchmgr
 7902 | FORD | ANALYST | 20 | researchmgr
 7499 | ALLEN | SALESMAN | 30 | salesmgr
 7521 | WARD | SALESMAN | 30 | salesmgr
 7654 | MARTIN | SALESMAN | 30 | salesmgr
 7698 | BLAKE | MANAGER | 30 | salesmgr
 7844 | TURNER | SALESMAN | 30 | salesmgr
 7900 | JAMES | CLERK | 30 | salesmgr
(14 rows)

If the query references the sal or comm columns, then the policy is applied to the query
eliminating any rows where sal is greater than or equal to 2000 as shown by the
following:

edb=# SELECT empno, ename, job, sal, comm, deptno, authid FROM vpemp;
 empno | ename | job | sal | comm | deptno | authid
-------+--------+----------+---------+---------+--------+-------------
 7934 | MILLER | CLERK | 1300.00 | | 10 |
 7369 | SMITH | CLERK | 800.00 | | 20 | researchmgr
 7876 | ADAMS | CLERK | 1100.00 | | 20 | researchmgr
 7499 | ALLEN | SALESMAN | 1600.00 | 1200.00 | 30 | salesmgr
 7521 | WARD | SALESMAN | 1250.00 | 937.50 | 30 | salesmgr
 7654 | MARTIN | SALESMAN | 1250.00 | 937.50 | 30 | salesmgr
 7844 | TURNER | SALESMAN | 1500.00 | 1125.00 | 30 | salesmgr
 7900 | JAMES | CLERK | 950.00 | 712.50 | 30 | salesmgr
(8 rows)

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

693

9.11.2 DROP_POLICY

The DROP_POLICY procedure deletes an existing policy. The policy function and
database object associated with the policy are not deleted by the DROP_POLICY
procedure.

You must be a superuser to execute this procedure.

DROP_POLICY(object_schema VARCHAR2, object_name VARCHAR2,
 policy_name VARCHAR2)

Parameters

object_schema

Name of the schema containing the database object to which the policy applies.

object_name

Name of the database object to which the policy applies.

policy_name

Name of the policy to be deleted.

Examples

The following example deletes policy secure_update on table public.vpemp:

DECLARE
 v_object_schema VARCHAR2(30) := 'public';
 v_object_name VARCHAR2(30) := 'vpemp';
 v_policy_name VARCHAR2(30) := 'secure_update';
BEGIN
 DBMS_RLS.DROP_POLICY(
 v_object_schema,
 v_object_name,
 v_policy_name
);
END;

9.11.3 ENABLE_POLICY

The ENABLE_POLICY procedure enables or disables an existing policy on the specified
database object.

You must be a superuser to execute this procedure.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

694

ENABLE_POLICY(object_schema VARCHAR2, object_name VARCHAR2,
 policy_name VARCHAR2, enable BOOLEAN)

Parameters

object_schema

Name of the schema containing the database object to which the policy applies.

object_name

Name of the database object to which the policy applies.

policy_name

Name of the policy to be enabled or disabled.

enable

When set to TRUE, the policy is enabled. When set to FALSE, the policy is
disabled.

Examples

The following example disables policy secure_update on table public.vpemp:

DECLARE
 v_object_schema VARCHAR2(30) := 'public';
 v_object_name VARCHAR2(30) := 'vpemp';
 v_policy_name VARCHAR2(30) := 'secure_update';
 v_enable BOOLEAN := FALSE;
BEGIN
 DBMS_RLS.ENABLE_POLICY(
 v_object_schema,
 v_object_name,
 v_policy_name,
 v_enable
);
END;

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

695

9.12 DBMS_SCHEDULER

The DBMS_SCHEDULER package provides a way to create and manage jobs, programs and
job schedules.

Table 7.7.2 DBMS_SCHEDULER Functions and Procedures

Function/Procedure Return Type Description
CREATE_JOB(job_name,
job_type, job_action,
number_of_arguments,
start_date, repeat_interval,
end_date, job_class, enabled,
auto_drop, comments)

n/a Use the first form of the CREATE_JOB procedure to
create a job, specifying program and schedule details
by means of parameters.

CREATE_JOB(job_name,
program_name, schedule_name,
job_class, enabled,
auto_drop, comments)

n/a Use the second form of CREATE_JOB to create a job
that uses a named program and named schedule.

CREATE_PROGRAM(program_name,
program_type, program_action,
number_of_arguments, enabled,
comments)

n/a Use CREATE_PROGRAM to create a program.

CREATE_SCHEDULE(
schedule_name, start_date,
repeat_interval, end_date,
comments)

n/a Use the CREATE_SCHEDULE procedure to create a
schedule.

DEFINE_PROGRAM_ARGUMENT(
program_name,
argument_position,
argument_name, argument_type,
default_value, out_argument)

n/a Use the first form of the
DEFINE_PROGRAM_ARGUMENT procedure to define a
program argument that has a default value.

DEFINE_PROGRAM_ARGUMENT(
program_name,
argument_position,
argument_name, argument_type,
out_argument)

n/a Use the first form of the
DEFINE_PROGRAM_ARGUMENT procedure to define a
program argument that does not have a default value.

DISABLE(name, force,
commit_semantics)

n/a Use the DISABLE procedure to disable a job or
program.

DROP_JOB(job_name, force,
defer, commit_semantics)

n/a Use the DROP_JOB procedure to drop a job.

DROP_PROGRAM(program_name,
force)

n/a Use the DROP_PROGRAM procedure to drop a
program.

DROP_PROGRAM_ARGUMENT(
program_name,
argument_position)

n/a Use the first form of DROP_PROGRAM_ARGUMENT to
drop a program argument by specifying the argument
position.

DROP_PROGRAM_ARGUMENT(
program_name, argument_name)

n/a Use the second form of DROP_PROGRAM_ARGUMENT
to drop a program argument by specifying the
argument name.

DROP_SCHEDULE(schedule_name,
force)

n/a Use the DROP SCHEDULE procedure to drop a
schedule.

ENABLE(name,
commit_semantics)

n/a Use the ENABLE command to enable a program or
job.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

696

Function/Procedure Return Type Description
EVALUATE_CALENDAR_STRING(
calendar_string, start_date,
return_date_after,
next_run_date)

n/a Use EVALUATE_CALENDAR_STRING to review the
execution date described by a user-defined calendar
schedule.

RUN_JOB(job_name,
use_current_session,
manually)

n/a Use the RUN_JOB procedure to execute a job
immediately.

SET_JOB_ARGUMENT_VALUE(
job_name, argument_position,
argument_value)

n/a Use the first form of SET_JOB_ARGUMENT value to
set the value of a job argument described by the
argument's position.

SET_JOB_ARGUMENT_VALUE(
job_name, argument_name,
argument_value)

n/a Use the second form of SET_JOB_ARGUMENT value
to set the value of a job argument described by the
argument's name.

The DBMS_SCHEDULER package is dependent on the pgAgent service; you must have a
pgAgent service installed and running on your server before using DBMS_SCHEDULER.

Before using DBMS_SCHEDULER, a database superuser must create the catalog tables in
which the DBMS_SCHEDULER programs, schedules and jobs are stored. Use the psql
client to connect to the database, and invoke the command:

CREATE EXTENSION dbms_scheduler;

By default, the dbms_scheduler extension resides in the
contrib/dbms_scheduler_ext subdirectory (under the Advanced Server
installation).

Note that after creating the DBMS_SCHEDULER tables, only a superuser will be able to
perform a dump or reload of the database.

9.12.1 Using Calendar Syntax to Specify a Repeating Interval

The CREATE_JOB and CREATE_SCHEDULE procedures use a calendar syntax to define
the interval with which a job or schedule is repeated. You should provide the scheduling
information in the repeat_interval parameter of each procedure.

repeat_interval is a value (or series of values) that define the interval between the
executions of the scheduled job. Each value is composed of a token, followed by an
equal sign, followed by the unit (or units) on which the schedule will execute. Multiple
token values must be separated by a semi-colon (;).

For example, the following value:

FREQ=DAILY;BYDAY=MON,TUE,WED,THU,FRI;BYHOUR=17;BYMINUTE=45

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

697

Defines a schedule that is executed each weeknight at 5:45.

The token types and syntax described in the table below are supported by Advanced
Server:

Token type Syntax Valid Values
FREQ FREQ=predefined_interval Where predefined_interval is

one of the following: YEARLY,
MONTHLY, WEEKLY, DAILY, HOURLY,
MINUTELY. The SECONDLY keyword
is not supported.

BYMONTH BYMONTH=month(, month)...

Where month is the three-letter
abbreviation of the month name: JAN |
FEB | MAR | APR | MAY | JUN | JUL | AUG
| SEP | OCT | NOV | DEC

BYMONTH BYMONTH=month(, month)...

Where month is the numeric value
representing the month: 1 | 2 | 3 | 4 | 5
| 6 | 7 | 8 | 9 | 10 | 11 | 12

BYMONTHDAY BYMONTHDAY=day_of_month

Where day_of_month is a value
from 1 through 31

BYDAY BYDAY=weekday Where weekday is a three-letter
abbreviation or single-digit value
representing the day of the week.

Monday MON 1

Tuesday TUE 2

Wednesday WED 3

Thursday THU 4

Friday FRI 5

Saturday SAT 6

Sunday SUN 7
BYDATE BYDATE=date(, date)... Where date is YYYYMMDD.

YYYY is a four-digit year
representation of the year,
MM is a two-digit representation of the
month,
and DD is a two-digit day
representation of the day.

BYDATE BYDATE=date(, date)... Where date is MMDD.
MM is a two-digit representation of the
month,
and DD is a two-digit day
representation of the day

BYHOUR BYHOUR=hour Where hour is a value from 0 through
23.

BYMINUTE BYMINUTE=minute Where minute is a value from 0
through 59.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

698

9.12.2 CREATE_JOB

Use the CREATE_JOB procedure to create a job. The procedure comes in two forms; the
first form of the procedure specifies a schedule within the job definition, as well as a job
action that will be invoked when the job executes:

CREATE_JOB(
 job_name IN VARCHAR2,
 job_type IN VARCHAR2,
 job_action IN VARCHAR2,
 number_of_arguments IN PLS_INTEGER DEFAULT 0,
 start_date IN TIMESTAMP WITH TIME ZONE DEFAULT NULL,
 repeat_interval IN VARCHAR2 DEFAULT NULL,
 end_date IN TIMESTAMP WITH TIME ZONE DEFAULT NULL,
 job_class IN VARCHAR2 DEFAULT 'DEFAULT_JOB_CLASS',
 enabled IN BOOLEAN DEFAULT FALSE,
 auto_drop IN BOOLEAN DEFAULT TRUE,
 comments IN VARCHAR2 DEFAULT NULL)

The second form uses a job schedule to specify the schedule on which the job will
execute, and specifies the name of a program that will execute when the job runs:

CREATE_JOB(
 job_name IN VARCHAR2,
 program_name IN VARCHAR2,
 schedule_name IN VARCHAR2,
 job_class IN VARCHAR2 DEFAULT 'DEFAULT_JOB_CLASS',
 enabled IN BOOLEAN DEFAULT FALSE,
 auto_drop IN BOOLEAN DEFAULT TRUE,
 comments IN VARCHAR2 DEFAULT NULL)

Parameters

job_name

job_name specifies the optionally schema-qualified name of the job being
created.

job_type

job_type specifies the type of job. The current implementation of CREATE_JOB
supports a job type of PLSQL_BLOCK or STORED_PROCEDURE.

job_action

If job_type is PLSQL_BLOCK, job_action specifies the content of the
PL/SQL block that will be invoked when the job executes. The block must be
terminated with a semi-colon (;).

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

699

If job_type is STORED_PROCEDURE, job_action specifies the optionally
schema-qualified name of the procedure.

number_of_arguments

number_of_arguments is an INTEGER value that specifies the number of
arguments expected by the job. The default is 0.

start_date

start_date is a TIMESTAMP WITH TIME ZONE value that specifies the first
time that the job is scheduled to execute. The default value is NULL, indicating
that the job should be scheduled to execute when the job is enabled.

repeat_interval

repeat_interval is a VARCHAR2 value that specifies how often the job will
repeat. If a repeat_interval is not specified, the job will execute only once.
The default value is NULL.

For information about defining a repeating schedule for a job, see Section 9.12.1.

end_date

end_date is a TIMESTAMP WITH TIME ZONE value that specifies a time after
which the job will no longer execute. If a date is specified, the end_date must
be after start_date. The default value is NULL.

Please note that if an end_date is not specified and a repeat_interval is
specified, the job will repeat indefinitely until it is disabled.

program_name

program_name is the name of a program that will be executed by the job.

schedule_name

schedule_name is the name of the schedule associated with the job.

job_class

job_class is accepted for compatibility and ignored.

enabled

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

700

enabled is a BOOLEAN value that specifies if the job is enabled when created.
By default, a job is created in a disabled state, with enabled set to FALSE. To
enable a job, specify a value of TRUE when creating the job, or enable the job with
the DBMS_SCHEDULER.ENABLE procedure.

auto_drop

The auto_drop parameter is accepted for compatibility and is ignored. By
default, a job's status will be changed to DISABLED after the time specified in
end_date.

comments

Use the comments parameter to specify a comment about the job.

Example

The following example demonstrates a call to the CREATE_JOB procedure:

EXEC
 DBMS_SCHEDULER.CREATE_JOB (
 job_name => 'update_log',
 job_type => 'PLSQL_BLOCK',
 job_action => 'BEGIN INSERT INTO my_log VALUES(current_timestamp);
 END;',
 start_date => '01-JUN-15 09:00:00.000000',
 repeat_interval => 'FREQ=DAILY;BYDAY=MON,TUE,WED,THU,FRI;BYHOUR=17;',
 end_date => NULL,
 enabled => TRUE,
 comments => 'This job adds a row to the my_log table.');

The code fragment creates a job named update_log that executes each weeknight at
5:00. The job executes a PL/SQL block that inserts the current timestamp into a logfile
(my_log). Since no end_date is specified, the job will execute until it is disabled by
the DBMS_SCHEDULER.DISABLE procedure.

9.12.3 CREATE_PROGRAM

Use the CREATE_PROGRAM procedure to create a DBMS_SCHEDULER program. The
signature is:

CREATE_PROGRAM(
 program_name IN VARCHAR2,
 program_type IN VARCHAR2,
 program_action IN VARCHAR2,
 number_of_arguments IN PLS_INTEGER DEFAULT 0,
 enabled IN BOOLEAN DEFAULT FALSE,
 comments IN VARCHAR2 DEFAULT NULL)

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

701

Parameters

program_name

program_name specifies the name of the program that is being created.

program_type

program_type specifies the type of program. The current implementation of
CREATE_PROGRAM supports a program_type of PLSQL_BLOCK or PROCEDURE.

program_action

If program_type is PLSQL_BLOCK, program_action contains the PL/SQL
block that will execute when the program is invoked. The PL/SQL block must be
terminated with a semi-colon (;).

If program_type is PROCEDURE, program_action contains the name of the
stored procedure.

number_of_arguments

If program_type is PLSQL_BLOCK, this argument is ignored.

If program_type is PROCEDURE, number_of_arguments specifies the
number of arguments required by the procedure. The default value is 0.

enabled

enabled specifies if the program is created enabled or disabled:

x If enabled is TRUE, the program is created enabled.

x If enabled is FALSE, the program is created disabled; use the
DBMS_SCHEDULER.ENABLE program to enable a disabled program.

The default value is FALSE.

comments

Use the comments parameter to specify a comment about the program; by
default, this parameter is NULL.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

702

Example

The following call to the CREATE_PROGRAM procedure creates a program named
update_log:

EXEC
 DBMS_SCHEDULER.CREATE_PROGRAM (
 program_name => 'update_log',
 program_type => 'PLSQL_BLOCK',
 program_action => 'BEGIN INSERT INTO my_log VALUES(current_timestamp);
 END;',
 enabled => TRUE,
 comment => 'This program adds a row to the my_log table.');

update_log is a PL/SQL block that adds a row containing the current date and time to
the my_log table. The program will be enabled when the CREATE_PROGRAM procedure
executes.

9.12.4 CREATE_SCHEDULE

Use the CREATE_SCHEDULE procedure to create a job schedule. The signature of the
CREATE_SCHEDULE procedure is:

CREATE_SCHEDULE(
 schedule_name IN VARCHAR2,
 start_date IN TIMESTAMP WITH TIME ZONE DEFAULT NULL,
 repeat_interval IN VARCHAR2,
 end_date IN TIMESTAMP WITH TIME ZONE DEFAULT NULL,
 comments IN VARCHAR2 DEFAULT NULL)

Parameters

schedule_name

schedule_name specifies the name of the schedule.

start_date

start_date is a TIMESTAMP WITH TIME ZONE value that specifies the date
and time that the schedule is eligible to execute. If a start_date is not
specified, the date that the job is enabled is used as the start_date. By default,
start_date is NULL.

repeat_interval

repeat_interval is a VARCHAR2 value that specifies how often the job will
repeat. If a repeat_interval is not specified, the job will execute only once,
on the date specified by start_date.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

703

For information about defining a repeating schedule for a job, see Section 9.12.1.

Please note: you must provide a value for either start_date or
repeat_interval; if both start_date and repeat_interval are NULL,
the server will return an error.

end_date IN TIMESTAMP WITH TIME ZONE DEFAULT NULL

end_date is a TIMESTAMP WITH TIME ZONE value that specifies a time after
which the schedule will no longer execute. If a date is specified, the end_date
must be after the start_date. The default value is NULL.

Please note that if a repeat_interval is specified and an end_date is not
specified, the schedule will repeat indefinitely until it is disabled.

comments IN VARCHAR2 DEFAULT NULL)

Use the comments parameter to specify a comment about the schedule; by
default, this parameter is NULL.

Example

The following code fragment calls CREATE_SCHEDULE to create a schedule named
weeknights_at_5:

EXEC
 DBMS_SCHEDULER.CREATE_SCHEDULE (
 schedule_name => 'weeknights_at_5',
 start_date => '01-JUN-13 09:00:00.000000'
 repeat_interval => 'FREQ=DAILY;BYDAY=MON,TUE,WED,THU,FRI;BYHOUR=17;',
 comments => 'This schedule executes each weeknight at 5:00');

The schedule executes each weeknight, at 5:00 pm, effective after June 1, 2013. Since no
end_date is specified, the schedule will execute indefinitely until it is disabled with
DBMS_SCHEDULER.DISABLE.

9.12.5 DEFINE_PROGRAM_ARGUMENT

Use the DEFINE_PROGRAM_ARGUMENT procedure to define a program argument. The
DEFINE_PROGRAM_ARGUMENT procedure comes in two forms; the first form defines an
argument with a default value:

DEFINE_PROGRAM_ARGUMENT(
 program_name IN VARCHAR2,
 argument_position IN PLS_INTEGER,
 argument_name IN VARCHAR2 DEFAULT NULL,
 argument_type IN VARCHAR2,

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

704

 default_value IN VARCHAR2,
 out_argument IN BOOLEAN DEFAULT FALSE)

The second form defines an argument without a default value:

DEFINE_PROGRAM_ARGUMENT(
 program_name IN VARCHAR2,
 argument_position IN PLS_INTEGER,
 argument_name IN VARCHAR2 DEFAULT NULL,
 argument_type IN VARCHAR2,
 out_argument IN BOOLEAN DEFAULT FALSE)

Parameters

program_name

program_name is the name of the program to which the arguments belong.

argument_position

argument_position specifies the position of the argument as it is passed to the
program.

argument_name

argument_name specifies the optional name of the argument. By default,
argument_name is NULL.

argument_type IN VARCHAR2

argument_type specifies the data type of the argument.

default_value

default_value specifies the default value assigned to the argument.
default_value will be overridden by a value specified by the job when the job
executes.

out_argument IN BOOLEAN DEFAULT FALSE

out_argument is not currently used; if specified, the value must be FALSE.

Example

The following code fragment uses the DEFINE_PROGRAM_ARGUMENT procedure to
define the first and second arguments in a program named add_emp:

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

705

EXEC
 DBMS_SCHEDULER.DEFINE_PROGRAM_ARGUMENT(
 program_name => 'add_emp',
 argument_position => 1,
 argument_name => 'dept_no',
 argument_type => 'INTEGER,
 default_value => '20');
EXEC
 DBMS_SCHEDULER.DEFINE_PROGRAM_ARGUMENT(
 program_name => 'add_emp',
 argument_position => 2,
 argument_name => 'emp_name',
 argument_type => 'VARCHAR2');

The first argument is an INTEGER value named dept_no that has a default value of 20.
The second argument is a VARCHAR2 value named emp_name; the second argument does
not have a default value.

9.12.6 DISABLE

Use the DISABLE procedure to disable a program or a job. The signature of the DISABLE
procedure is:

DISABLE(
 name IN VARCHAR2,
 force IN BOOLEAN DEFAULT FALSE,
 commit_semantics IN VARCHAR2 DEFAULT 'STOP_ON_FIRST_ERROR')

Parameters

name

name specifies the name of the program or job that is being disabled.

force

force is accepted for compatibility, and ignored.

commit_semantics

commit_semantics instructs the server how to handle an error encountered
while disabling a program or job. By default, commit_semantics is set to
STOP_ON_FIRST_ERROR, instructing the server to stop when it encounters an
error. Any programs or jobs that were successfully disabled prior to the error will
be committed to disk.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

706

The TRANSACTIONAL and ABSORB_ERRORS keywords are accepted for
compatibility, and ignored.

Example

The following call to the DISABLE procedure disables a program named update_emp:

DBMS_SCHEDULER.DISABLE('update_emp');

9.12.7 DROP_JOB

Use the DROP_JOB procedure to DROP a job, DROP any arguments that belong to the job,
and eliminate any future job executions. The signature of the procedure is:

DROP_JOB(
 job_name IN VARCHAR2,
 force IN BOOLEAN DEFAULT FALSE,
 defer IN BOOLEAN DEFAULT FALSE,
 commit_semantics IN VARCHAR2 DEFAULT 'STOP_ON_FIRST_ERROR')

Parameters

job_name

job_name specifies the name of the job that is being dropped.

force

force is accepted for compatibility, and ignored.

defer

defer is accepted for compatibility, and ignored.

commit_semantics

commit_semantics instructs the server how to handle an error encountered
while dropping a program or job. By default, commit_semantics is set to
STOP_ON_FIRST_ERROR, instructing the server to stop when it encounters an
error.

The TRANSACTIONAL and ABSORB_ERRORS keywords are accepted for
compatibility, and ignored.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

707

Example

The following call to DROP_JOB drops a job named update_log:

DBMS_SCHEDULER.DROP_JOB('update_log');

9.12.8 DROP_PROGRAM

The DROP_PROGRAM procedure

The signature of the DROP_PROGRAM procedure is:

DROP_PROGRAM(
 program_name IN VARCHAR2,
 force IN BOOLEAN DEFAULT FALSE)

Parameters

program_name

program_name specifies the name of the program that is being dropped.

force

force is a BOOLEAN value that instructs the server how to handle programs with
dependent jobs.

Specify FALSE to instruct the server to return an error if the program is referenced
by a job.

Specify TRUE to instruct the server to disable any jobs that reference the program
before dropping the program.

The default value is FALSE.

Example

The following call to DROP_PROGRAM drops a job named update_emp:

DBMS_SCHEDULER.DROP_PROGRAM('update_emp');

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

708

9.12.9 DROP_PROGRAM_ARGUMENT

Use the DROP_PROGRAM_ARGUMENT procedure to drop a program argument. The
DROP_PROGRAM_ARGUMENT procedure comes in two forms; the first form uses an
argument position to specify which argument to drop:

DROP_PROGRAM_ARGUMENT(
 program_name IN VARCHAR2,
 argument_position IN PLS_INTEGER)

The second form takes the argument name:

DROP_PROGRAM_ARGUMENT(
 program_name IN VARCHAR2,
 argument_name IN VARCHAR2)

Parameters

program_name

program_name specifies the name of the program that is being modified.

argument_position

argument_position specifies the position of the argument that is being
dropped.

argument_name

argument_name specifies the name of the argument that is being dropped.

Examples

The following call to DROP_PROGRAM_ARGUMENT drops the first argument in the
update_emp program:

DBMS_SCHEDULER.DROP_PROGRAM_ARGUMENT('update_emp', 1);

The following call to DROP_PROGRAM_ARGUMENT drops an argument named emp_name:

DBMS_SCHEDULER.DROP_PROGRAM_ARGUMENT(update_emp', 'emp_name');

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

709

9.12.10 DROP_SCHEDULE

Use the DROP_SCHEDULE procedure to drop a schedule. The signature is:

DROP_SCHEDULE(
 schedule_name IN VARCHAR2,
 force IN BOOLEAN DEFAULT FALSE)

Parameters

schedule_name

schedule_name specifies the name of the schedule that is being dropped.

force

force specifies the behavior of the server if the specified schedule is referenced
by any job:

x Specify FALSE to instruct the server to return an error if the specified
schedule is referenced by a job. This is the default behavior.

x Specify TRUE to instruct the server to disable to any jobs that use the
specified schedule before dropping the schedule. Any running jobs will be
allowed to complete before the schedule is dropped.

Example

The following call to DROP_SCHEDULE drops a schedule named weeknights_at_5:

DBMS_SCHEDULER.DROP_SCHEDULE('weeknights_at_5', TRUE);

The server will disable any jobs that use the schedule before dropping the schedule.

9.12.11 ENABLE

Use the ENABLE procedure to enable a disabled program or job.

The signature of the ENABLE procedure is:

ENABLE(
 name IN VARCHAR2,
 commit_semantics IN VARCHAR2 DEFAULT 'STOP_ON_FIRST_ERROR')

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

710

Parameters

name

name specifies the name of the program or job that is being enabled.

commit_semantics

commit_semantics instructs the server how to handle an error encountered
while enabling a program or job. By default, commit_semantics is set to
STOP_ON_FIRST_ERROR, instructing the server to stop when it encounters an
error.

The TRANSACTIONAL and ABSORB_ERRORS keywords are accepted for
compatibility, and ignored.

Example

The following call to DBMS_SCHEDULER.ENABLE enables the update_emp program:

DBMS_SCHEDULER.ENABLE('update_emp');

9.12.12 EVALUATE_CALENDAR_STRING

Use the EVALUATE_CALENDAR_STRING procedure to evaluate the repeat_interval
value specified when creating a schedule with the CREATE_SCHEDULE procedure. The
EVALUATE_CALENDAR_STRING procedure will return the date and time that a specified
schedule will execute without actually scheduling the job.

The signature of the EVALUATE_CALENDAR_STRING procedure is:

EVALUATE_CALENDAR_STRING(
 calendar_string IN VARCHAR2,
 start_date IN TIMESTAMP WITH TIME ZONE,
 return_date_after IN TIMESTAMP WITH TIME ZONE,
 next_run_date OUT TIMESTAMP WITH TIME ZONE)

Parameters

calendar_string

calendar_string is the calendar string that describes a repeat_interval
(see Section 9.12.1) that is being evaluated.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

711

start_date IN TIMESTAMP WITH TIME ZONE

start_date is the date and time after which the repeat_interval will
become valid.

return_date_after

Use the return_date_after parameter to specify the date and time that
EVALUATE_CALENDAR_STRING should use as a starting date when evaluating the
repeat_interval.

For example, if you specify a return_date_after value of 01-APR-13
09.00.00.000000, EVALUATE_CALENDAR_STRING will return the date and
time of the first iteration of the schedule after April 1st, 2013.

next_run_date OUT TIMESTAMP WITH TIME ZONE

next_run_date is an OUT parameter that will contain the first occurrence of the
schedule after the date specified by the return_date_after parameter.

Example

The following example evaluates a calendar string and returns the first date and time that
the schedule will be executed after June 15, 2013:

DECLARE
 result TIMESTAMP;
BEGIN

 DBMS_SCHEDULER.EVALUATE_CALENDAR_STRING
 (
 'FREQ=DAILY;BYDAY=MON,TUE,WED,THU,FRI;BYHOUR=17;',
 '15-JUN-2013', NULL, result
);

 DBMS_OUTPUT.PUT_LINE('next_run_date: ' || result);
END;
/

next_run_date: 17-JUN-13 05.00.00.000000 PM

June 15, 2013 is a Saturday; the schedule will not execute until Monday, June 17, 2013 at
5:00 pm.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

712

9.12.13 RUN_JOB

Use the RUN_JOB procedure to execute a job immediately. The signature of the
RUN_JOB procedure is:

RUN_JOB(
 job_name IN VARCHAR2,
 use_current_session IN BOOLEAN DEFAULT TRUE

Parameters

job_name

job_name specifies the name of the job that will execute.

use_current_session

By default, the job will execute in the current session. If specified,
use_current_session must be set to TRUE ; if use_current_session is
set to FALSE, Advanced Server will return an error.

Example

The following call to RUN_JOB executes a job named update_log:

DBMS_SCHEDULER.RUN_JOB('update_log', TRUE);

Passing a value of TRUE as the second argument instructs the server to invoke the job in
the current session.

9.12.14 SET_JOB_ARGUMENT_VALUE

Use the SET_JOB_ARGUMENT_VALUE procedure to specify a value for an argument. The
SET_JOB_ARGUMENT_VALUE procedure comes in two forms; the first form specifies
which argument should be modified by position:

SET_JOB_ARGUMENT_VALUE(
 job_name IN VARCHAR2,
 argument_position IN PLS_INTEGER,
 argument_value IN VARCHAR2)

The second form uses an argument name to specify which argument to modify:

SET_JOB_ARGUMENT_VALUE(
 job_name IN VARCHAR2,

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

713

 argument_name IN VARCHAR2,
 argument_value IN VARCHAR2)

Argument values set by the SET_JOB_ARGUMENT_VALUE procedure override any values
set by default.

Parameters

job_name

job_name specifies the name of the job to which the modified argument belongs.

argument_position

Use argument_position to specify the argument position for which the value
will be set.

argument_name

Use argument_name to specify the argument by name for which the value will
be set.

argument_value

argument_value specifies the new value of the argument.

Examples

The following example assigns a value of 30 to the first argument in the update_emp
job:

DBMS_SCHEDULER.SET_JOB_ARGUMENT_VALUE('update_emp', 1, '30');

The following example sets the emp_name argument to SMITH:

DBMS_SCHEDULER.SET_JOB_ARGUMENT_VALUE('update_emp', 'emp_name', 'SMITH');

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

714

9.13 DBMS_SESSION

Advanced Server provides support for the DBMS_SESSION.SET_ROLE procedure.

Table 7.7.2 DBMS_SESSION Procedure

Function/Procedure Return Type Description
SET_ROLE(role_cmd) n/a Executes a SET ROLE statement followed by

the string value specified in role_cmd.

Postgres Plus Advanced Server's implementation of DBMS_SESSION is a partial
implementation when compared to Oracle's version. Only DBMS_SESSION.SET_ROLE
is supported.

9.13.1 SET_ROLE

The SET_ROLE procedure sets the current session user to the role specified in
role_cmd. After invoking the SET_ROLE procedure, the current session will use the
permissions assigned to the specified role. The signature of the procedure is:

SET_ROLE(role_cmd)

The SET_ROLE procedure appends the value specified for role_cmd to the SET ROLE
statement, and then invokes the statement.

Parameters

role_cmd

role_cmd specifies a role name in the form of a string value.

Example

The following call to the SET_ROLE procedure invokes the SET ROLE command to set
the identity of the current session user to manager:

edb=# exec DBMS_SESSION.SET_ROLE('manager');

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

715

9.14 DBMS_SQL

The DBMS_SQL package provides an application interface to the EnterpriseDB dynamic
SQL functionality. With DBMS_SQL you can construct queries and other commands at
run time (rather than when you write the application). EnterpriseDB Advanced Server
offers native support for dynamic SQL; DBMS_SQL provides a way to use dynamic SQL
without modifying your application.

DBMS_SQL assumes the privileges of the current user when executing dynamic SQL
statements.

Table 9-14 DBMS_SQL Functions/Procedures

Function/Procedure Function or
Procedure

Return
Type

Description

BIND_VARIABLE(c, name, value [,
out_value_size])

Procedure n/a Bind a value to a variable.

BIND_VARIABLE_CHAR(c, name, value
[, out_value_size])

Procedure n/a Bind a CHAR value to a variable.

BIND_VARIABLE_RAW(c, name, value
[, out_value_size])

Procedure n/a Bind a RAW value to a variable.

CLOSE_CURSOR(c IN OUT) Procedure n/a Close a cursor.
COLUMN_VALUE(c, position, value
OUT [, column_error OUT [,
actual_length OUT]])

Procedure n/a Return a column value into a variable.

COLUMN_VALUE_CHAR(c, position,
value OUT [, column_error OUT [,
actual_length OUT]])

Procedure n/a Return a CHAR column value into a variable.

COLUMN_VALUE_RAW(c, position,
value OUT [, column_error OUT [,
actual_length OUT]])

Procedure n/a Return a RAW column value into a variable.

DEFINE_COLUMN(c, position, column
[, column_size])

Procedure n/a Define a column in the SELECT list.

DEFINE_COLUMN_CHAR(c, position,
column, column_size)

Procedure n/a Define a CHAR column in the SELECT list.

DEFINE_COLUMN_RAW(c, position,
column, column_size)

Procedure n/a Define a RAW column in the SELECT list.

DESCRIBE_COLUMNS Procedure n/a Defines columns to hold a cursor result set.
EXECUTE(c) Function INTEGER Execute a cursor.
EXECUTE_AND_FETCH(c [, exact]) Function INTEGER Execute a cursor and fetch a single row.
FETCH_ROWS(c) Function INTEGER Fetch rows from the cursor.
IS_OPEN(c) Function BOOLEAN Check if a cursor is open.
LAST_ROW_COUNT Function INTEGER Return cumulative number of rows fetched.
OPEN_CURSOR Function INTEGER Open a cursor.
PARSE(c, statement,
language_flag)

Procedure n/a Parse a statement.

The following table lists the public variable available in the DBMS_SQL package.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

716

Table 9-15 DBMS_SQL Public Variables

Public Variables Data Type Value Description
native INTEGER 1 See DBMS_SQL.PARSE for more information.
V6 INTEGER 2 See DBMS_SQL.PARSE for more information.
V7 INTEGER 3 See DBMS_SQL.PARSE for more information

9.14.1 BIND_VARIABLE

The BIND_VARIABLE procedure provides the capability to associate a value with an IN
or IN OUT bind variable in a SQL command.

BIND_VARIABLE(c INTEGER, name VARCHAR2,
 value { BLOB | CLOB | DATE | FLOAT | INTEGER | NUMBER |
 TIMESTAMP | VARCHAR2 }
 [, out_value_size INTEGER])

Parameters

c

Cursor ID of the cursor for the SQL command with bind variables.

name

Name of the bind variable in the SQL command.

value

Value to be assigned.

out_value_size

If name is an IN OUT variable, defines the maximum length of the output value.
If not specified, the length of value is assumed.

Examples

The following anonymous block uses bind variables to insert a row into the emp table.

DECLARE
 curid INTEGER;
 v_sql VARCHAR2(150) := 'INSERT INTO emp VALUES ' ||
 '(:p_empno, :p_ename, :p_job, :p_mgr, ' ||
 ':p_hiredate, :p_sal, :p_comm, :p_deptno)';
 v_empno emp.empno%TYPE;
 v_ename emp.ename%TYPE;

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

717

 v_job emp.job%TYPE;
 v_mgr emp.mgr%TYPE;
 v_hiredate emp.hiredate%TYPE;
 v_sal emp.sal%TYPE;
 v_comm emp.comm%TYPE;
 v_deptno emp.deptno%TYPE;
 v_status INTEGER;
BEGIN
 curid := DBMS_SQL.OPEN_CURSOR;
 DBMS_SQL.PARSE(curid,v_sql,DBMS_SQL.native);
 v_empno := 9001;
 v_ename := 'JONES';
 v_job := 'SALESMAN';
 v_mgr := 7369;
 v_hiredate := TO_DATE('13-DEC-07','DD-MON-YY');
 v_sal := 8500.00;
 v_comm := 1500.00;
 v_deptno := 40;
 DBMS_SQL.BIND_VARIABLE(curid,':p_empno',v_empno);
 DBMS_SQL.BIND_VARIABLE(curid,':p_ename',v_ename);
 DBMS_SQL.BIND_VARIABLE(curid,':p_job',v_job);
 DBMS_SQL.BIND_VARIABLE(curid,':p_mgr',v_mgr);
 DBMS_SQL.BIND_VARIABLE(curid,':p_hiredate',v_hiredate);
 DBMS_SQL.BIND_VARIABLE(curid,':p_sal',v_sal);
 DBMS_SQL.BIND_VARIABLE(curid,':p_comm',v_comm);
 DBMS_SQL.BIND_VARIABLE(curid,':p_deptno',v_deptno);
 v_status := DBMS_SQL.EXECUTE(curid);
 DBMS_OUTPUT.PUT_LINE('Number of rows processed: ' || v_status);
 DBMS_SQL.CLOSE_CURSOR(curid);
END;

Number of rows processed: 1

9.14.2 BIND_VARIABLE_CHAR

The BIND_VARIABLE_CHAR procedure provides the capability to associate a CHAR value
with an IN or IN OUT bind variable in a SQL command.

BIND_VARIABLE_CHAR(c INTEGER, name VARCHAR2, value CHAR
 [, out_value_size INTEGER])

Parameters

c

Cursor ID of the cursor for the SQL command with bind variables.

name

Name of the bind variable in the SQL command.

value

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

718

Value of type CHAR to be assigned.

out_value_size

If name is an IN OUT variable, defines the maximum length of the output value.
If not specified, the length of value is assumed.

9.14.3 BIND VARIABLE RAW

The BIND_VARIABLE_RAW procedure provides the capability to associate a RAW value
with an IN or IN OUT bind variable in a SQL command.

BIND_VARIABLE_RAW(c INTEGER, name VARCHAR2, value RAW
 [, out_value_size INTEGER])

Parameters

c

Cursor ID of the cursor for the SQL command with bind variables.

name

Name of the bind variable in the SQL command.

value

Value of type RAW to be assigned.

out_value_size

If name is an IN OUT variable, defines the maximum length of the output value.
If not specified, the length of value is assumed.

9.14.4 CLOSE_CURSOR

The CLOSE_CURSOR procedure closes an open cursor. The resources allocated to the
cursor are released and it can no longer be used.

CLOSE_CURSOR(c IN OUT INTEGER)

Parameters

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

719

c

Cursor ID of the cursor to be closed.

Examples

The following example closes a previously opened cursor:

DECLARE
 curid INTEGER;
BEGIN
 curid := DBMS_SQL.OPEN_CURSOR;
 .
 .
 .
 DBMS_SQL.CLOSE_CURSOR(curid);
END;

9.14.5 COLUMN_VALUE

The COLUMN_VALUE procedure defines a variable to receive a value from a cursor.

COLUMN_VALUE(c INTEGER, position INTEGER, value OUT { BLOB |
 CLOB | DATE | FLOAT | INTEGER | NUMBER | TIMESTAMP | VARCHAR2 }
 [, column_error OUT NUMBER [, actual_length OUT INTEGER]])

Parameters

c

Cursor id of the cursor returning data to the variable being defined.

position

Position within the cursor of the returned data. The first value in the cursor is
position 1.

value

Variable receiving the data returned in the cursor by a prior fetch call.

column_error

Error number associated with the column, if any.

actual_length

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

720

Actual length of the data prior to any truncation.

Examples

The following example shows the portion of an anonymous block that receives the values
from a cursor using the COLUMN_VALUE procedure.

DECLARE
 curid INTEGER;
 v_empno NUMBER(4);
 v_ename VARCHAR2(10);
 v_hiredate DATE;
 v_sal NUMBER(7,2);
 v_comm NUMBER(7,2);
 v_sql VARCHAR2(50) := 'SELECT empno, ename, hiredate, sal, ' ||
 'comm FROM emp';
 v_status INTEGER;
BEGIN
 .
 .
 .
 LOOP
 v_status := DBMS_SQL.FETCH_ROWS(curid);
 EXIT WHEN v_status = 0;
 DBMS_SQL.COLUMN_VALUE(curid,1,v_empno);
 DBMS_SQL.COLUMN_VALUE(curid,2,v_ename);
 DBMS_SQL.COLUMN_VALUE(curid,3,v_hiredate);
 DBMS_SQL.COLUMN_VALUE(curid,4,v_sal);
 DBMS_SQL.COLUMN_VALUE(curid,4,v_sal);
 DBMS_SQL.COLUMN_VALUE(curid,5,v_comm);
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || RPAD(v_ename,10) || ' ' ||
 TO_CHAR(v_hiredate,'yyyy-mm-dd') || ' ' ||
 TO_CHAR(v_sal,'9,999.99') || ' ' ||
 TO_CHAR(NVL(v_comm,0),'9,999.99'));
 END LOOP;
 DBMS_SQL.CLOSE_CURSOR(curid);
END;

9.14.6 COLUMN_VALUE_CHAR

The COLUMN_VALUE_CHAR procedure defines a variable to receive a CHAR value from a
cursor.

COLUMN_VALUE_CHAR(c INTEGER, position INTEGER, value OUT CHAR
 [, column_error OUT NUMBER [, actual_length OUT INTEGER]])

Parameters

c

Cursor id of the cursor returning data to the variable being defined.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

721

position

Position within the cursor of the returned data. The first value in the cursor is
position 1.

value

Variable of data type CHAR receiving the data returned in the cursor by a prior
fetch call.

column_error

Error number associated with the column, if any.

actual_length

Actual length of the data prior to any truncation.

9.14.7 COLUMN VALUE RAW

The COLUMN_VALUE_RAW procedure defines a variable to receive a RAW value from a
cursor.

COLUMN_VALUE_RAW(c INTEGER, position INTEGER, value OUT RAW
 [, column_error OUT NUMBER [, actual_length OUT INTEGER]])

Parameters

c

Cursor id of the cursor returning data to the variable being defined.

position

Position within the cursor of the returned data. The first value in the cursor is
position 1.

value

Variable of data type RAW receiving the data returned in the cursor by a prior fetch
call.

column_error

Error number associated with the column, if any.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

722

actual_length

Actual length of the data prior to any truncation.

9.14.8 DEFINE_COLUMN

The DEFINE_COLUMN procedure defines a column or expression in the SELECT list that
is to be returned and retrieved in a cursor.

DEFINE_COLUMN(c INTEGER, position INTEGER, column { BLOB |
 CLOB | DATE | FLOAT | INTEGER | NUMBER | TIMESTAMP | VARCHAR2 }
 [, column_size INTEGER])

Parameters

c

Cursor id of the cursor associated with the SELECT command.

position

Position of the column or expression in the SELECT list that is being defined.

column

A variable that is of the same data type as the column or expression in position
position of the SELECT list.

column_size

The maximum length of the returned data. column_size must be specified only
if column is VARCHAR2. Returned data exceeding column_size is truncated to
column_size characters.

Examples

The following shows how the empno, ename, hiredate, sal, and comm columns of the
emp table are defined with the DEFINE_COLUMN procedure.

DECLARE
 curid INTEGER;
 v_empno NUMBER(4);
 v_ename VARCHAR2(10);
 v_hiredate DATE;
 v_sal NUMBER(7,2);
 v_comm NUMBER(7,2);

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

723

 v_sql VARCHAR2(50) := 'SELECT empno, ename, hiredate, sal, ' ||
 'comm FROM emp';
 v_status INTEGER;
BEGIN
 curid := DBMS_SQL.OPEN_CURSOR;
 DBMS_SQL.PARSE(curid,v_sql,DBMS_SQL.native);
 DBMS_SQL.DEFINE_COLUMN(curid,1,v_empno);
 DBMS_SQL.DEFINE_COLUMN(curid,2,v_ename,10);
 DBMS_SQL.DEFINE_COLUMN(curid,3,v_hiredate);
 DBMS_SQL.DEFINE_COLUMN(curid,4,v_sal);
 DBMS_SQL.DEFINE_COLUMN(curid,5,v_comm);
 .
 .
 .
END;

The following shows an alternative to the prior example that produces the exact same
results. Note that the lengths of the data types are irrelevant – the empno, sal, and comm
columns will still return data equivalent to NUMBER(4) and NUMBER(7,2), respectively,
even though v_num is defined as NUMBER(1) (assuming the declarations in the
COLUMN_VALUE procedure are of the appropriate maximum sizes). The ename column
will return data up to ten characters in length as defined by the length parameter in the
DEFINE_COLUMN call, not by the data type declaration, VARCHAR2(1) declared for
v_varchar. The actual size of the returned data is dictated by the COLUMN_VALUE
procedure.

DECLARE
 curid INTEGER;
 v_num NUMBER(1);
 v_varchar VARCHAR2(1);
 v_date DATE;
 v_sql VARCHAR2(50) := 'SELECT empno, ename, hiredate, sal, ' ||
 'comm FROM emp';
 v_status INTEGER;
BEGIN
 curid := DBMS_SQL.OPEN_CURSOR;
 DBMS_SQL.PARSE(curid,v_sql,DBMS_SQL.native);
 DBMS_SQL.DEFINE_COLUMN(curid,1,v_num);
 DBMS_SQL.DEFINE_COLUMN(curid,2,v_varchar,10);
 DBMS_SQL.DEFINE_COLUMN(curid,3,v_date);
 DBMS_SQL.DEFINE_COLUMN(curid,4,v_num);
 DBMS_SQL.DEFINE_COLUMN(curid,5,v_num);
 .
 .
 .
END;

9.14.9 DEFINE_COLUMN_CHAR

The DEFINE_COLUMN_CHAR procedure defines a CHAR column or expression in the
SELECT list that is to be returned and retrieved in a cursor.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

724

DEFINE_COLUMN_CHAR(c INTEGER, position INTEGER, column CHAR,
column_size INTEGER)

Parameters

c

Cursor id of the cursor associated with the SELECT command.

position

Position of the column or expression in the SELECT list that is being defined.

column

A CHAR variable.

column_size

The maximum length of the returned data. Returned data exceeding
column_size is truncated to column_size characters.

9.14.10 DEFINE COLUMN RAW

The DEFINE_COLUMN_RAW procedure defines a RAW column or expression in the
SELECT list that is to be returned and retrieved in a cursor.

DEFINE_COLUMN_RAW(c INTEGER, position INTEGER, column RAW,
 column_size INTEGER)

Parameters

c

Cursor id of the cursor associated with the SELECT command.

position

Position of the column or expression in the SELECT list that is being defined.

column

A RAW variable.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

725

column_size

The maximum length of the returned data. Returned data exceeding
column_size is truncated to column_size characters.

9.14.11 DESCRIBE COLUMNS

The DESCRIBE_COLUMNS procedure describes the columns returned by a cursor.

DESCRIBE_COLUMNS(c INTEGER, col_cnt OUT INTEGER, desc_t OUT
 DESC_TAB);

Parameters

c

The cursor ID of the cursor.

col_cnt

The number of columns in cursor result set.

desc_tab

The table that contains a description of each column returned by the cursor. The
descriptions are of type DESC_REC, and contain the following values:

Column Name Type
col_type INTEGER
col_max_len INTEGER
col_name VARCHAR2(128)
col_name_len INTEGER
col_schema_name VARCHAR2(128)
col_schema_name_len INTEGER
col_precision INTEGER
col_scale INTEGER
col_charsetid INTEGER
col_charsetform INTEGER
col_null_ok BOOLEAN

9.14.12 EXECUTE

The EXECUTE function executes a parsed SQL command or SPL block.

status INTEGER EXECUTE(c INTEGER)

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

726

Parameters

c

Cursor ID of the parsed SQL command or SPL block to be executed.

status

Number of rows processed if the SQL command was DELETE, INSERT, or
UPDATE. status is meaningless for all other commands.

Examples

The following anonymous block inserts a row into the dept table.

DECLARE
 curid INTEGER;
 v_sql VARCHAR2(50);
 v_status INTEGER;
BEGIN
 curid := DBMS_SQL.OPEN_CURSOR;
 v_sql := 'INSERT INTO dept VALUES (50, ''HR'', ''LOS ANGELES'')';
 DBMS_SQL.PARSE(curid, v_sql, DBMS_SQL.native);
 v_status := DBMS_SQL.EXECUTE(curid);
 DBMS_OUTPUT.PUT_LINE('Number of rows processed: ' || v_status);
 DBMS_SQL.CLOSE_CURSOR(curid);
END;

9.14.13 EXECUTE_AND_FETCH

Function EXECUTE_AND_FETCH executes a parsed SELECT command and fetches one
row.

status INTEGER EXECUTE_AND_FETCH(c INTEGER
 [, exact BOOLEAN])

Parameters

c

Cursor id of the cursor for the SELECT command to be executed.

exact

If set to TRUE, an exception is thrown if the number of rows in the result set is not
exactly equal to 1. If set to FALSE, no exception is thrown. The default is FALSE.
A NO_DATA_FOUND exception is thrown if exact is TRUE and there are no rows

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

727

in the result set. A TOO_MANY_ROWS exception is thrown if exact is TRUE and
there is more than one row in the result set.

status

Returns 1 if a row was successfully fetched, 0 if no rows to fetch. If an exception
is thrown, no value is returned.

Examples

The following stored procedure uses the EXECUTE_AND_FETCH function to retrieve one
employee using the employee‟s name. An exception will be thrown if the employee is not
found, or there is more than one employee with the same name.

CREATE OR REPLACE PROCEDURE select_by_name(
 p_ename emp.ename%TYPE
)
IS
 curid INTEGER;
 v_empno emp.empno%TYPE;
 v_hiredate emp.hiredate%TYPE;
 v_sal emp.sal%TYPE;
 v_comm emp.comm%TYPE;
 v_dname dept.dname%TYPE;
 v_disp_date VARCHAR2(10);
 v_sql VARCHAR2(120) := 'SELECT empno, hiredate, sal, ' ||
 'NVL(comm, 0), dname ' ||
 'FROM emp e, dept d ' ||
 'WHERE ename = :p_ename ' ||
 'AND e.deptno = d.deptno';
 v_status INTEGER;
BEGIN
 curid := DBMS_SQL.OPEN_CURSOR;
 DBMS_SQL.PARSE(curid,v_sql,DBMS_SQL.native);
 DBMS_SQL.BIND_VARIABLE(curid,':p_ename',UPPER(p_ename));
 DBMS_SQL.DEFINE_COLUMN(curid,1,v_empno);
 DBMS_SQL.DEFINE_COLUMN(curid,2,v_hiredate);
 DBMS_SQL.DEFINE_COLUMN(curid,3,v_sal);
 DBMS_SQL.DEFINE_COLUMN(curid,4,v_comm);
 DBMS_SQL.DEFINE_COLUMN(curid,5,v_dname,14);
 v_status := DBMS_SQL.EXECUTE_AND_FETCH(curid,TRUE);
 DBMS_SQL.COLUMN_VALUE(curid,1,v_empno);
 DBMS_SQL.COLUMN_VALUE(curid,2,v_hiredate);
 DBMS_SQL.COLUMN_VALUE(curid,3,v_sal);
 DBMS_SQL.COLUMN_VALUE(curid,4,v_comm);
 DBMS_SQL.COLUMN_VALUE(curid,5,v_dname);
 v_disp_date := TO_CHAR(v_hiredate, 'MM/DD/YYYY');
 DBMS_OUTPUT.PUT_LINE('Number : ' || v_empno);
 DBMS_OUTPUT.PUT_LINE('Name : ' || UPPER(p_ename));
 DBMS_OUTPUT.PUT_LINE('Hire Date : ' || v_disp_date);
 DBMS_OUTPUT.PUT_LINE('Salary : ' || v_sal);
 DBMS_OUTPUT.PUT_LINE('Commission: ' || v_comm);
 DBMS_OUTPUT.PUT_LINE('Department: ' || v_dname);
 DBMS_SQL.CLOSE_CURSOR(curid);
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE('Employee ' || p_ename || ' not found');

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

728

 DBMS_SQL.CLOSE_CURSOR(curid);
 WHEN TOO_MANY_ROWS THEN
 DBMS_OUTPUT.PUT_LINE('Too many employees named, ' ||
 p_ename || ', found');
 DBMS_SQL.CLOSE_CURSOR(curid);
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('The following is SQLERRM:');
 DBMS_OUTPUT.PUT_LINE(SQLERRM);
 DBMS_OUTPUT.PUT_LINE('The following is SQLCODE:');
 DBMS_OUTPUT.PUT_LINE(SQLCODE);
 DBMS_SQL.CLOSE_CURSOR(curid);
END;

EXEC select_by_name('MARTIN')

Number : 7654
Name : MARTIN
Hire Date : 09/28/1981
Salary : 1250
Commission: 1400
Department: SALES

9.14.14 FETCH_ROWS

The FETCH_ROWS function retrieves a row from a cursor.

status INTEGER FETCH_ROWS(c INTEGER)

Parameters

c

Cursor ID of the cursor from which to fetch a row.

status

Returns 1 if a row was successfully fetched, 0 if no more rows to fetch.

Examples

The following example fetches the rows from the emp table and displays the results.

DECLARE
 curid INTEGER;
 v_empno NUMBER(4);
 v_ename VARCHAR2(10);
 v_hiredate DATE;
 v_sal NUMBER(7,2);
 v_comm NUMBER(7,2);
 v_sql VARCHAR2(50) := 'SELECT empno, ename, hiredate, sal, ' ||
 'comm FROM emp';
 v_status INTEGER;

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

729

BEGIN
 curid := DBMS_SQL.OPEN_CURSOR;
 DBMS_SQL.PARSE(curid,v_sql,DBMS_SQL.native);
 DBMS_SQL.DEFINE_COLUMN(curid,1,v_empno);
 DBMS_SQL.DEFINE_COLUMN(curid,2,v_ename,10);
 DBMS_SQL.DEFINE_COLUMN(curid,3,v_hiredate);
 DBMS_SQL.DEFINE_COLUMN(curid,4,v_sal);
 DBMS_SQL.DEFINE_COLUMN(curid,5,v_comm);

 v_status := DBMS_SQL.EXECUTE(curid);
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME HIREDATE SAL COMM');
 DBMS_OUTPUT.PUT_LINE('----- ---------- ---------- -------- ' ||
 '--------');
 LOOP
 v_status := DBMS_SQL.FETCH_ROWS(curid);
 EXIT WHEN v_status = 0;
 DBMS_SQL.COLUMN_VALUE(curid,1,v_empno);
 DBMS_SQL.COLUMN_VALUE(curid,2,v_ename);
 DBMS_SQL.COLUMN_VALUE(curid,3,v_hiredate);
 DBMS_SQL.COLUMN_VALUE(curid,4,v_sal);
 DBMS_SQL.COLUMN_VALUE(curid,4,v_sal);
 DBMS_SQL.COLUMN_VALUE(curid,5,v_comm);
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || RPAD(v_ename,10) || ' ' ||
 TO_CHAR(v_hiredate,'yyyy-mm-dd') || ' ' ||
 TO_CHAR(v_sal,'9,999.99') || ' ' ||
 TO_CHAR(NVL(v_comm,0),'9,999.99'));
 END LOOP;
 DBMS_SQL.CLOSE_CURSOR(curid);
END;

EMPNO ENAME HIREDATE SAL COMM
----- ---------- ---------- -------- --------
7369 SMITH 1980-12-17 800.00 .00
7499 ALLEN 1981-02-20 1,600.00 300.00
7521 WARD 1981-02-22 1,250.00 500.00
7566 JONES 1981-04-02 2,975.00 .00
7654 MARTIN 1981-09-28 1,250.00 1,400.00
7698 BLAKE 1981-05-01 2,850.00 .00
7782 CLARK 1981-06-09 2,450.00 .00
7788 SCOTT 1987-04-19 3,000.00 .00
7839 KING 1981-11-17 5,000.00 .00
7844 TURNER 1981-09-08 1,500.00 .00
7876 ADAMS 1987-05-23 1,100.00 .00
7900 JAMES 1981-12-03 950.00 .00
7902 FORD 1981-12-03 3,000.00 .00
7934 MILLER 1982-01-23 1,300.00 .00

9.14.15 IS_OPEN

The IS_OPEN function provides the capability to test if the given cursor is open.

status BOOLEAN IS_OPEN(c INTEGER)

Parameters

c

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

730

Cursor ID of the cursor to be tested.

status

Set to TRUE if the cursor is open, set to FALSE if the cursor is not open.

9.14.16 LAST_ROW_COUNT

The LAST_ROW_COUNT function returns the number of rows that have been currently
fetched.

rowcnt INTEGER LAST_ROW_COUNT

Parameters

rowcnt

Number of row fetched thus far.

Examples

The following example uses the LAST_ROW_COUNT function to display the total number
of rows fetched in the query.

DECLARE
 curid INTEGER;
 v_empno NUMBER(4);
 v_ename VARCHAR2(10);
 v_hiredate DATE;
 v_sal NUMBER(7,2);
 v_comm NUMBER(7,2);
 v_sql VARCHAR2(50) := 'SELECT empno, ename, hiredate, sal, ' ||
 'comm FROM emp';
 v_status INTEGER;
BEGIN
 curid := DBMS_SQL.OPEN_CURSOR;
 DBMS_SQL.PARSE(curid,v_sql,DBMS_SQL.native);
 DBMS_SQL.DEFINE_COLUMN(curid,1,v_empno);
 DBMS_SQL.DEFINE_COLUMN(curid,2,v_ename,10);
 DBMS_SQL.DEFINE_COLUMN(curid,3,v_hiredate);
 DBMS_SQL.DEFINE_COLUMN(curid,4,v_sal);
 DBMS_SQL.DEFINE_COLUMN(curid,5,v_comm);

 v_status := DBMS_SQL.EXECUTE(curid);
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME HIREDATE SAL COMM');
 DBMS_OUTPUT.PUT_LINE('----- ---------- ---------- -------- ' ||
 '--------');
 LOOP
 v_status := DBMS_SQL.FETCH_ROWS(curid);
 EXIT WHEN v_status = 0;
 DBMS_SQL.COLUMN_VALUE(curid,1,v_empno);

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

731

 DBMS_SQL.COLUMN_VALUE(curid,2,v_ename);
 DBMS_SQL.COLUMN_VALUE(curid,3,v_hiredate);
 DBMS_SQL.COLUMN_VALUE(curid,4,v_sal);
 DBMS_SQL.COLUMN_VALUE(curid,4,v_sal);
 DBMS_SQL.COLUMN_VALUE(curid,5,v_comm);
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || RPAD(v_ename,10) || ' ' ||
 TO_CHAR(v_hiredate,'yyyy-mm-dd') || ' ' ||
 TO_CHAR(v_sal,'9,999.99') || ' ' ||
 TO_CHAR(NVL(v_comm,0),'9,999.99'));
 END LOOP;
 DBMS_OUTPUT.PUT_LINE('Number of rows: ' || DBMS_SQL.LAST_ROW_COUNT);
 DBMS_SQL.CLOSE_CURSOR(curid);
END;

EMPNO ENAME HIREDATE SAL COMM
----- ---------- ---------- -------- --------
7369 SMITH 1980-12-17 800.00 .00
7499 ALLEN 1981-02-20 1,600.00 300.00
7521 WARD 1981-02-22 1,250.00 500.00
7566 JONES 1981-04-02 2,975.00 .00
7654 MARTIN 1981-09-28 1,250.00 1,400.00
7698 BLAKE 1981-05-01 2,850.00 .00
7782 CLARK 1981-06-09 2,450.00 .00
7788 SCOTT 1987-04-19 3,000.00 .00
7839 KING 1981-11-17 5,000.00 .00
7844 TURNER 1981-09-08 1,500.00 .00
7876 ADAMS 1987-05-23 1,100.00 .00
7900 JAMES 1981-12-03 950.00 .00
7902 FORD 1981-12-03 3,000.00 .00
7934 MILLER 1982-01-23 1,300.00 .00
Number of rows: 14

9.14.17 OPEN_CURSOR

The OPEN_CURSOR function creates a new cursor. A cursor must be used to parse and
execute any dynamic SQL statement. Once a cursor has been opened, it can be re-used
with the same or different SQL statements. The cursor does not have to be closed and re-
opened in order to be re-used.

c INTEGER OPEN_CURSOR

Parameters

c

Cursor ID number associated with the newly created cursor.

Examples

The following example creates a new cursor:

DECLARE
 curid INTEGER;

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

732

BEGIN
 curid := DBMS_SQL.OPEN_CURSOR;
 .
 .
 .
END;

9.14.18 PARSE

The PARSE procedure parses a SQL command or SPL block. If the SQL command is a
DDL command, it is immediately executed and does not require running the EXECUTE
function.

PARSE(c INTEGER, statement VARCHAR2, language_flag INTEGER)

Parameters

c

Cursor ID of an open cursor.

statement

SQL command or SPL block to be parsed. A SQL command must not end with
the semi-colon terminator, however an SPL block does require the semi-colon
terminator.

language_flag

Use DBMS_SQL.V6, DBMS_SQL.V7 or DBMS_SQL.native. This flag is ignored,
and all syntax is assumed to be in Advanced Server form.

Examples

The following anonymous block creates a table named, job. Note that DDL statements
are executed immediately by the PARSE procedure and do not require a separate
EXECUTE step.

DECLARE
 curid INTEGER;
BEGIN
 curid := DBMS_SQL.OPEN_CURSOR;
 DBMS_SQL.PARSE(curid, 'CREATE TABLE job (jobno NUMBER(3), ' ||
 'jname VARCHAR2(9))',DBMS_SQL.native);
 DBMS_SQL.CLOSE_CURSOR(curid);
END;

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

733

The following inserts two rows into the job table.

DECLARE
 curid INTEGER;
 v_sql VARCHAR2(50);
 v_status INTEGER;
BEGIN
 curid := DBMS_SQL.OPEN_CURSOR;
 v_sql := 'INSERT INTO job VALUES (100, ''ANALYST'')';
 DBMS_SQL.PARSE(curid, v_sql, DBMS_SQL.native);
 v_status := DBMS_SQL.EXECUTE(curid);
 DBMS_OUTPUT.PUT_LINE('Number of rows processed: ' || v_status);
 v_sql := 'INSERT INTO job VALUES (200, ''CLERK'')';
 DBMS_SQL.PARSE(curid, v_sql, DBMS_SQL.native);
 v_status := DBMS_SQL.EXECUTE(curid);
 DBMS_OUTPUT.PUT_LINE('Number of rows processed: ' || v_status);
 DBMS_SQL.CLOSE_CURSOR(curid);
END;

Number of rows processed: 1
Number of rows processed: 1

The following anonymous block uses the DBMS_SQL package to execute a block
containing two INSERT statements. Note that the end of the block contains a terminating
semi-colon, while in the prior example, each individual INSERT statement does not have
a terminating semi-colon.

DECLARE
 curid INTEGER;
 v_sql VARCHAR2(100);
 v_status INTEGER;
BEGIN
 curid := DBMS_SQL.OPEN_CURSOR;
 v_sql := 'BEGIN ' ||
 'INSERT INTO job VALUES (300, ''MANAGER''); ' ||
 'INSERT INTO job VALUES (400, ''SALESMAN''); ' ||
 'END;';
 DBMS_SQL.PARSE(curid, v_sql, DBMS_SQL.native);
 v_status := DBMS_SQL.EXECUTE(curid);
 DBMS_SQL.CLOSE_CURSOR(curid);
END;

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

734

9.15 DBMS_UTILITY

The DBMS_UTILITY package provides various utility programs.

Table 9-16 DBMS_UTILITY Functions/Procedures

Function/Procedure Function or
Procedure

Return
Type

Description

ANALYZE_DATABASE(method [,
estimate_rows [, estimate_percent
[, method_opt]]])

Procedure n/a Analyze database tables.

ANALYZE_PART_OBJECT(schema,
object_name [, object_type [,
command_type [, command_opt [,
sample_clause]]]])

Procedure n/a Analyze a partitioned table.

ANALYZE_SCHEMA(schema, method [,
estimate_rows [, estimate_percent
[, method_opt]]])

Procedure n/a Analyze schema tables.

CANONICALIZE(name, canon_name
OUT, canon_len)

Procedure n/a Canonicalizes a string – e.g., strips off white
space.

COMMA_TO_TABLE(list, tablen OUT,
tab OUT)

Procedure n/a Convert a comma-delimited list of names to
a table of names.

DB_VERSION(version OUT,
compatibility OUT)

Procedure n/a Get the database version.

EXEC_DDL_STATEMENT(parse_string) Procedure n/a Execute a DDL statement.
FORMAT_CALL_STACK Function TEXT Formats the current call stack.
GET_CPU_TIME Function NUMBER Get the current CPU time.
GET_DEPENDENCY(type, schema,
name)

Procedure n/a Get objects that are dependent upon the
given object..

GET_HASH_VALUE(name, base,
hash_size)

Function NUMBER Compute a hash value.

GET_PARAMETER_VALUE(parnam,
intval OUT, strval OUT)

Procedure BINARY_IN
TEGER

Get database initialization parameter
settings.

GET_TIME Function NUMBER Get the current time.
NAME_TOKENIZE(name, a OUT, b OUT,
c OUT, dblink OUT, nextpos OUT)

Procedure n/a Parse the given name into its component
parts.

TABLE_TO_COMMA(tab, tablen OUT,
list OUT)

Procedure n/a Convert a table of names to a comma-
delimited list.

The following table lists the public variables available in the DBMS_UTILITY package.

Table 9-17 DBMS_UTILITY Public Variables

Public Variables Data Type Value Description
inv_error_on_restrictions PLS_INTEGER 1 Used by the INVALIDATE procedure.
lname_array TABLE For lists of long names.
uncl_array TABLE For lists of users and names.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

735

9.15.1 LNAME_ARRAY

The LNAME_ARRAY is for storing lists of long names including fully-qualified names.

TYPE lname_array IS TABLE OF VARCHAR2(4000) INDEX BY BINARY_INTEGER;

9.15.2 UNCL_ARRAY

The UNCL_ARRAY is for storing lists of users and names.

TYPE uncl_array IS TABLE OF VARCHAR2(227) INDEX BY BINARY_INTEGER;

9.15.3 ANALYZE_DATABASE, ANALYZE SCHEMA and
ANALYZE PART_OBJECT

The ANALYZE_DATABASE(), ANALYZE_SCHEMA() and ANALYZE_PART_OBJECT()
procedures provide the capability to gather statistics on tables in the database. When you
execute the ANALYZE statement, Postgres samples the data in a table and records
distribution statistics in the pg_statistics system table.

ANALYZE_DATABASE, ANALYZE_SCHEMA, and ANALYZE_PART_OBJECT differ
primarily in the number of tables that are processed:

x ANALYZE_DATABASE analyzes all tables in all schemas within the current
database.

x ANALYZE_SCHEMA analyzes all tables in a given schema (within the current
database).

x ANALYZE_PART_OBJECT analyzes a single table.

The syntax for the ANALYZE commands are:

ANALYZE_DATABASE(method VARCHAR2 [, estimate_rows NUMBER
 [, estimate_percent NUMBER [, method_opt VARCHAR2]]])

ANALYZE_SCHEMA(schema VARCHAR2, method VARCHAR2
 [, estimate_rows NUMBER [, estimate_percent NUMBER
 [, method_opt VARCHAR2]]])

ANALYZE_PART_OBJECT(schema VARCHAR2, object_name VARCHAR2
 [, object_type CHAR [, command_type CHAR
 [, command_opt VARCHAR2 [, sample_clause]]]])

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

736

Parameters – ANALYZE_DATABASE and ANALYZE_SCHEMA

method

method determines whether the ANALYZE procedure populates the
pg_statistics table or removes entries from the pg_statistics table. If
you specify a method of DELETE, the ANALYZE procedure removes the relevant
rows from pg_statistics. If you specify a method of COMPUTE or ESTIMATE,
the ANALYZE procedure analyzes a table (or multiple tables) and records the
distribution information in pg_statistics. There is no difference between
COMPUTE and ESTIMATE; both methods execute the Postgres ANALYZE statement.
All other parameters are validated and then ignored.

estimate_rows

Number of rows upon which to base estimated statistics. One of estimate_rows
or estimate_percent must be specified if method is ESTIMATE.

This argument is ignored, but is included for compatibility.

estimate_percent

Percentage of rows upon which to base estimated statistics. One of
estimate_rows or estimate_percent must be specified if method is
ESTIMATE.

This argument is ignored, but is included for compatibility.

method_opt

Object types to be analyzed. Any combination of the following:

[FOR TABLE]
[FOR ALL [INDEXED] COLUMNS] [SIZE n]
[FOR ALL INDEXES]

This argument is ignored, but is included for compatibility.

Parameters – ANALYZE_PART_OBJECT

schema

Name of the schema whose objects are to be analyzed.

object_name

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

737

Name of the partitioned object to be analyzed.

object_type

Type of object to be analyzed. Valid values are: T – table, I – index.

This argument is ignored, but is included for compatibility.

command_type

Type of analyze functionality to perform. Valid values are: E - gather estimated
statistics based upon on a specified number of rows or a percentage of rows in the
sample_clause clause; C - compute exact statistics; or V – validate the
structure and integrity of the partitions.

This argument is ignored, but is included for compatibility.

command_opt

For command_type C or E, can be any combination of:

[FOR TABLE]
[FOR ALL COLUMNS]
[FOR ALL LOCAL INDEXES]

For command_type V, can be CASCADE if object_type is T.

This argument is ignored, but is included for compatibility.

sample_clause

If command_type is E, contains the following clause to specify the number of
rows or percentage or rows on which to base the estimate.

SAMPLE n { ROWS | PERCENT }

This argument is ignored, but is included for compatibility.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

738

9.15.4 CANONICALIZE

The CANONICALIZE procedure performs the following operations on an input string:

x If the string is not double-quoted, verifies that it uses the characters of a legal
identifier. If not, an exception is thrown. If the string is double-quoted, all
characters are allowed.

x If the string is not double-quoted and does not contain periods, uppercases all
alphabetic characters and eliminates leading and trailing spaces.

x If the string is double-quoted and does not contain periods, strips off the
double quotes.

x If the string contains periods and no portion of the string is double-quoted,
uppercases each portion of the string and encloses each portion in double
quotes.

x If the string contains periods and portions of the string are double-quoted,
returns the double-quoted portions unchanged including the double quotes and
returns the non-double-quoted portions uppercased and enclosed in double
quotes.

CANONICALIZE(name VARCHAR2, canon_name OUT VARCHAR2,
 canon_len BINARY_INTEGER)

Parameters

name

String to be canonicalized.

canon_name

The canonicalized string.

canon_len

Number of bytes in name to canonicalize starting from the first character.

Examples

The following procedure applies the CANONICALIZE procedure on its input parameter
and displays the results.

CREATE OR REPLACE PROCEDURE canonicalize (
 p_name VARCHAR2,
 p_length BINARY_INTEGER DEFAULT 30
)
IS
 v_canon VARCHAR2(100);
BEGIN

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

739

 DBMS_UTILITY.CANONICALIZE(p_name,v_canon,p_length);
 DBMS_OUTPUT.PUT_LINE('Canonicalized name ==>' || v_canon || '<==');
 DBMS_OUTPUT.PUT_LINE('Length: ' || LENGTH(v_canon));
EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('SQLERRM: ' || SQLERRM);
 DBMS_OUTPUT.PUT_LINE('SQLCODE: ' || SQLCODE);
END;

EXEC canonicalize('Identifier')
Canonicalized name ==>IDENTIFIER<==
Length: 10

EXEC canonicalize('"Identifier"')
Canonicalized name ==>Identifier<==
Length: 10

EXEC canonicalize('"_+142%"')
Canonicalized name ==>_+142%<==
Length: 6

EXEC canonicalize('abc.def.ghi')
Canonicalized name ==>"ABC"."DEF"."GHI"<==
Length: 17

EXEC canonicalize('"abc.def.ghi"')
Canonicalized name ==>abc.def.ghi<==
Length: 11

EXEC canonicalize('"abc".def."ghi"')
Canonicalized name ==>"abc"."DEF"."ghi"<==
Length: 17

EXEC canonicalize('"abc.def".ghi')
Canonicalized name ==>"abc.def"."GHI"<==
Length: 15

9.15.5 COMMA_TO_TABLE

The COMMA_TO_TABLE procedure converts a comma-delimited list of names into a table
of names. Each entry in the list becomes a table entry. The names must be formatted as
valid identifiers.

COMMA_TO_TABLE(list VARCHAR2, tablen OUT BINARY_INTEGER,
 tab OUT { LNAME_ARRAY | UNCL_ARRAY })

Parameters

list

Comma-delimited list of names.

tablen

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

740

Number of entries in tab.

tab

Table containing the individual names in list.

LNAME_ARRAY

A DBMS_UTILITY LNAME_ARRAY (as described in Section 9.15.1).

UNCL_ARRAY

A DBMS_UTILITY UNCL_ARRAY (as described in Section 9.15.2).

Examples

The following procedure uses the COMMA_TO_TABLE procedure to convert a list of names
to a table. The table entries are then displayed.

CREATE OR REPLACE PROCEDURE comma_to_table (
 p_list VARCHAR2
)
IS
 r_lname DBMS_UTILITY.LNAME_ARRAY;
 v_length BINARY_INTEGER;
BEGIN
 DBMS_UTILITY.COMMA_TO_TABLE(p_list,v_length,r_lname);
 FOR i IN 1..v_length LOOP
 DBMS_OUTPUT.PUT_LINE(r_lname(i));
 END LOOP;
END;

EXEC comma_to_table('edb.dept, edb.emp, edb.jobhist')

edb.dept
edb.emp
edb.jobhist

9.15.6 DB_VERSION

The DB_VERSION procedure returns the version number of the database.

DB_VERSION(version OUT VARCHAR2, compatibility OUT VARCHAR2)

Parameters

version

Database version number.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

741

compatibility

Compatibility setting of the database. (To be implementation-defined as to its
meaning.)

Examples

The following anonymous block displays the database version information.

DECLARE
 v_version VARCHAR2(150);
 v_compat VARCHAR2(150);
BEGIN
 DBMS_UTILITY.DB_VERSION(v_version,v_compat);
 DBMS_OUTPUT.PUT_LINE('Version: ' || v_version);
 DBMS_OUTPUT.PUT_LINE('Compatibility: ' || v_compat);
END;

Version: EnterpriseDB 9.4.0.0 on i686-pc-linux-gnu, compiled by GCC gcc (GCC)
4.1.2 20080704 (Red Hat 4.1.2-48), 32-bit
Compatibility: EnterpriseDB 9.4.0.0 on i686-pc-linux-gnu, compiled by GCC gcc
(GCC) 4.1.220080704 (Red Hat 4.1.2-48), 32-bit

9.15.7 EXEC_DDL_STATEMENT

The EXEC_DDL_STATEMENT provides the capability to execute a DDL command.

EXEC_DDL_STATEMENT(parse_string VARCHAR2)

Parameters

parse_string

The DDL command to be executed.

Examples

The following anonymous block creates the job table.

BEGIN
 DBMS_UTILITY.EXEC_DDL_STATEMENT(
 'CREATE TABLE job (' ||
 'jobno NUMBER(3),' ||
 'jname VARCHAR2(9))'
);
END;

If the parse_string does not include a valid DDL statement, Advanced Server returns
the following error:

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

742

edb=# exec dbms_utility.exec_ddl_statement('select rownum from dual');
ERROR: EDB-20001: 'parse_string' must be a valid DDL statement

9.15.8 FORMAT_CALL_STACK

The FORMAT_CALL_STACK function returns the formatted contents of the current call
stack.

DBMS_UTILITY.FORMAT_CALL_STACK
return VARCHAR2

This function can be used in a stored procedure, function or package to return the current
call stack in a readable format. This function is useful for debugging purposes.

9.15.9 GET_CPU_TIME

The GET_CPU_TIME function returns the CPU time in hundredths of a second from some
arbitrary point in time.

cputime NUMBER GET_CPU_TIME

Parameters

cputime

Number of hundredths of a second of CPU time.

Examples

The following SELECT command retrieves the current CPU time, which is 603
hundredths of a second or .0603 seconds.

SELECT DBMS_UTILITY.GET_CPU_TIME FROM DUAL;

get_cpu_time

 603

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

743

9.15.10 GET_DEPENDENCY

The GET_DEPENDENCY procedure provides the capability to list the objects that are
dependent upon the specified object. GET_DEPENDENCY does not show dependencies for
functions or procedures.

GET_DEPENDENCY(type VARCHAR2, schema VARCHAR2,
 name VARCHAR2)

Parameters

type

The object type of name. Valid values are INDEX, PACKAGE, PACKAGE BODY,
SEQUENCE, TABLE, TRIGGER, TYPE and VIEW.

schema

Name of the schema in which name exists.

name

Name of the object for which dependencies are to be obtained.

Examples

The following anonymous block finds dependencies on the EMP table.

BEGIN
 DBMS_UTILITY.GET_DEPENDENCY('TABLE','public','EMP');
END;

DEPENDENCIES ON public.EMP
--
*TABLE public.EMP()
* CONSTRAINT c public.emp()
* CONSTRAINT f public.emp()
* CONSTRAINT p public.emp()
* TYPE public.emp()
* CONSTRAINT c public.emp()
* CONSTRAINT f public.jobhist()
* VIEW .empname_view()

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

744

9.15.11 GET_HASH_VALUE

The GET_HASH_VALUE function provides the capability to compute a hash value for a
given string.

hash NUMBER GET_HASH_VALUE(name VARCHAR2, base NUMBER,
 hash_size NUMBER)

Parameters

name

The string for which a hash value is to be computed.

base

Starting value at which hash values are to be generated.

hash_size

The number of hash values for the desired hash table.

hash

The generated hash value.

Examples

The following anonymous block creates a table of hash values using the ename column
of the emp table and then displays the key along with the hash value. The hash values
start at 100 with a maximum of 1024 distinct values.

DECLARE
 v_hash NUMBER;
 TYPE hash_tab IS TABLE OF NUMBER INDEX BY VARCHAR2(10);
 r_hash HASH_TAB;
 CURSOR emp_cur IS SELECT ename FROM emp;
BEGIN
 FOR r_emp IN emp_cur LOOP
 r_hash(r_emp.ename) :=
 DBMS_UTILITY.GET_HASH_VALUE(r_emp.ename,100,1024);
 END LOOP;
 FOR r_emp IN emp_cur LOOP
 DBMS_OUTPUT.PUT_LINE(RPAD(r_emp.ename,10) || ' ' ||
 r_hash(r_emp.ename));
 END LOOP;
END;

SMITH 377
ALLEN 740
WARD 718

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

745

JONES 131
MARTIN 176
BLAKE 568
CLARK 621
SCOTT 1097
KING 235
TURNER 850
ADAMS 156
JAMES 942
FORD 775
MILLER 148

9.15.12 GET_PARAMETER_VALUE

The GET_PARAMETER_VALUE procedure provides the capability to retrieve database
initialization parameter settings.

status BINARY_INTEGER GET_PARAMETER_VALUE(parnam VARCHAR2,
 intval OUT INTEGER, strval OUT VARCHAR2)

Parameters

parnam

Name of the parameter whose value is to be returned. The parameters are listed in
the pg_settings system view.

intval

Value of an integer parameter or the length of strval.

strval

Value of a string parameter.

status

Returns 0 if the parameter value is INTEGER or BOOLEAN. Returns 1 if the
parameter value is a string.

Examples

The following anonymous block shows the values of two initialization parameters.

DECLARE
 v_intval INTEGER;
 v_strval VARCHAR2(80);
BEGIN

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

746

 DBMS_UTILITY.GET_PARAMETER_VALUE('max_fsm_pages', v_intval, v_strval);
 DBMS_OUTPUT.PUT_LINE('max_fsm_pages' || ': ' || v_intval);
 DBMS_UTILITY.GET_PARAMETER_VALUE('client_encoding', v_intval, v_strval);
 DBMS_OUTPUT.PUT_LINE('client_encoding' || ': ' || v_strval);
END;

max_fsm_pages: 72625
client_encoding: SQL_ASCII

9.15.13 GET_TIME

The GET_TIME function provides the capability to return the current time in hundredths
of a second.

time NUMBER GET_TIME

Parameters

time

Number of hundredths of a second from the time in which the program is started.

Examples

The following example shows calls to the GET_TIME function.

SELECT DBMS_UTILITY.GET_TIME FROM DUAL;

 get_time

 1555860

SELECT DBMS_UTILITY.GET_TIME FROM DUAL;

 get_time

 1556037

9.15.14 NAME_TOKENIZE

The NAME_TOKENIZE procedure parses a name into its component parts. Names without
double quotes are uppercased. The double quotes are stripped from names with double
quotes.

NAME_TOKENIZE(name VARCHAR2, a OUT VARCHAR2, b OUT VARCHAR2,
 c OUT VARCHAR2, dblink OUT VARCHAR2,
 nextpos OUT BINARY_INTEGER)

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

747

Parameters

name

String containing a name in the following format:

a[.b[.c]][@dblink]

a

Returns the leftmost component.

b

Returns the second component, if any.

c

Returns the third component, if any.

dblink

Returns the database link name.

nextpos

Position of the last character parsed in name.

Examples

The following stored procedure is used to display the returned parameter values of the
NAME_TOKENIZE procedure for various names.

CREATE OR REPLACE PROCEDURE name_tokenize (
 p_name VARCHAR2
)
IS
 v_a VARCHAR2(30);
 v_b VARCHAR2(30);
 v_c VARCHAR2(30);
 v_dblink VARCHAR2(30);
 v_nextpos BINARY_INTEGER;
BEGIN
 DBMS_UTILITY.NAME_TOKENIZE(p_name,v_a,v_b,v_c,v_dblink,v_nextpos);
 DBMS_OUTPUT.PUT_LINE('name : ' || p_name);
 DBMS_OUTPUT.PUT_LINE('a : ' || v_a);
 DBMS_OUTPUT.PUT_LINE('b : ' || v_b);
 DBMS_OUTPUT.PUT_LINE('c : ' || v_c);
 DBMS_OUTPUT.PUT_LINE('dblink : ' || v_dblink);

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

748

 DBMS_OUTPUT.PUT_LINE('nextpos: ' || v_nextpos);
END;

Tokenize the name, emp:

BEGIN
 name_tokenize('emp');
END;

name : emp
a : EMP
b :
c :
dblink :
nextpos: 3

Tokenize the name, edb.list_emp:

BEGIN
 name_tokenize('edb.list_emp');
END;

name : edb.list_emp
a : EDB
b : LIST_EMP
c :
dblink :
nextpos: 12

Tokenize the name, "edb"."Emp_Admin".update_emp_sal:

BEGIN
 name_tokenize('"edb"."Emp_Admin".update_emp_sal');
END;

name : "edb"."Emp_Admin".update_emp_sal
a : edb
b : Emp_Admin
c : UPDATE_EMP_SAL
dblink :
nextpos: 32

Tokenize the name edb.emp@edb_dblink:

BEGIN
 name_tokenize('edb.emp@edb_dblink');
END;

name : edb.emp@edb_dblink
a : EDB
b : EMP
c :
dblink : EDB_DBLINK
nextpos: 18

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

749

9.15.15 TABLE_TO_COMMA

The TABLE_TO_COMMA procedure converts table of names into a comma-delimited list of
names. Each table entry becomes a list entry. The names must be formatted as valid
identifiers.

TABLE_TO_COMMA(tab { LNAME_ARRAY | UNCL_ARRAY },
 tablen OUT BINARY_INTEGER, list OUT VARCHAR2)

Parameters

tab

Table containing names.

LNAME_ARRAY

A DBMS_UTILITY LNAME_ARRAY (as described in Section 9.15.1).

UNCL_ARRAY

A DBMS_UTILITY UNCL_ARRAY (as described in Section 9.15.2).

tablen

Number of entries in list.

list

Comma-delimited list of names from tab.

Examples

The following example first uses the COMMA_TO_TABLE procedure to convert a comma-
delimited list to a table. The TABLE_TO_COMMA procedure then converts the table back to
a comma-delimited list that is displayed.

CREATE OR REPLACE PROCEDURE table_to_comma (
 p_list VARCHAR2
)
IS
 r_lname DBMS_UTILITY.LNAME_ARRAY;
 v_length BINARY_INTEGER;
 v_listlen BINARY_INTEGER;
 v_list VARCHAR2(80);
BEGIN
 DBMS_UTILITY.COMMA_TO_TABLE(p_list,v_length,r_lname);
 DBMS_OUTPUT.PUT_LINE('Table Entries');
 DBMS_OUTPUT.PUT_LINE('-------------');

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

750

 FOR i IN 1..v_length LOOP
 DBMS_OUTPUT.PUT_LINE(r_lname(i));
 END LOOP;
 DBMS_OUTPUT.PUT_LINE('-------------');
 DBMS_UTILITY.TABLE_TO_COMMA(r_lname,v_listlen,v_list);
 DBMS_OUTPUT.PUT_LINE('Comma-Delimited List: ' || v_list);
END;

EXEC table_to_comma('edb.dept, edb.emp, edb.jobhist')

Table Entries

edb.dept
edb.emp
edb.jobhist

Comma-Delimited List: edb.dept, edb.emp, edb.jobhist

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

751

9.16 UTL_ENCODE

The UTL_ENCODE package provides a way to encode and decode data.

Table 7.7.2 UTL_ENCODE Functions and Procedures

Function/Procedure Return Type Description
BASE64_DECODE(r) RAW Use the BASE64_DECODE function to

translate a Base64 encoded string to the
original RAW value.

BASE64_ENCODE(r) RAW Use the BASE64_ENCODE function to
translate a RAW string to an encoded Base64
value.

BASE64_ENCODE(loid) TEXT Use the BASE64_ENCODE function to
translate a TEXT string to an encoded Base64
value.

MIMEHEADER_DECODE(buf) VARCHAR2 Use the MIMEHEADER_DECODE function to
translate an encoded MIMEHEADER formatted
string to its original value.

MIMEHEADER_ENCODE(buf,
encode_charset, encoding)

VARCHAR2 Use the MIMEHEADER_ENCODE function to
convert and encode a string in MIMEHEADER
format.

QUOTED_PRINTABLE_DECODE(r) RAW Use the QUOTED_PRINTABLE_DECODE
function to translate an encoded string to a
RAW value.

QUOTED_PRINTABLE_ENCODE(r) RAW Use the QUOTED_PRINTABLE_ENCODE
function to translate an input string to a
quoted-printable formatted RAW value.

TEXT_DECODE(buf, encode_charset,
encoding)

VARCHAR2 Use the TEXT_DECODE function to decode a
string encoded by TEXT_ENCODE.

TEXT_ENCODE(buf, encode_charset,
encoding)

VARCHAR2 Use the TEXT_ENCODE function to translate a
string to a user-specified character set, and
then encode the string.

UUDECODE(r) RAW Use the UUDECODE function to translate a
uuencode encoded string to a RAW value.

UUENCODE(r, type, filename,
permission)

RAW Use the UUENCODE function to translate a
RAW string to an encoded uuencode value.

9.16.1 BASE64_DECODE

Use the BASE64_DECODE function to translate a Base64 encoded string to the original
value originally encoded by BASE64_ENCODE. The signature is:

BASE64_DECODE(r IN RAW)

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

752

This function returns a RAW value.

Parameters

r

r is the string that contains the Base64 encoded data that will be translated to
RAW form.

Examples

Note: Before executing the following example, invoke the command:

SET bytea_output = escape;

This command instructs the server to escape any non-printable characters, and to display
BYTEA or RAW values onscreen in readable form. For more information, please refer to
the Postgres Core Documentation, available at:

http://www.enterprisedb.com/docs/en/9.4/pg/datatype-binary.html

The following example first encodes (using BASE64_ENCODE), and then decodes (using
BASE64_DECODE) a string that contains the text abc:

edb=# SELECT UTL_ENCODE.BASE64_ENCODE(CAST ('abc' AS RAW));
 base64_encode

 YWJj
(1 row)

edb=# SELECT UTL_ENCODE.BASE64_DECODE(CAST ('YWJj' AS RAW));
 base64_decode

 abc
(1 row)

9.16.2 BASE64_ENCODE

Use the BASE64_ENCODE function to translate and encode a string in Base64 format (as
described in RFC 4648). This function can be useful when composing MIME email that
you intend to send using the UTL_SMTP package. The BASE64_ENCODE function has
two signatures:

BASE64_ENCODE(r IN RAW)

and

http://www.enterprisedb.com/docs/en/9.4/pg/datatype-binary.html

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

753

BASE64_ENCODE(loid IN OID)

This function returns a RAW value or an OID.

Parameters

r

r specifies the RAW string that will be translated to Base64.

loid

loid specifies the object ID of a large object that will be translated to Base64.

Examples

Note: Before executing the following example, invoke the command:

SET bytea_output = escape;

This command instructs the server to escape any non-printable characters, and to display
BYTEA or RAW values onscreen in readable form. For more information, please refer to
the Postgres Core Documentation, available at:

http://www.enterprisedb.com/docs/en/9.4/pg/datatype-binary.html

The following example first encodes (using BASE64_ENCODE), and then decodes (using
BASE64_DECODE) a string that contains the text abc:

edb=# SELECT UTL_ENCODE.BASE64_ENCODE(CAST ('abc' AS RAW));
 base64_encode

 YWJj
(1 row)

edb=# SELECT UTL_ENCODE.BASE64_DECODE(CAST ('YWJj' AS RAW));
 base64_decode

 abc
(1 row)

9.16.3 MIMEHEADER_DECODE

Use the MIMEHEADER_DECODE function to decode values that are encoded by the
MIMEHEADER_ENCODE function. The signature is:

MIMEHEADER_DECODE(buf IN VARCHAR2)

http://www.enterprisedb.com/docs/en/9.4/pg/datatype-binary.html

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

754

This function returns a VARCHAR2 value.

Parameters

buf

buf contains the value (encoded by MIMEHEADER_ENCODE) that will be
decoded.

Examples

The following examples use the MIMEHEADER_ENCODE and MIMEHEADER_DECODE
functions to first encode, and then decode a string:

edb=# SELECT UTL_ENCODE.MIMEHEADER_ENCODE('What is the date?') FROM DUAL;
 mimeheader_encode

 =?UTF8?Q?What is the date??=
(1 row)

edb=# SELECT UTL_ENCODE.MIMEHEADER_DECODE('=?UTF8?Q?What is the date??=')
FROM DUAL;
 mimeheader_decode

 What is the date?
(1 row)

9.16.4 MIMEHEADER_ENCODE

Use the MIMEHEADER_ENCODE function to convert a string into mime header format, and
then encode the string. The signature is:

MIMEHEADER_ENCODE(buf IN VARCHAR2, encode_charset IN VARCHAR2
DEFAULT NULL, encoding IN INTEGER DEFAULT NULL)

This function returns a VARCHAR2 value.

Parameters

buf

buf contains the string that will be formatted and encoded. The string is a
VARCHAR2 value.

encode_charset

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

755

encode_charset specifies the character set to which the string will be
converted before being formatted and encoded. The default value is NULL.

encoding

encoding specifies the encoding type used when encoding the string. You can
specify:

x Q to enable quoted-printable encoding. If you do not specify a value,
MIMEHEADER_ENCODE will use quoted-printable encoding.

x B to enable base-64 encoding.

Examples

The following examples use the MIMEHEADER_ENCODE and MIMEHEADER_DECODE
functions to first encode, and then decode a string:

edb=# SELECT UTL_ENCODE.MIMEHEADER_ENCODE('What is the date?') FROM DUAL;
 mimeheader_encode

 =?UTF8?Q?What is the date??=
(1 row)

edb=# SELECT UTL_ENCODE.MIMEHEADER_DECODE('=?UTF8?Q?What is the date??=')
FROM DUAL;
 mimeheader_decode

 What is the date?
(1 row)

9.16.5 QUOTED_PRINTABLE_DECODE

Use the QUOTED_PRINTABLE_DECODE function to translate an encoded quoted-printable
string into a decoded RAW string.

The signature is:

QUOTED_PRINTABLE_DECODE(r IN RAW)

This function returns a RAW value.

Parameters

r

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

756

r contains the encoded string that will be decoded. The string is a RAW value,
encoded by QUOTED_PRINTABLE_ENCODE.

Examples

Note: Before executing the following example, invoke the command:

SET bytea_output = escape;

This command instructs the server to escape any non-printable characters, and to display
BYTEA or RAW values onscreen in readable form. For more information, please refer to
the Postgres Core Documentation, available at:

http://www.enterprisedb.com/docs/en/9.4/pg/datatype-binary.html

The following example first encodes and then decodes a string:

edb=# SELECT UTL_ENCODE.QUOTED_PRINTABLE_ENCODE('E=mc2') FROM DUAL;
quoted_printable_encode

 E=3Dmc2
(1 row)

edb=# SELECT UTL_ENCODE.QUOTED_PRINTABLE_DECODE('E=3Dmc2') FROM DUAL;
 quoted_printable_decode

 E=mc2
(1 row)

9.16.6 QUOTED_PRINTABLE_ENCODE

Use the QUOTED_PRINTABLE_ENCODE function to translate and encode a string in
quoted-printable format. The signature is:

QUOTED_PRINTABLE_ENCODE(r IN RAW)

This function returns a RAW value.

Parameters

r

r contains the string (a RAW value) that will be encoded in a quoted-printable
format.

Examples

http://www.enterprisedb.com/docs/en/9.4/pg/datatype-binary.html

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

757

Note: Before executing the following example, invoke the command:

SET bytea_output = escape;

This command instructs the server to escape any non-printable characters, and to display
BYTEA or RAW values onscreen in readable form. For more information, please refer to
the Postgres Core Documentation, available at:

http://www.enterprisedb.com/docs/en/9.4/pg/datatype-binary.html

The following example first encodes and then decodes a string:

edb=# SELECT UTL_ENCODE.QUOTED_PRINTABLE_ENCODE('E=mc2') FROM DUAL;
quoted_printable_encode

 E=3Dmc2
(1 row)

edb=# SELECT UTL_ENCODE.QUOTED_PRINTABLE_DECODE('E=3Dmc2') FROM DUAL;
 quoted_printable_decode

 E=mc2
(1 row)

9.16.7 TEXT_DECODE

Use the TEXT_DECODE function to translate and decode an encoded string to the
VARCHAR2 value that was originally encoded by the TEXT_ENCODE function. The
signature is:

TEXT_DECODE(buf IN VARCHAR2, encode_charset IN VARCHAR2 DEFAULT
NULL, encoding IN PLS_INTEGER DEFAULT NULL)

This function returns a VARCHAR2 value.

Parameters

buf

buf contains the encoded string that will be translated to the original value
encoded by TEXT_ENCODE.

encode_charset

encode_charset specifies the character set to which the string will be
translated before encoding. The default value is NULL.

http://www.enterprisedb.com/docs/en/9.4/pg/datatype-binary.html

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

758

encoding

encoding specifies the encoding type used by TEXT_DECODE. Specify:

x UTL_ENCODE.BASE64 to specify base-64 encoding.
x UTL_ENCODE.QUOTED_PRINTABLE to specify quoted printable encoding.

This is the default.

Examples

The following example uses the TEXT_ENCODE and TEXT_DECODE functions to first
encode, and then decode a string:

edb=# SELECT UTL_ENCODE.TEXT_ENCODE('What is the date?', 'BIG5',
UTL_ENCODE.BASE64) FROM DUAL;
 text_encode

 V2hhdCBpcyB0aGUgZGF0ZT8=
(1 row)

edb=# SELECT UTL_ENCODE.TEXT_DECODE('V2hhdCBpcyB0aGUgZGF0ZT8=', 'BIG5',
UTL_ENCODE.BASE64) FROM DUAL;
 text_decode

 What is the date?
(1 row)

9.16.8 TEXT_ENCODE

Use the TEXT_ENCODE function to translate a string to a user-specified character set, and
then encode the string. The signature is:

TEXT_DECODE(buf IN VARCHAR2, encode_charset IN VARCHAR2 DEFAULT
NULL, encoding IN PLS_INTEGER DEFAULT NULL)

This function returns a VARCHAR2 value.

Parameters

buf

buf contains the encoded string that will be translated to the specified character
set and encoded by TEXT_ENCODE.

encode_charset

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

759

encode_charset specifies the character set to which the value will be translated
before encoding. The default value is NULL.

encoding

encoding specifies the encoding type used by TEXT_ENCODE. Specify:

x UTL_ENCODE.BASE64 to specify base-64 encoding.
x UTL_ENCODE.QUOTED_PRINTABLE to specify quoted printable encoding.

This is the default.

Examples

The following example uses the TEXT_ENCODE and TEXT_DECODE functions to first
encode, and then decode a string:

edb=# SELECT UTL_ENCODE.TEXT_ENCODE('What is the date?', 'BIG5',
UTL_ENCODE.BASE64) FROM DUAL;
 text_encode

 V2hhdCBpcyB0aGUgZGF0ZT8=
(1 row)

edb=# SELECT UTL_ENCODE.TEXT_DECODE('V2hhdCBpcyB0aGUgZGF0ZT8=', 'BIG5',
UTL_ENCODE.BASE64) FROM DUAL;
 text_decode

 What is the date?
(1 row)

9.16.9 UUDECODE

Use the UUDECODE function to translate and decode a uuencode encoded string to the RAW
value that was originally encoded by the UUENCODE function. The signature is:

UUDECODE(r IN RAW)

This function returns a RAW value.

Note: If you are using the Advanced Server UUDECODE function to decode uuencoded
data that was created by the Oracle implementation of the UTL_ENCODE.UUENCODE
function, then you must first set the Advanced Server configuration parameter
utl_encode.uudecode_redwood to TRUE before invoking the Advanced Server
UUDECODE function on the Oracle-created data. (For example, this situation may occur if
you migrated Oracle tables containing uuencoded data to an Advanced Server database.)

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

760

The uuencoded data created by the Oracle version of the UUENCODE function results in a
format that differs from the uuencoded data created by the Advanced Server UUENCODE
function. As a result, attempting to use the Advanced Server UUDECODE function on the
Oracle uuencoded data results in an error unless the configuration parameter
utl_encode.uudecode_redwood is set to TRUE.

However, if you are using the Advanced Server UUDECODE function on uuencoded data
created by the Advanced Server UUENCODE function, then
utl_encode.uudecode_redwood must be set to FALSE, which is the default setting.

Parameters

r

r contains the uuencoded string that will be translated to RAW.

Examples

Note: Before executing the following example, invoke the command:

SET bytea_output = escape;

This command instructs the server to escape any non-printable characters, and to display
BYTEA or RAW values onscreen in readable form. For more information, please refer to
the Postgres Core Documentation, available at:

http://www.enterprisedb.com/docs/en/9.4/pg/datatype-binary.html

The following example uses UUENCODE and UUDECODE to first encode and then decode a
string:

edb=# SET bytea_output = escape;
SET
edb=# SELECT UTL_ENCODE.UUENCODE('What is the date?') FROM DUAL;
 uuencode
--
 begin 0 uuencode.txt\01215VAA="!I<R!T:&4@9&%T93\\`\012`\012end\012
(1 row)

edb=# SELECT UTL_ENCODE.UUDECODE
edb-# ('begin 0 uuencode.txt\01215VAA="!I<R!T:&4@9&%T93\\`\012`\012end\012')
edb-# FROM DUAL;
 uudecode

 What is the date?
(1 row)

http://www.enterprisedb.com/docs/en/9.4/pg/datatype-binary.html

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

761

9.16.10 UUENCODE

Use the UUENCODE function to translate RAW data into a uuencode formatted encoded
string. The signature is:

UUENCODE(r IN RAW, type IN INTEGER DEFAULT 1, filename IN
VARCHAR2 DEFAULT NULL, permission IN VARCHAR2 DEFAULT NULL)

This function returns a RAW value.

Parameters

r

r contains the RAW string that will be translated to uuencode format.

type

type is an INTEGER value or constant that specifies the type of uuencoded string
that will be returned; the default value is 1. The possible values are:

Value Constant
1 complete
2 header_piece
3 middle_piece
4 end_piece

filename

filename is a VARCHAR2 value that specifies the file name that you want to
embed in the encoded form; if you do not specify a file name, UUENCODE will
include a filename of uuencode.txt in the encoded form.

permission

permission is a VARCHAR2 that specifies the permission mode; the default
value is NULL.

Examples

Note: Before executing the following example, invoke the command:

SET bytea_output = escape;

This command instructs the server to escape any non-printable characters, and to display
BYTEA or RAW values onscreen in readable form. For more information, please refer to
the Postgres Core Documentation, available at:

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

762

http://www.enterprisedb.com/docs/en/9.4/pg/datatype-binary.html

The following example uses UUENCODE and UUDECODE to first encode and then decode a
string:

edb=# SET bytea_output = escape;
SET
edb=# SELECT UTL_ENCODE.UUENCODE('What is the date?') FROM DUAL;
 uuencode
--
 begin 0 uuencode.txt\01215VAA="!I<R!T:&4@9&%T93\\`\012`\012end\012
(1 row)

edb=# SELECT UTL_ENCODE.UUDECODE
edb-# ('begin 0 uuencode.txt\01215VAA="!I<R!T:&4@9&%T93\\`\012`\012end\012')
edb-# FROM DUAL;
 uudecode

 What is the date?
(1 row)

http://www.enterprisedb.com/docs/en/9.4/pg/datatype-binary.html

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

763

9.17 UTL_FILE

The UTL_FILE package provides the capability to read from, and write to files on the
operating system‟s file system. Non-superusers must be granted EXECUTE privilege on
the UTL_FILE package by a superuser before using any of the functions or procedures in
the package. For example the following command grants the privilege to user mary:

GRANT EXECUTE ON PACKAGE SYS.UTL_FILE TO mary;

Also, the operating system username, enterprisedb, must have the appropriate read
and/or write permissions on the directories and files to be accessed using the UTL_FILE
functions and procedures. If the required file permissions are not in place, an exception is
thrown in the UTL_FILE function or procedure.

A handle to the file to be written to, or read from is used to reference the file. The file
handle is defined by a public variable in the UTL_FILE package named,
UTL_FILE.FILE_TYPE. A variable of type FILE_TYPE must be declared to receive the
file handle returned by calling the FOPEN function. The file handle is then used for all
subsequent operations on the file.

References to directories on the file system are done using the directory name or alias
that is assigned to the directory using the CREATE DIRECTORY command. The
procedures and functions available in the UTL_FILE package are listed in the following
table.

Table 7-9-18 UTL_FILE Functions/Procedures

Function/Procedure Return
Type

Description

FCLOSE(file IN OUT) n/a Closes the specified file identified by file.
FCLOSE_ALL n/a Closes all open files.
FCOPY(location, filename,
dest_dir, dest_file [, start_line
[, end_line]])

n/a Copies filename in the directory identified by
location to file, dest_file, in directory,
dest_dir, starting from line, start_line, to
line, end_line.

FFLUSH(file) n/a Forces data in the buffer to be written to disk in
the file identified by file.

FOPEN(location, filename,
open_mode [, max_linesize])

FILE_TYPE Opens file, filename, in the directory identified
by location.

FREMOVE(location, filename) n/a Removes the specified file from the file system.
FRENAME(location, filename,
dest_dir, dest_file [, overwrite
])

n/a Renames the specified file.

GET_LINE(file, buffer OUT) n/a Reads a line of text into variable, buffer, from
the file identified by file.

IS_OPEN(file) BOOLEAN Determines whether or not the given file is open.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

764

Function/Procedure Return
Type

Description

NEW_LINE(file [, lines]) n/a Writes an end-of-line character sequence into the
file.

PUT(file, buffer) n/a Writes buffer to the given file. PUT does not
write an end-of-line character sequence.

PUT_LINE(file, buffer) n/a Writes buffer to the given file. An end-of-line
character sequence is added by the PUT_LINE
procedure.

PUTF(file, format [, arg1] [,
...])

n/a Writes a formatted string to the given file. Up to
five substitution parameters, arg1,...arg5 may
be specified for replacement in format.

UTL_FILE Exception Codes

The UTL_FILE package reports the following exception codes:

Exception Code Condition name
-29283 invalid_operation
-29285 write_error
-29284 read_error
-29282 invalid_filehandle
-29287 invalid_maxlinesize
-29281 invalid_mode
-29280 invalid_path

9.17.1 Setting File Permissions with utl_file.umask

When a UTL_FILE function or procedure creates a file, there are default file permissions
as shown by the following.

-rw------- 1 enterprisedb enterprisedb 21 Jul 24 16:08 utlfile

Note that all permissions are denied on users belonging to the enterprisedb group as
well as all other users. Only the enterprisedb user has read and write permissions on
the created file.

If you wish to have a different set of file permissions on files created by the UTL_FILE
functions and procedures, you can accomplish this by setting the utl_file.umask
configuration parameter.

The utl_file.umask parameter sets the file mode creation mask or simply, the mask,
in a manner similar to the Linux umask command. This is for usage only within the
Advanced Server UTL_FILE package.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

765

Note: The utl_file.umask parameter is not supported on Windows systems.

The value specified for utl_file.umask is a 3 or 4-character octal string that would be
valid for the Linux umask command. The setting determines the permissions on files
created by the UTL_FILE functions and procedures. (Refer to any information source
regarding Linux or Unix systems for information on file permissions and the usage of the
umask command.)

The following is an example of setting the file permissions with utl_file.umask.

First, set up the directory in the file system to be used by the UTL_FILE package. Be sure
the operating system account, enterprisedb or postgres, whichever is applicable,
can read and write in the directory.

mkdir /tmp/utldir
chmod 777 /tmp/utldir

The CREATE DIRECTORY command is issued in psql to create the directory database
object using the file system directory created in the preceding step.

CREATE DIRECTORY utldir AS '/tmp/utldir';

Set the utl_file.umask configuration parameter. The following setting allows the file
owner any permission. Group users and other users are permitted any permission except
for the execute permission.

SET utl_file.umask TO '0011';

In the same session during which the utl_file.umask parameter is set to the desired
value, run the UTL_FILE functions and procedures.

DECLARE
 v_utlfile UTL_FILE.FILE_TYPE;
 v_directory VARCHAR2(50) := 'utldir';
 v_filename VARCHAR2(20) := 'utlfile';
BEGIN
 v_utlfile := UTL_FILE.FOPEN(v_directory, v_filename, 'w');
 UTL_FILE.PUT_LINE(v_utlfile, 'Simple one-line file');
 DBMS_OUTPUT.PUT_LINE('Created file: ' || v_filename);
 UTL_FILE.FCLOSE(v_utlfile);
END;

The permission settings on the resulting file show that group users and other users have
read and write permissions on the file as well as the file owner.

$ pwd
/tmp/utldir
$ ls -l
total 4
-rw-rw-rw- 1 enterprisedb enterprisedb 21 Jul 24 16:04 utlfile

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

766

This parameter can also be set on a per role basis with the ALTER ROLE command, on a
per database basis with the ALTER DATABASE command, or for the entire database server
instance by setting it in the postgresql.conf file.

9.17.2 FCLOSE

The FCLOSE procedure closes an open file.

FCLOSE(file IN OUT FILE_TYPE)

Parameters

file

Variable of type FILE_TYPE containing a file handle of the file to be closed.

9.17.3 FCLOSE_ALL

The FLCLOSE_ALL procedures closes all open files. The procedure executes successfully
even if there are no open files to close.

FCLOSE_ALL

9.17.4 FCOPY

The FCOPY procedure copies text from one file to another.

FCOPY(location VARCHAR2, filename VARCHAR2,
 dest_dir VARCHAR2, dest_file VARCHAR2
 [, start_line PLS_INTEGER [, end_line PLS_INTEGER]])

Parameters

location

Directory name, as stored in pg_catalog.edb_dir.dirname, of the directory
containing the file to be copied.

filename

Name of the source file to be copied.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

767

dest_dir

Directory name, as stored in pg_catalog.edb_dir.dirname, of the directory
to which the file is to be copied.

dest_file

Name of the destination file.

start_line

Line number in the source file from which copying will begin. The default is 1.

end_line

Line number of the last line in the source file to be copied. If omitted or null,
copying will go to the last line of the file.

Examples

The following makes a copy of a file, C:\TEMP\EMPDIR\empfile.csv, containing a
comma-delimited list of employees from the emp table. The copy, empcopy.csv, is then
listed.

CREATE DIRECTORY empdir AS 'C:/TEMP/EMPDIR';

DECLARE
 v_empfile UTL_FILE.FILE_TYPE;
 v_src_dir VARCHAR2(50) := 'empdir';
 v_src_file VARCHAR2(20) := 'empfile.csv';
 v_dest_dir VARCHAR2(50) := 'empdir';
 v_dest_file VARCHAR2(20) := 'empcopy.csv';
 v_emprec VARCHAR2(120);
 v_count INTEGER := 0;
BEGIN
 UTL_FILE.FCOPY(v_src_dir,v_src_file,v_dest_dir,v_dest_file);
 v_empfile := UTL_FILE.FOPEN(v_dest_dir,v_dest_file,'r');
 DBMS_OUTPUT.PUT_LINE('The following is the destination file, ''' ||
 v_dest_file || '''');
 LOOP
 UTL_FILE.GET_LINE(v_empfile,v_emprec);
 DBMS_OUTPUT.PUT_LINE(v_emprec);
 v_count := v_count + 1;
 END LOOP;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 UTL_FILE.FCLOSE(v_empfile);
 DBMS_OUTPUT.PUT_LINE(v_count || ' records retrieved');
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('SQLERRM: ' || SQLERRM);
 DBMS_OUTPUT.PUT_LINE('SQLCODE: ' || SQLCODE);
END;

The following is the destination file, 'empcopy.csv'

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

768

7369,SMITH,CLERK,7902,17-DEC-80,800,,20
7499,ALLEN,SALESMAN,7698,20-FEB-81,1600,300,30
7521,WARD,SALESMAN,7698,22-FEB-81,1250,500,30
7566,JONES,MANAGER,7839,02-APR-81,2975,,20
7654,MARTIN,SALESMAN,7698,28-SEP-81,1250,1400,30
7698,BLAKE,MANAGER,7839,01-MAY-81,2850,,30
7782,CLARK,MANAGER,7839,09-JUN-81,2450,,10
7788,SCOTT,ANALYST,7566,19-APR-87,3000,,20
7839,KING,PRESIDENT,,17-NOV-81,5000,,10
7844,TURNER,SALESMAN,7698,08-SEP-81,1500,0,30
7876,ADAMS,CLERK,7788,23-MAY-87,1100,,20
7900,JAMES,CLERK,7698,03-DEC-81,950,,30
7902,FORD,ANALYST,7566,03-DEC-81,3000,,20
7934,MILLER,CLERK,7782,23-JAN-82,1300,,10
14 records retrieved

9.17.5 FFLUSH

The FFLUSH procedure flushes unwritten data from the write buffer to the file.

FFLUSH(file FILE_TYPE)

Parameters

file

Variable of type FILE_TYPE containing a file handle.

Examples

Each line is flushed after the NEW_LINE procedure is called.

DECLARE
 v_empfile UTL_FILE.FILE_TYPE;
 v_directory VARCHAR2(50) := 'empdir';
 v_filename VARCHAR2(20) := 'empfile.csv';
 CURSOR emp_cur IS SELECT * FROM emp ORDER BY empno;
BEGIN
 v_empfile := UTL_FILE.FOPEN(v_directory,v_filename,'w');
 FOR i IN emp_cur LOOP
 UTL_FILE.PUT(v_empfile,i.empno);
 UTL_FILE.PUT(v_empfile,',');
 UTL_FILE.PUT(v_empfile,i.ename);
 UTL_FILE.PUT(v_empfile,',');
 UTL_FILE.PUT(v_empfile,i.job);
 UTL_FILE.PUT(v_empfile,',');
 UTL_FILE.PUT(v_empfile,i.mgr);
 UTL_FILE.PUT(v_empfile,',');
 UTL_FILE.PUT(v_empfile,i.hiredate);
 UTL_FILE.PUT(v_empfile,',');
 UTL_FILE.PUT(v_empfile,i.sal);
 UTL_FILE.PUT(v_empfile,',');
 UTL_FILE.PUT(v_empfile,i.comm);
 UTL_FILE.PUT(v_empfile,',');

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

769

 UTL_FILE.PUT(v_empfile,i.deptno);
 UTL_FILE.NEW_LINE(v_empfile);
 UTL_FILE.FFLUSH(v_empfile);
 END LOOP;
 DBMS_OUTPUT.PUT_LINE('Created file: ' || v_filename);
 UTL_FILE.FCLOSE(v_empfile);
END;

9.17.6 FOPEN

The FOPEN function opens a file for I/O.

filetype FILE_TYPE FOPEN(location VARCHAR2, filename VARCHAR2,
 open_mode VARCHAR2 [, max_linesize BINARY_INTEGER])

Parameters

location

Directory name, as stored in pg_catalog.edb_dir.dirname, of the directory
containing the file to be opened.

filename

Name of the file to be opened.

open_mode

Mode in which the file will be opened. Modes are: a - append to file; r - read
from file; w - write to file.

max_linesize

Maximum size of a line in characters. In read mode, an exception is thrown if an
attempt is made to read a line exceeding max_linesize. In write and append
modes, an exception is thrown if an attempt is made to write a line exceeding
max_linesize. The end-of-line character(s) are not included in determining if
the maximum line size is exceeded.

filetype

Variable of type FILE_TYPE containing the file handle of the opened file.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

770

9.17.7 FREMOVE

The FREMOVE procedure removes a file from the system.

FREMOVE(location VARCHAR2, filename VARCHAR2)

An exception is thrown if the file to be removed does not exist.

Parameters

location

Directory name, as stored in pg_catalog.edb_dir.dirname, of the directory
containing the file to be removed.

filename

Name of the file to be removed.

Examples

The following removes file empfile.csv.

DECLARE
 v_directory VARCHAR2(50) := 'empdir';
 v_filename VARCHAR2(20) := 'empfile.csv';
BEGIN
 UTL_FILE.FREMOVE(v_directory,v_filename);
 DBMS_OUTPUT.PUT_LINE('Removed file: ' || v_filename);
 EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('SQLERRM: ' || SQLERRM);
 DBMS_OUTPUT.PUT_LINE('SQLCODE: ' || SQLCODE);
END;

Removed file: empfile.csv

9.17.8 FRENAME

The FRENAME procedure renames a given file. This effectively moves a file from one
location to another.

FRENAME(location VARCHAR2, filename VARCHAR2,
 dest_dir VARCHAR2, dest_file VARCHAR2, [overwrite BOOLEAN])

Parameters

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

771

location

Directory name, as stored in pg_catalog.edb_dir.dirname, of the directory
containing the file to be renamed.

filename

Name of the source file to be renamed.

dest_dir

Directory name, as stored in pg_catalog.edb_dir.dirname, of the directory
to which the renamed file is to exist.

dest_file

New name of the original file.

overwrite

Replaces any existing file named dest_file in dest_dir if set to TRUE,
otherwise an exception is thrown if set to FALSE. This is the default.

Examples

The following renames a file, C:\TEMP\EMPDIR\empfile.csv, containing a comma-
delimited list of employees from the emp table. The renamed file,
C:\TEMP\NEWDIR\newemp.csv, is then listed.

CREATE DIRECTORY "newdir" AS 'C:/TEMP/NEWDIR';

DECLARE
 v_empfile UTL_FILE.FILE_TYPE;
 v_src_dir VARCHAR2(50) := 'empdir';
 v_src_file VARCHAR2(20) := 'empfile.csv';
 v_dest_dir VARCHAR2(50) := 'newdir';
 v_dest_file VARCHAR2(50) := 'newemp.csv';
 v_replace BOOLEAN := FALSE;
 v_emprec VARCHAR2(120);
 v_count INTEGER := 0;
BEGIN
 UTL_FILE.FRENAME(v_src_dir,v_src_file,v_dest_dir,
 v_dest_file,v_replace);
 v_empfile := UTL_FILE.FOPEN(v_dest_dir,v_dest_file,'r');
 DBMS_OUTPUT.PUT_LINE('The following is the renamed file, ''' ||
 v_dest_file || '''');
 LOOP
 UTL_FILE.GET_LINE(v_empfile,v_emprec);
 DBMS_OUTPUT.PUT_LINE(v_emprec);
 v_count := v_count + 1;
 END LOOP;
 EXCEPTION

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

772

 WHEN NO_DATA_FOUND THEN
 UTL_FILE.FCLOSE(v_empfile);
 DBMS_OUTPUT.PUT_LINE(v_count || ' records retrieved');
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('SQLERRM: ' || SQLERRM);
 DBMS_OUTPUT.PUT_LINE('SQLCODE: ' || SQLCODE);
END;

The following is the renamed file, 'newemp.csv'
7369,SMITH,CLERK,7902,17-DEC-80 00:00:00,800.00,,20
7499,ALLEN,SALESMAN,7698,20-FEB-81 00:00:00,1600.00,300.00,30
7521,WARD,SALESMAN,7698,22-FEB-81 00:00:00,1250.00,500.00,30
7566,JONES,MANAGER,7839,02-APR-81 00:00:00,2975.00,,20
7654,MARTIN,SALESMAN,7698,28-SEP-81 00:00:00,1250.00,1400.00,30
7698,BLAKE,MANAGER,7839,01-MAY-81 00:00:00,2850.00,,30
7782,CLARK,MANAGER,7839,09-JUN-81 00:00:00,2450.00,,10
7788,SCOTT,ANALYST,7566,19-APR-87 00:00:00,3000.00,,20
7839,KING,PRESIDENT,,17-NOV-81 00:00:00,5000.00,,10
7844,TURNER,SALESMAN,7698,08-SEP-81 00:00:00,1500.00,0.00,30
7876,ADAMS,CLERK,7788,23-MAY-87 00:00:00,1100.00,,20
7900,JAMES,CLERK,7698,03-DEC-81 00:00:00,950.00,,30
7902,FORD,ANALYST,7566,03-DEC-81 00:00:00,3000.00,,20
7934,MILLER,CLERK,7782,23-JAN-82 00:00:00,1300.00,,10
14 records retrieved

9.17.9 GET_LINE

The GET_LINE procedure reads a line of text from a given file up to, but not including
the end-of-line terminator. A NO_DATA_FOUND exception is thrown when there are no
more lines to read.

GET_LINE(file FILE_TYPE, buffer OUT VARCHAR2)

Parameters

file

Variable of type FILE_TYPE containing the file handle of the opened file.

buffer

Variable to receive a line from the file.

Examples

The following anonymous block reads through and displays the records in file
empfile.csv.

DECLARE
 v_empfile UTL_FILE.FILE_TYPE;
 v_directory VARCHAR2(50) := 'empdir';

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

773

 v_filename VARCHAR2(20) := 'empfile.csv';
 v_emprec VARCHAR2(120);
 v_count INTEGER := 0;
BEGIN
 v_empfile := UTL_FILE.FOPEN(v_directory,v_filename,'r');
 LOOP
 UTL_FILE.GET_LINE(v_empfile,v_emprec);
 DBMS_OUTPUT.PUT_LINE(v_emprec);
 v_count := v_count + 1;
 END LOOP;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 UTL_FILE.FCLOSE(v_empfile);
 DBMS_OUTPUT.PUT_LINE('End of file ' || v_filename || ' - ' ||
 v_count || ' records retrieved');
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('SQLERRM: ' || SQLERRM);
 DBMS_OUTPUT.PUT_LINE('SQLCODE: ' || SQLCODE);
END;

7369,SMITH,CLERK,7902,17-DEC-80 00:00:00,800.00,,20
7499,ALLEN,SALESMAN,7698,20-FEB-81 00:00:00,1600.00,300.00,30
7521,WARD,SALESMAN,7698,22-FEB-81 00:00:00,1250.00,500.00,30
7566,JONES,MANAGER,7839,02-APR-81 00:00:00,2975.00,,20
7654,MARTIN,SALESMAN,7698,28-SEP-81 00:00:00,1250.00,1400.00,30
7698,BLAKE,MANAGER,7839,01-MAY-81 00:00:00,2850.00,,30
7782,CLARK,MANAGER,7839,09-JUN-81 00:00:00,2450.00,,10
7788,SCOTT,ANALYST,7566,19-APR-87 00:00:00,3000.00,,20
7839,KING,PRESIDENT,,17-NOV-81 00:00:00,5000.00,,10
7844,TURNER,SALESMAN,7698,08-SEP-81 00:00:00,1500.00,0.00,30
7876,ADAMS,CLERK,7788,23-MAY-87 00:00:00,1100.00,,20
7900,JAMES,CLERK,7698,03-DEC-81 00:00:00,950.00,,30
7902,FORD,ANALYST,7566,03-DEC-81 00:00:00,3000.00,,20
7934,MILLER,CLERK,7782,23-JAN-82 00:00:00,1300.00,,10
End of file empfile.csv - 14 records retrieved

9.17.10 IS_OPEN

The IS_OPEN function determines whether or not the given file is open.

status BOOLEAN IS_OPEN(file FILE_TYPE)

Parameters

file

Variable of type FILE_TYPE containing the file handle of the file to be tested.

status

TRUE if the given file is open, FALSE otherwise.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

774

9.17.11 NEW_LINE

The NEW_LINE procedure writes an end-of-line character sequence in the file.

NEW_LINE(file FILE_TYPE [, lines INTEGER])

Parameters

file

Variable of type FILE_TYPE containing the file handle of the file to which end-
of-line character sequences are to be written.

lines

Number of end-of-line character sequences to be written. The default is one.

Examples

A file containing a double-spaced list of employee records is written.

DECLARE
 v_empfile UTL_FILE.FILE_TYPE;
 v_directory VARCHAR2(50) := 'empdir';
 v_filename VARCHAR2(20) := 'empfile.csv';
 CURSOR emp_cur IS SELECT * FROM emp ORDER BY empno;
BEGIN
 v_empfile := UTL_FILE.FOPEN(v_directory,v_filename,'w');
 FOR i IN emp_cur LOOP
 UTL_FILE.PUT(v_empfile,i.empno);
 UTL_FILE.PUT(v_empfile,',');
 UTL_FILE.PUT(v_empfile,i.ename);
 UTL_FILE.PUT(v_empfile,',');
 UTL_FILE.PUT(v_empfile,i.job);
 UTL_FILE.PUT(v_empfile,',');
 UTL_FILE.PUT(v_empfile,i.mgr);
 UTL_FILE.PUT(v_empfile,',');
 UTL_FILE.PUT(v_empfile,i.hiredate);
 UTL_FILE.PUT(v_empfile,',');
 UTL_FILE.PUT(v_empfile,i.sal);
 UTL_FILE.PUT(v_empfile,',');
 UTL_FILE.PUT(v_empfile,i.comm);
 UTL_FILE.PUT(v_empfile,',');
 UTL_FILE.PUT(v_empfile,i.deptno);
 UTL_FILE.NEW_LINE(v_empfile,2);
 END LOOP;
 DBMS_OUTPUT.PUT_LINE('Created file: ' || v_filename);
 UTL_FILE.FCLOSE(v_empfile);
END;

Created file: empfile.csv

This file is then displayed:

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

775

C:\TEMP\EMPDIR>TYPE empfile.csv

7369,SMITH,CLERK,7902,17-DEC-80 00:00:00,800.00,,20

7499,ALLEN,SALESMAN,7698,20-FEB-81 00:00:00,1600.00,300.00,30

7521,WARD,SALESMAN,7698,22-FEB-81 00:00:00,1250.00,500.00,30

7566,JONES,MANAGER,7839,02-APR-81 00:00:00,2975.00,,20

7654,MARTIN,SALESMAN,7698,28-SEP-81 00:00:00,1250.00,1400.00,30

7698,BLAKE,MANAGER,7839,01-MAY-81 00:00:00,2850.00,,30

7782,CLARK,MANAGER,7839,09-JUN-81 00:00:00,2450.00,,10

7788,SCOTT,ANALYST,7566,19-APR-87 00:00:00,3000.00,,20

7839,KING,PRESIDENT,,17-NOV-81 00:00:00,5000.00,,10

7844,TURNER,SALESMAN,7698,08-SEP-81 00:00:00,1500.00,0.00,30

7876,ADAMS,CLERK,7788,23-MAY-87 00:00:00,1100.00,,20

7900,JAMES,CLERK,7698,03-DEC-81 00:00:00,950.00,,30

7902,FORD,ANALYST,7566,03-DEC-81 00:00:00,3000.00,,20

7934,MILLER,CLERK,7782,23-JAN-82 00:00:00,1300.00,,10

9.17.12 PUT

The PUT procedure writes a string to the given file. No end-of-line character sequence is
written at the end of the string. Use the NEW_LINE procedure to add an end-of-line
character sequence.

PUT(file FILE_TYPE, buffer { DATE | NUMBER | TIMESTAMP |
 VARCHAR2 })

Parameters

file

Variable of type FILE_TYPE containing the file handle of the file to which the
given string is to be written.

buffer

Text to be written to the specified file.

Examples

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

776

The following example uses the PUT procedure to create a comma-delimited file of
employees from the emp table.

DECLARE
 v_empfile UTL_FILE.FILE_TYPE;
 v_directory VARCHAR2(50) := 'empdir';
 v_filename VARCHAR2(20) := 'empfile.csv';
 CURSOR emp_cur IS SELECT * FROM emp ORDER BY empno;
BEGIN
 v_empfile := UTL_FILE.FOPEN(v_directory,v_filename,'w');
 FOR i IN emp_cur LOOP
 UTL_FILE.PUT(v_empfile,i.empno);
 UTL_FILE.PUT(v_empfile,',');
 UTL_FILE.PUT(v_empfile,i.ename);
 UTL_FILE.PUT(v_empfile,',');
 UTL_FILE.PUT(v_empfile,i.job);
 UTL_FILE.PUT(v_empfile,',');
 UTL_FILE.PUT(v_empfile,i.mgr);
 UTL_FILE.PUT(v_empfile,',');
 UTL_FILE.PUT(v_empfile,i.hiredate);
 UTL_FILE.PUT(v_empfile,',');
 UTL_FILE.PUT(v_empfile,i.sal);
 UTL_FILE.PUT(v_empfile,',');
 UTL_FILE.PUT(v_empfile,i.comm);
 UTL_FILE.PUT(v_empfile,',');
 UTL_FILE.PUT(v_empfile,i.deptno);
 UTL_FILE.NEW_LINE(v_empfile);
 END LOOP;
 DBMS_OUTPUT.PUT_LINE('Created file: ' || v_filename);
 UTL_FILE.FCLOSE(v_empfile);
END;

Created file: empfile.csv

The following is the contents of empfile.csv created above:

C:\TEMP\EMPDIR>TYPE empfile.csv

7369,SMITH,CLERK,7902,17-DEC-80 00:00:00,800.00,,20
7499,ALLEN,SALESMAN,7698,20-FEB-81 00:00:00,1600.00,300.00,30
7521,WARD,SALESMAN,7698,22-FEB-81 00:00:00,1250.00,500.00,30
7566,JONES,MANAGER,7839,02-APR-81 00:00:00,2975.00,,20
7654,MARTIN,SALESMAN,7698,28-SEP-81 00:00:00,1250.00,1400.00,30
7698,BLAKE,MANAGER,7839,01-MAY-81 00:00:00,2850.00,,30
7782,CLARK,MANAGER,7839,09-JUN-81 00:00:00,2450.00,,10
7788,SCOTT,ANALYST,7566,19-APR-87 00:00:00,3000.00,,20
7839,KING,PRESIDENT,,17-NOV-81 00:00:00,5000.00,,10
7844,TURNER,SALESMAN,7698,08-SEP-81 00:00:00,1500.00,0.00,30
7876,ADAMS,CLERK,7788,23-MAY-87 00:00:00,1100.00,,20
7900,JAMES,CLERK,7698,03-DEC-81 00:00:00,950.00,,30
7902,FORD,ANALYST,7566,03-DEC-81 00:00:00,3000.00,,20
7934,MILLER,CLERK,7782,23-JAN-82 00:00:00,1300.00,,10

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

777

9.17.13 PUT_LINE

The PUT_LINE procedure writes a single line to the given file including an end-of-line
character sequence.

PUT_LINE(file FILE_TYPE, buffer { DATE | NUMBER | TIMESTAMP |
 VARCHAR2 })

Parameters

file

Variable of type FILE_TYPE containing the file handle of the file to which the
given line is to be written.

buffer

Text to be written to the specified file.

Examples

The following example uses the PUT_LINE procedure to create a comma-delimited file of
employees from the emp table.

DECLARE
 v_empfile UTL_FILE.FILE_TYPE;
 v_directory VARCHAR2(50) := 'empdir';
 v_filename VARCHAR2(20) := 'empfile.csv';
 v_emprec VARCHAR2(120);
 CURSOR emp_cur IS SELECT * FROM emp ORDER BY empno;
BEGIN
 v_empfile := UTL_FILE.FOPEN(v_directory,v_filename,'w');
 FOR i IN emp_cur LOOP
 v_emprec := i.empno || ',' || i.ename || ',' || i.job || ',' ||
 NVL(LTRIM(TO_CHAR(i.mgr,'9999')),'') || ',' || i.hiredate ||
 ',' || i.sal || ',' ||
 NVL(LTRIM(TO_CHAR(i.comm,'9990.99')),'') || ',' || i.deptno;
 UTL_FILE.PUT_LINE(v_empfile,v_emprec);
 END LOOP;
 DBMS_OUTPUT.PUT_LINE('Created file: ' || v_filename);
 UTL_FILE.FCLOSE(v_empfile);
END;

The following is the contents of empfile.csv created above:

C:\TEMP\EMPDIR>TYPE empfile.csv

7369,SMITH,CLERK,7902,17-DEC-80 00:00:00,800.00,,20
7499,ALLEN,SALESMAN,7698,20-FEB-81 00:00:00,1600.00,300.00,30
7521,WARD,SALESMAN,7698,22-FEB-81 00:00:00,1250.00,500.00,30
7566,JONES,MANAGER,7839,02-APR-81 00:00:00,2975.00,,20
7654,MARTIN,SALESMAN,7698,28-SEP-81 00:00:00,1250.00,1400.00,30
7698,BLAKE,MANAGER,7839,01-MAY-81 00:00:00,2850.00,,30

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

778

7782,CLARK,MANAGER,7839,09-JUN-81 00:00:00,2450.00,,10
7788,SCOTT,ANALYST,7566,19-APR-87 00:00:00,3000.00,,20
7839,KING,PRESIDENT,,17-NOV-81 00:00:00,5000.00,,10
7844,TURNER,SALESMAN,7698,08-SEP-81 00:00:00,1500.00,0.00,30
7876,ADAMS,CLERK,7788,23-MAY-87 00:00:00,1100.00,,20
7900,JAMES,CLERK,7698,03-DEC-81 00:00:00,950.00,,30
7902,FORD,ANALYST,7566,03-DEC-81 00:00:00,3000.00,,20
7934,MILLER,CLERK,7782,23-JAN-82 00:00:00,1300.00,,10

9.17.14 PUTF

The PUTF procedure writes a formatted string to the given file.

PUTF(file FILE_TYPE, format VARCHAR2 [, arg1 VARCHAR2]
 [, ...])

Parameters

file

Variable of type FILE_TYPE containing the file handle of the file to which the
formatted line is to be written.

format

String to format the text written to the file. The special character sequence, %s, is
substituted by the value of arg. The special character sequence, \n, indicates a
new line. Note, however, in Postgres Plus Advanced Server, a new line character
must be specified with two consecutive backslashes instead of one - \\n.

arg1

Up to five arguments, arg1,...arg5, to be substituted in the format string for each
occurrence of %s. The first arg is substituted for the first occurrence of %s, the
second arg is substituted for the second occurrence of %s, etc.

Examples

The following anonymous block produces formatted output containing data from the emp
table. Note the use of the E literal syntax and double backslashes for the new line
character sequence in the format string.

DECLARE
 v_empfile UTL_FILE.FILE_TYPE;
 v_directory VARCHAR2(50) := 'empdir';
 v_filename VARCHAR2(20) := 'empfile.csv';
 v_format VARCHAR2(200);

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

779

 CURSOR emp_cur IS SELECT * FROM emp ORDER BY empno;
BEGIN
 v_format := E'%s %s, %s\\nSalary: $%s Commission: $%s\\n\\n';
 v_empfile := UTL_FILE.FOPEN(v_directory,v_filename,'w');
 FOR i IN emp_cur LOOP
 UTL_FILE.PUTF(v_empfile,v_format,i.empno,i.ename,i.job,i.sal,
 NVL(i.comm,0));
 END LOOP;
 DBMS_OUTPUT.PUT_LINE('Created file: ' || v_filename);
 UTL_FILE.FCLOSE(v_empfile);
EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('SQLERRM: ' || SQLERRM);
 DBMS_OUTPUT.PUT_LINE('SQLCODE: ' || SQLCODE);
END;

Created file: empfile.csv

The following is the contents of empfile.csv created above:

C:\TEMP\EMPDIR>TYPE empfile.csv

7369 SMITH, CLERK
Salary: $800.00 Commission: $0

7499 ALLEN, SALESMAN
Salary: $1600.00 Commission: $300.00

7521 WARD, SALESMAN
Salary: $1250.00 Commission: $500.00

7566 JONES, MANAGER
Salary: $2975.00 Commission: $0

7654 MARTIN, SALESMAN
Salary: $1250.00 Commission: $1400.00

7698 BLAKE, MANAGER
Salary: $2850.00 Commission: $0

7782 CLARK, MANAGER
Salary: $2450.00 Commission: $0

7788 SCOTT, ANALYST
Salary: $3000.00 Commission: $0

7839 KING, PRESIDENT
Salary: $5000.00 Commission: $0

7844 TURNER, SALESMAN
Salary: $1500.00 Commission: $0.00

7876 ADAMS, CLERK
Salary: $1100.00 Commission: $0

7900 JAMES, CLERK
Salary: $950.00 Commission: $0

7902 FORD, ANALYST
Salary: $3000.00 Commission: $0

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

780

7934 MILLER, CLERK
Salary: $1300.00 Commission: $0

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

781

9.18 UTL_HTTP

The UTL_HTTP package provides a way to use the HTTP or HTTPS protocol to retrieve
information found at an URL.

Table 7.7.2 UTL_HTTP Functions and Procedures

Function/Procedure Return Type Description
BEGIN_REQUEST(url, method,
http_version) UTL_HTTP.REQ Initiates a new HTTP request.

END_REQUEST(r IN OUT) n/a Ends an HTTP request before allowing it to
complete.

END_RESPONSE(r IN OUT) n/a Ends the HTTP response.

GET_BODY_CHARSET VARCHAR2 Returns the default character set of the body
of future HTTP requests.

GET_BODY_CHARSET(charset OUT) n/a Returns the default character set of the body
of future HTTP requests.

GET_FOLLOW_REDIRECT(max_redirects
OUT) n/a Current setting for the maximum number of

redirections allowed.
GET_HEADER(r IN OUT, n, name OUT,
value OUT) n/a Returns the nth header of the HTTP

response.
GET_HEADER_BY_NAME(r IN OUT,
name, value OUT, n) n/a Returns the HTTP response header for the

specified name.

GET_HEADER_COUNT(r IN OUT) INTEGER Returns the number of HTTP response
headers.

GET_RESPONSE(r IN OUT) UTL_HTTP.RESP Returns the HTTP response.
GET_RESPONSE_ERROR_CHECK(enable
OUT) n/a Returns whether or not response error check

is set.

GET_TRANSFER_TIMEOUT(timeout OUT) n/a Returns the transfer timeout setting for
HTTP requests.

READ_LINE(r IN OUT, data OUT,
remove_crlf) n/a Returns the HTTP response body in text

form until the end of line.

READ_RAW(r IN OUT, data OUT, len) n/a Returns the HTTP response body in binary
form for a specified number of bytes.

READ_TEXT(r IN OUT, data OUT,
len) n/a Returns the HTTP response body in text

form for a specified number of characters.
REQUEST(url) VARCHAR2 Returns the content of a web page.

REQUEST_PIECES(url, max_pieces) UTL_HTTP.
HTML_PIECES

Returns a table of 2000-byte segments
retrieved from an URL.

SET_BODY_CHARSET(charset) n/a Sets the default character set of the body of
future HTTP requests.

SET_FOLLOW_REDIRECT(max_redirects
) n/a Sets the maximum number of times to

follow the redirect instruction.

SET_FOLLOW_REDIRECT(r IN OUT,
max_redirects) n/a

Sets the maximum number of times to
follow the redirect instruction for an
individual request.

SET_HEADER(r IN OUT, name, value) n/a Sets the HTTP request header.

SET_RESPONSE_ERROR_CHECK(enable) n/a Determines whether or not HTTP 4xx and
5xx status codes are to be treated as errors.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

782

Function/Procedure Return Type Description

SET_TRANSFER_TIMEOUT(timeout) n/a Sets the default, transfer timeout value for
HTTP requests.

SET_TRANSFER_TIMEOUT(r IN OUT,
timeout) n/a Sets the transfer timeout value for an

individual HTTP request.

WRITE_LINE(r IN OUT, data) n/a Writes CRLF terminated data to the HTTP
request body in TEXT form.

WRITE_RAW(r IN OUT, data) n/a Writes data to the HTTP request body in
BINARY form.

WRITE_TEXT(r IN OUT, data) n/a Writes data to the HTTP request body in
TEXT form.

Postgres Plus Advanced Server's implementation of UTL_HTTP is a partial
implementation when compared to Oracle's version. Only those functions and
procedures listed in the table above are supported.

Please Note:

In Advanced Server, an HTTP 4xx or HTTP 5xx response produces a database error; in
Oracle, this is configurable but FALSE by default.

In Advanced Server, the UTL_HTTP text interfaces expect the downloaded data to be in
the database encoding. All currently-available interfaces are text interfaces. In Oracle,
the encoding is detected from HTTP headers; in the absence of the header, the default is
configurable and defaults to ISO-8859-1.

Advanced Server ignores all cookies it receives.

The UTL_HTTP exceptions that can be raised in Oracle are not recognized by Advanced
Server. In addition, the error codes returned by Advanced Server are not the same as
those returned by Oracle.

There are various public constants available with UTL_HTTP. These are listed in the
following tables.

The following table contains UTL_HTTP public constants defining HTTP versions and
port assignments.

HTTP VERSIONS
 HTTP_VERSION_1_0 CONSTANT VARCHAR2(64) := 'HTTP/1.0';
 HTTP_VERSION_1_1 CONSTANT VARCHAR2(64) := 'HTTP/1.1';
STANDARD PORT ASSIGNMENTS
 DEFAULT_HTTP_PORT CONSTANT INTEGER := 80;
 DEFAULT_HTTPS_PORT CONSTANT INTEGER := 443;

The following table contains UTL_HTTP public status code constants.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

783

1XX INFORMATIONAL
 HTTP_CONTINUE CONSTANT INTEGER := 100;
 HTTP_SWITCHING_PROTOCOLS CONSTANT INTEGER := 101;
 HTTP_PROCESSING CONSTANT INTEGER := 102;
2XX SUCCESS
 HTTP_OK CONSTANT INTEGER := 200;
 HTTP_CREATED CONSTANT INTEGER := 201;
 HTTP_ACCEPTED CONSTANT INTEGER := 202;
 HTTP_NON_AUTHORITATIVE_INFO CONSTANT INTEGER := 203;
 HTTP_NO_CONTENT CONSTANT INTEGER := 204;
 HTTP_RESET_CONTENT CONSTANT INTEGER := 205;
 HTTP_PARTIAL_CONTENT CONSTANT INTEGER := 206;
 HTTP_MULTI_STATUS CONSTANT INTEGER := 207;
 HTTP_ALREADY_REPORTED CONSTANT INTEGER := 208;
 HTTP_IM_USED CONSTANT INTEGER := 226;
3XX REDIRECTION
 HTTP_MULTIPLE_CHOICES CONSTANT INTEGER := 300;
 HTTP_MOVED_PERMANENTLY CONSTANT INTEGER := 301;
 HTTP_FOUND CONSTANT INTEGER := 302;
 HTTP_SEE_OTHER CONSTANT INTEGER := 303;
 HTTP_NOT_MODIFIED CONSTANT INTEGER := 304;
 HTTP_USE_PROXY CONSTANT INTEGER := 305;
 HTTP_SWITCH_PROXY CONSTANT INTEGER := 306;
 HTTP_TEMPORARY_REDIRECT CONSTANT INTEGER := 307;
 HTTP_PERMANENT_REDIRECT CONSTANT INTEGER := 308;
4XX CLIENT ERROR
 HTTP_BAD_REQUEST CONSTANT INTEGER := 400;
 HTTP_UNAUTHORIZED CONSTANT INTEGER := 401;
 HTTP_PAYMENT_REQUIRED CONSTANT INTEGER := 402;
 HTTP_FORBIDDEN CONSTANT INTEGER := 403;
 HTTP_NOT_FOUND CONSTANT INTEGER := 404;
 HTTP_METHOD_NOT_ALLOWED CONSTANT INTEGER := 405;
 HTTP_NOT_ACCEPTABLE CONSTANT INTEGER := 406;
 HTTP_PROXY_AUTH_REQUIRED CONSTANT INTEGER := 407;
 HTTP_REQUEST_TIME_OUT CONSTANT INTEGER := 408;
 HTTP_CONFLICT CONSTANT INTEGER := 409;
 HTTP_GONE CONSTANT INTEGER := 410;
 HTTP_LENGTH_REQUIRED CONSTANT INTEGER := 411;
 HTTP_PRECONDITION_FAILED CONSTANT INTEGER := 412;
 HTTP_REQUEST_ENTITY_TOO_LARGE CONSTANT INTEGER := 413;
 HTTP_REQUEST_URI_TOO_LARGE CONSTANT INTEGER := 414;
 HTTP_UNSUPPORTED_MEDIA_TYPE CONSTANT INTEGER := 415;
 HTTP_REQ_RANGE_NOT_SATISFIABLE CONSTANT INTEGER := 416;
 HTTP_EXPECTATION_FAILED CONSTANT INTEGER := 417;
 HTTP_I_AM_A_TEAPOT CONSTANT INTEGER := 418;
 HTTP_AUTHENTICATION_TIME_OUT CONSTANT INTEGER := 419;
 HTTP_ENHANCE_YOUR_CALM CONSTANT INTEGER := 420;
 HTTP_UNPROCESSABLE_ENTITY CONSTANT INTEGER := 422;
 HTTP_LOCKED CONSTANT INTEGER := 423;
 HTTP_FAILED_DEPENDENCY CONSTANT INTEGER := 424;
 HTTP_UNORDERED_COLLECTION CONSTANT INTEGER := 425;
 HTTP_UPGRADE_REQUIRED CONSTANT INTEGER := 426;
 HTTP_PRECONDITION_REQUIRED CONSTANT INTEGER := 428;
 HTTP_TOO_MANY_REQUESTS CONSTANT INTEGER := 429;
 HTTP_REQUEST_HEADER_FIELDS_TOO_LARGE CONSTANT INTEGER := 431;
 HTTP_NO_RESPONSE CONSTANT INTEGER := 444;
 HTTP_RETRY_WITH CONSTANT INTEGER := 449;
 HTTP_BLOCKED_BY_WINDOWS_PARENTAL_CONTROLS CONSTANT INTEGER := 450;
 HTTP_REDIRECT CONSTANT INTEGER := 451;

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

784

 HTTP_REQUEST_HEADER_TOO_LARGE CONSTANT INTEGER := 494;
 HTTP_CERT_ERROR CONSTANT INTEGER := 495;
 HTTP_NO_CERT CONSTANT INTEGER := 496;
 HTTP_HTTP_TO_HTTPS CONSTANT INTEGER := 497;
 HTTP_CLIENT_CLOSED_REQUEST CONSTANT INTEGER := 499;
5XX SERVER ERROR
 HTTP_INTERNAL_SERVER_ERROR CONSTANT INTEGER := 500;
 HTTP_NOT_IMPLEMENTED CONSTANT INTEGER := 501;
 HTTP_BAD_GATEWAY CONSTANT INTEGER := 502;
 HTTP_SERVICE_UNAVAILABLE CONSTANT INTEGER := 503;
 HTTP_GATEWAY_TIME_OUT CONSTANT INTEGER := 504;
 HTTP_VERSION_NOT_SUPPORTED CONSTANT INTEGER := 505;
 HTTP_VARIANT_ALSO_NEGOTIATES CONSTANT INTEGER := 506;
 HTTP_INSUFFICIENT_STORAGE CONSTANT INTEGER := 507;
 HTTP_LOOP_DETECTED CONSTANT INTEGER := 508;
 HTTP_BANDWIDTH_LIMIT_EXCEEDED CONSTANT INTEGER := 509;
 HTTP_NOT_EXTENDED CONSTANT INTEGER := 510;
 HTTP_NETWORK_AUTHENTICATION_REQUIRED CONSTANT INTEGER := 511;
 HTTP_NETWORK_READ_TIME_OUT_ERROR CONSTANT INTEGER := 598;
 HTTP_NETWORK_CONNECT_TIME_OUT_ERROR CONSTANT INTEGER := 599;

9.18.1 HTML_PIECES

The UTL_HTTP package declares a type named HTML_PIECES, which is a table of type
VARCHAR2 (2000) indexed by BINARY INTEGER. A value of this type is returned by
the REQUEST_PIECES function.

TYPE html_pieces IS TABLE OF VARCHAR2(2000) INDEX BY BINARY_INTEGER;

9.18.2 REQ

The REQ record type holds information about each HTTP request.

TYPE req IS RECORD (
 url VARCHAR2(32767), -- URL to be accessed
 method VARCHAR2(64), -- HTTP method
 http_version VARCHAR2(64), -- HTTP version
 private_hndl INTEGER -- Holds handle for this request
);

9.18.3 RESP

The RESP record type holds information about the response from each HTTP request.

TYPE resp IS RECORD (
 status_code INTEGER, -- HTTP status code

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

785

 reason_phrase VARCHAR2(256), -- HTTP response reason phrase
 http_version VARCHAR2(64), -- HTTP version
 private_hndl INTEGER -- Holds handle for this response
);

9.18.4 BEGIN_REQUEST

The BEGIN_REQUEST function initiates a new HTTP request. A network connection is
established to the web server with the specified URL. The signature is:

BEGIN_REQUEST(url IN VARCHAR2, method IN VARCHAR2 DEFAULT
'GET ', http_version IN VARCHAR2 DEFAULT NULL) RETURN
UTL_HTTP.REQ

The BEGIN_REQUEST function returns a record of type UTL_HTTP.REQ.

Parameters

url

url is the Uniform Resource Locator from which UTL_HTTP will return content.

method

method is the HTTP method to be used. The default is GET.

http_version

http_version is the HTTP protocol version sending the request. The specified
values should be either HTTP/1.0 or HTTP/1.1. The default is null in which
case the latest HTTP protocol version supported by the UTL_HTTP package is
used which is 1.1.

9.18.5 END_REQUEST

The END_REQUEST procedure terminates an HTTP request. Use the END_REQUEST
procedure to terminate an HTTP request without completing it and waiting for the
response. The normal process is to begin the request, get the response, then close the
response. The signature is:

END_REQUEST(r IN OUT UTL_HTTP.REQ)

Parameters

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

786

r

r is the HTTP request record.

9.18.6 END_RESPONSE

The END_RESPONSE procedure terminates the HTTP response. The END_RESPONSE
procedure completes the HTTP request and response. This is the normal method to end
the request and response process. The signature is:

END_RESPONSE(r IN OUT UTL_HTTP.RESP)

Parameters

r

r is the HTTP response record.

9.18.7 GET_BODY_CHARSET

The GET_BODY_CHARSET program is available in the form of both a procedure and a
function. A call to GET_BODY_CHARSET returns the default character set of the body of
future HTTP requests.

The procedure signature is:

GET_BODY_CHARSET(charset OUT VARCHAR2)

The function signature is:

GET_BODY_CHARSET() RETURN VARCHAR2

This function returns a VARCHAR2 value.

Parameters

charset

charset is the character set of the body.

Examples

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

787

The following is an example of the GET_BODY_CHARSET function.

edb=# SELECT UTL_HTTP.GET_BODY_CHARSET() FROM DUAL;
 get_body_charset

 ISO-8859-1
(1 row)

9.18.8 GET_FOLLOW_REDIRECT

The GET_FOLLOW_REDIRECT procedure returns the current setting for the maximum
number of redirections allowed. The signature is:

GET_FOLLOW_REDIRECT(max_redirects OUT INTEGER)

Parameters

max_redirects

max_redirects is maximum number of redirections allowed.

9.18.9 GET_HEADER

The GET_HEADER procedure returns the nth header of the HTTP response. The signature
is:

GET_HEADER(r IN OUT UTL_HTTP.RESP, n INTEGER, name OUT
VARCHAR2, value OUT VARCHAR2)

Parameters

r

r is the HTTP response record.

n

n is the nth header of the HTTP response record to retrieve.

name

name is the name of the response header.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

788

value

value is the value of the response header.

Examples

The following example retrieves the header count, then the headers.

DECLARE
 v_req UTL_HTTP.REQ;
 v_resp UTL_HTTP.RESP;
 v_name VARCHAR2(30);
 v_value VARCHAR2(200);
 v_header_cnt INTEGER;
BEGIN
 -- Initiate request and get response
 v_req := UTL_HTTP.BEGIN_REQUEST('www.enterprisedb.com');
 v_resp := UTL_HTTP.GET_RESPONSE(v_req);

 -- Get header count
 v_header_cnt := UTL_HTTP.GET_HEADER_COUNT(v_resp);
 DBMS_OUTPUT.PUT_LINE('Header Count: ' || v_header_cnt);

 -- Get all headers
 FOR i IN 1 .. v_header_cnt LOOP
 UTL_HTTP.GET_HEADER(v_resp, i, v_name, v_value);
 DBMS_OUTPUT.PUT_LINE(v_name || ': ' || v_value);
 END LOOP;

 -- Terminate request
 UTL_HTTP.END_RESPONSE(v_resp);
END;

The following is the output from the example.

Header Count: 23
Age: 570
Cache-Control: must-revalidate
Content-Type: text/html; charset=utf-8
Date: Wed, 30 Apr 2014 14:57:52 GMT
ETag: "aab02f2bd2d696eed817ca89ef411dda"
Expires: Sun, 19 Nov 1978 05:00:00 GMT
Last-Modified: Wed, 30 Apr 2014 14:15:49 GMT
RTSS: 1-1307-3
Server: Apache/2.2.3 (Red Hat)
Set-Cookie: SESS2771d0952de2a1a84d322a262e0c173c=jn1u1j1etmdi5gg4lh8hakvs01;
expires=Fri, 23-May-2014 18:21:43 GMT; path=/; domain=.enterprisedb.com
Vary: Accept-Encoding
Via: 1.1 varnish
X-EDB-Backend: ec
X-EDB-Cache: HIT
X-EDB-Cache-Address: 10.31.162.212
X-EDB-Cache-Server: ip-10-31-162-212
X-EDB-Cache-TTL: 600.000
X-EDB-Cacheable: MAYBE: The user has a cookie of some sort. Maybe it's double
choc-chip!
X-EDB-Do-GZIP: false
X-Powered-By: PHP/5.2.17
X-Varnish: 484508634 484506789

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

789

transfer-encoding: chunked
Connection: keep-alive

9.18.10 GET_HEADER_BY_NAME

The GET_HEADER_BY_NAME procedure returns the header of the HTTP response
according to the specified name. The signature is:

GET_HEADER_BY_NAME(r IN OUT UTL_HTTP.RESP, name VARCHAR2,
value OUT VARCHAR2, n INTEGER DEFAULT 1)

Parameters

r

r is the HTTP response record.

name

name is the name of the response header to retrieve.

value

value is the value of the response header.

n

n is the nth header of the HTTP response record to retrieve according to the
values specified by name. The default is 1.

Examples

The following example retrieves the header for Content-Type.

DECLARE
 v_req UTL_HTTP.REQ;
 v_resp UTL_HTTP.RESP;
 v_name VARCHAR2(30) := 'Content-Type';
 v_value VARCHAR2(200);
BEGIN
 v_req := UTL_HTTP.BEGIN_REQUEST('www.enterprisedb.com');
 v_resp := UTL_HTTP.GET_RESPONSE(v_req);
 UTL_HTTP.GET_HEADER_BY_NAME(v_resp, v_name, v_value);
 DBMS_OUTPUT.PUT_LINE(v_name || ': ' || v_value);
 UTL_HTTP.END_RESPONSE(v_resp);
END;

Content-Type: text/html; charset=utf-8

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

790

9.18.11 GET_HEADER_COUNT

The GET_HEADER_COUNT function returns the number of HTTP response headers. The
signature is:

GET_HEADER_COUNT(r IN OUT UTL_HTTP.RESP) RETURN INTEGER

This function returns an INTEGER value.

Parameters

r

r is the HTTP response record.

9.18.12 GET_RESPONSE

The GET_RESPONSE function sends the network request and returns any HTTP response.
The signature is:

GET_RESPONSE(r IN OUT UTL_HTTP.REQ) RETURN UTL_HTTP.RESP

This function returns a UTL_HTTP.RESP record.

Parameters

r

r is the HTTP request record.

9.18.13 GET_RESPONSE_ERROR_CHECK

The GET_RESPONSE_ERROR_CHECK procedure returns whether or not response error
check is set. The signature is:

GET_RESPONSE_ERROR_CHECK(enable OUT BOOLEAN)

Parameters

enable

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

791

enable returns TRUE if response error check is set, otherwise it returns FALSE.

9.18.14 GET_TRANSFER_TIMEOUT

The GET_TRANSFER_TIMEOUT procedure returns the current, default transfer timeout
setting for HTTP requests. The signature is:

GET_TRANSFER_TIMEOUT(timeout OUT INTEGER)

Parameters

timeout

timeout is the transfer timeout setting in seconds.

9.18.15 READ_LINE

The READ_LINE procedure returns the data from the HTTP response body in text form
until the end of line is reached. A CR character, a LF character, a CR LF sequence, or the
end of the response body constitutes the end of line. The signature is:

READ_LINE(r IN OUT UTL_HTTP.RESP, data OUT VARCHAR2,
remove_crlf BOOLEAN DEFAULT FALSE)

Parameters

r

r is the HTTP response record.

data

data is the response body in text form.

remove_crlf

Set remove_crlf to TRUE to remove new line characters, otherwise set to
FALSE. The default is FALSE.

Examples

The following example retrieves and displays the body of the specified website.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

792

DECLARE
 v_req UTL_HTTP.REQ;
 v_resp UTL_HTTP.RESP;
 v_value VARCHAR2(1024);
BEGIN
 v_req := UTL_HTTP.BEGIN_REQUEST('http://www.enterprisedb.com');
 v_resp := UTL_HTTP.GET_RESPONSE(v_req);
 LOOP
 UTL_HTTP.READ_LINE(v_resp, v_value, TRUE);
 DBMS_OUTPUT.PUT_LINE(v_value);
 END LOOP;
 EXCEPTION
 WHEN OTHERS THEN
 UTL_HTTP.END_RESPONSE(v_resp);
END;

The following is the output.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en" dir="ltr">

 <!-- ___________________________ HEAD ___________________________ -->

 <head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

 <title>EnterpriseDB | The Postgres Database Company</title>

 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="keywords" content="postgres, postgresql, postgresql installer,
mysql migration, open source database, training, replication" />
<meta name="description" content="The leader in open source database
products, services, support, training and expertise based on PostgreSQL. Free
downloads, documentation, and tutorials." />
<meta name="abstract" content="The Enterprise PostgreSQL Company" />
<link rel="EditURI" type="application/rsd+xml" title="RSD"
href="http://www.enterprisedb.com/blogapi/rsd" />
<link rel="alternate" type="application/rss+xml" title="EnterpriseDB RSS"
href="http://www.enterprisedb.com/rss.xml" />
<link rel="shortcut icon"
href="/sites/all/themes/edb_pixelcrayons/favicon.ico" type="image/x-icon" />
 <link type="text/css" rel="stylesheet" media="all"
href="/sites/default/files/css/css_db11adabae0aed6b79a2c3c52def4754.css" />
<!--[if IE 6]>
<link type="text/css" rel="stylesheet" media="all"
href="/sites/all/themes/oho_basic/css/ie6.css?g" />
<![endif]-->
<!--[if IE 7]>
<link type="text/css" rel="stylesheet" media="all"
href="/sites/all/themes/oho_basic/css/ie7.css?g" />
<![endif]-->
 <script type="text/javascript"
src="/sites/default/files/js/js_74d97b1176812e2fd6e43d62503a5204.js"></script
>
<script type="text/javascript">
<!--//--><![CDATA[//><!--

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

793

9.18.16 READ_RAW

The READ_RAW procedure returns the data from the HTTP response body in binary form.
The number of bytes returned is specified by the len parameter. The signature is:

READ_RAW(r IN OUT UTL_HTTP.RESP, data OUT RAW, len INTEGER)

Parameters

r

r is the HTTP response record.

data

data is the response body in binary form.

len

Set len to the number of bytes of data to be returned.

Examples

The following example retrieves and displays the first 150 bytes in binary form.

DECLARE
 v_req UTL_HTTP.REQ;
 v_resp UTL_HTTP.RESP;
 v_data RAW;
BEGIN
 v_req := UTL_HTTP.BEGIN_REQUEST('http://www.enterprisedb.com');
 v_resp := UTL_HTTP.GET_RESPONSE(v_req);
 UTL_HTTP.READ_RAW(v_resp, v_data, 150);
 DBMS_OUTPUT.PUT_LINE(v_data);
 UTL_HTTP.END_RESPONSE(v_resp);
END;

The following is the output from the example.

\x3c21444f43545950452068746d6c205055424c494320222d2f2f5733432f2f4454442058485
44d4c20312e30205374726963742f2f454e220d0a202022687474703a2f2f7777772e77332e6f
72672f54522f7868746d6c312f4454442f7868746d6c312d7374726963742e647464223e0d0a3
c68746d6c20786d6c6e733d22687474703a2f2f7777772e77332e6f72672f313939392f

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

794

9.18.17 READ_TEXT

The READ_TEXT procedure returns the data from the HTTP response body in text form.
The maximum number of characters returned is specified by the len parameter. The
signature is:

READ_TEXT(r IN OUT UTL_HTTP.RESP, data OUT VARCHAR2, len
INTEGER)

Parameters

r

r is the HTTP response record.

data

data is the response body in text form.

len

Set len to the maximum number of characters to be returned.

Examples

The following example retrieves the first 150 characters.

DECLARE
 v_req UTL_HTTP.REQ;
 v_resp UTL_HTTP.RESP;
 v_data VARCHAR2(150);
BEGIN
 v_req := UTL_HTTP.BEGIN_REQUEST('http://www.enterprisedb.com');
 v_resp := UTL_HTTP.GET_RESPONSE(v_req);
 UTL_HTTP.READ_TEXT(v_resp, v_data, 150);
 DBMS_OUTPUT.PUT_LINE(v_data);
 UTL_HTTP.END_RESPONSE(v_resp);
END;

The following is the output.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

795

9.18.18 REQUEST

The REQUEST function returns the first 2000 bytes retrieved from a user-specified URL.
The signature is:

REQUEST(url IN VARCHAR2) RETURN VARCHAR2

If the data found at the given URL is longer than 2000 bytes, the remainder will be
discarded. If the data found at the given URL is shorter than 2000 bytes, the result will
be shorter than 2000 bytes.

Parameters

url

url is the Uniform Resource Locator from which UTL_HTTP will return content.

Example

The following command returns the first 2000 bytes retrieved from the EnterpriseDB
website:

SELECT UTL_HTTP.REQUEST('http://www.enterprisedb.com/') FROM DUAL;

9.18.19 REQUEST_PIECES

The REQUEST_PIECES function returns a table of 2000-byte segments retrieved from an
URL. The signature is:

REQUEST_PIECES(url IN VARCHAR2, max_pieces NUMBER IN DEFAULT
32767) RETURN UTL_HTTP.HTML_PIECES

Parameters

url

url is the Uniform Resource Locator from which UTL_HTTP will return content.

max_pieces

max_pieces specifies the maximum number of 2000-byte segments that the
REQUEST_PIECES function will return. If max_pieces specifies more units
than are available at the specified url, the final unit will contain fewer bytes.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

796

Example

The following example returns the first four 2000 byte segments retrieved from the
EnterpriseDB website:

DECLARE
 result UTL_HTTP.HTML_PIECES;
BEGIN
result := UTL_HTTP.REQUEST_PIECES('http://www.enterprisedb.com/', 4);
END;

9.18.20 SET_BODY_CHARSET

The SET_BODY_CHARSET procedure sets the default character set of the body of future
HTTP requests. The signature is:

SET_BODY_CHARSET(charset VARCHAR2 DEFAULT NULL)

Parameters

charset

charset is the character set of the body of future requests. The default is null in
which case the database character set is assumed.

9.18.21 SET_FOLLOW_REDIRECT

The SET_FOLLOW_REDIRECT procedure sets the maximum number of times the HTTP
redirect instruction is to be followed in the response to this request or future requests.
This procedures has two signatures:

SET_FOLLOW_REDIRECT(max_redirects IN INTEGER DEFAULT 3)

and

SET_FOLLOW_REDIRECT(r IN OUT UTL_HTTP.REQ, max_redirects IN
INTEGER DEFAULT 3)

Use the second form to change the maximum number of redirections for an individual
request that a request inherits from the session default settings.

Parameters

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

797

r

r is the HTTP request record.

max_redirects

max_redirects is maximum number of redirections allowed. Set to 0 to disable
redirections. The default is 3.

9.18.22 SET_HEADER

The SET_HEADER procedure sets the HTTP request header. The signature is:

SET_HEADER(r IN OUT UTL_HTTP.REQ, name IN VARCHAR2, value IN
VARCHAR2 DEFAULT NULL)

Parameters

r

r is the HTTP request record.

name

name is the name of the request header.

value

value is the value of the request header. The default is null.

9.18.23 SET_RESPONSE_ERROR_CHECK

The SET_RESPONSE_ERROR_CHECK procedure determines whether or not HTTP 4xx
and 5xx status codes returned by the GET_RESPONSE function should be interpreted as
errors. The signature is:

SET_RESPONSE_ERROR_CHECK(enable IN BOOLEAN DEFAULT FALSE)

Parameters

enable

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

798

Set enable to TRUE if HTTP 4xx and 5xx status codes are to be treated as errors,
otherwise set to FALSE. The default is FALSE.

9.18.24 SET_TRANSFER_TIMEOUT

The SET_TRANSFER_TIMEOUT procedure sets the default, transfer timeout setting for
waiting for a response from an HTTP request. This procedure has two signatures:

SET_TRANSFER_TIMEOUT(timeout IN INTEGER DEFAULT 60)

and

SET_TRANSFER_TIMEOUT(r IN OUT UTL_HTTP.REQ, timeout IN
INTEGER DEFAULT 60)

Use the second form to change the transfer timeout setting for an individual request that a
request inherits from the session default settings.

Parameters

r

r is the HTTP request record.

timeout

timeout is the transfer timeout setting in seconds for HTTP requests. The default
is 60 seconds.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

799

9.18.25 WRITE_LINE

The WRITE_LINE procedure writes data to the HTTP request body in text form; the text
is terminated with a CRLF character pair. The signature is:

WRITE_LINE(r IN OUT UTL_HTTP.REQ, data IN VARCHAR2)

Parameters
r

r is the HTTP request record.

data

data is the request body in TEXT form.

Example

The following example writes data (Account balance $500.00) in text form to the
request body to be sent using the HTTP POST method. The data is sent to a hypothetical
web application (post.php) that accepts and processes data.

DECLARE
 v_req UTL_HTTP.REQ;
 v_resp UTL_HTTP.RESP;
BEGIN
 v_req := UTL_HTTP.BEGIN_REQUEST('http://www.example.com/post.php',
 'POST');
 UTL_HTTP.SET_HEADER(v_req, 'Content-Length', '23');
 UTL_HTTP.WRITE_LINE(v_req, 'Account balance $500.00');
 v_resp := UTL_HTTP.GET_RESPONSE(v_req);
 DBMS_OUTPUT.PUT_LINE('Status Code: ' || v_resp.status_code);
 DBMS_OUTPUT.PUT_LINE('Reason Phrase: ' || v_resp.reason_phrase);
 UTL_HTTP.END_RESPONSE(v_resp);
END;

Assuming the web application successfully processed the POST method, the following
output would be displayed:

Status Code: 200
Reason Phrase: OK

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

800

9.18.26 WRITE_RAW

The WRITE_RAW procedure writes data to the HTTP request body in binary form. The
signature is:

WRITE_RAW(r IN OUT UTL_HTTP.REQ, data IN RAW)

Parameters
r

r is the HTTP request record.

data

data is the request body in binary form.

Example

The following example writes data in binary form to the request body to be sent using the
HTTP POST method to a hypothetical web application that accepts and processes such
data.

DECLARE
 v_req UTL_HTTP.REQ;
 v_resp UTL_HTTP.RESP;
BEGIN
 v_req := UTL_HTTP.BEGIN_REQUEST('http://www.example.com/post.php',
 'POST');
 UTL_HTTP.SET_HEADER(v_req, 'Content-Length', '23');
 UTL_HTTP.WRITE_RAW(v_req, HEXTORAW
('54657374696e6720504f5354206d6574686f6420696e20485454502072657175657374'));
 v_resp := UTL_HTTP.GET_RESPONSE(v_req);
 DBMS_OUTPUT.PUT_LINE('Status Code: ' || v_resp.status_code);
 DBMS_OUTPUT.PUT_LINE('Reason Phrase: ' || v_resp.reason_phrase);
 UTL_HTTP.END_RESPONSE(v_resp);
END;

The text string shown in the HEXTORAW function is the hexadecimal translation of the text
Testing POST method in HTTP request.

Assuming the web application successfully processed the POST method, the following
output would be displayed:

Status Code: 200
Reason Phrase: OK

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

801

9.18.27 WRITE_TEXT

The WRITE_TEXT procedure writes data to the HTTP request body in text form. The
signature is:

WRITE_TEXT(r IN OUT UTL_HTTP.REQ, data IN VARCHAR2)

Parameters
r

r is the HTTP request record.

data

data is the request body in text form.

Example

The following example writes data (Account balance $500.00) in text form to the
request body to be sent using the HTTP POST method. The data is sent to a hypothetical
web application (post.php) that accepts and processes data.

DECLARE
 v_req UTL_HTTP.REQ;
 v_resp UTL_HTTP.RESP;
BEGIN
 v_req := UTL_HTTP.BEGIN_REQUEST('http://www.example.com/post.php',
 'POST');
 UTL_HTTP.SET_HEADER(v_req, 'Content-Length', '23');
 UTL_HTTP.WRITE_TEXT(v_req, 'Account balance $500.00');
 v_resp := UTL_HTTP.GET_RESPONSE(v_req);
 DBMS_OUTPUT.PUT_LINE('Status Code: ' || v_resp.status_code);
 DBMS_OUTPUT.PUT_LINE('Reason Phrase: ' || v_resp.reason_phrase);
 UTL_HTTP.END_RESPONSE(v_resp);
END;

Assuming the web application successfully processed the POST method, the following
output would be displayed:

Status Code: 200
Reason Phrase: OK

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

802

9.19 UTL_MAIL

The UTL_MAIL package provides the capability to manage e-mail.

Note: An administrator must grant execute privileges to each user or group before they
can use this package.

Table 9-19 UTL_MAIL Functions/Procedures

Function/Procedure Function or
Procedure

Return
Type

Description

SEND(sender, recipients, cc, bcc,
subject, message [, mime_type [,
priority]])

Procedure n/a Packages and sends an e-mail to an SMTP
server.

SEND_ATTACH_RAW(sender,
recipients, cc, bcc, subject,
message, mime_type, priority,
attachment [, att_inline [,
att_mime_type [, att_filename
]]])

Procedure n/a Same as the SEND procedure, but with
BYTEA or large object attachments.

SEND_ATTACH_VARCHAR2(sender,
recipients, cc, bcc, subject,
message, mime_type, priority,
attachment [, att_inline [,
att_mime_type [, att_filename
]]])

Procedure n/a Same as the SEND procedure, but with
VARCHAR2 attachments.

9.19.1 SEND

The SEND procedure provides the capability to send an e-mail to an SMTP server.

SEND(sender VARCHAR2, recipients VARCHAR2, cc VARCHAR2,
 bcc VARCHAR2, subject VARCHAR2, message VARCHAR2
 [, mime_type VARCHAR2 [, priority PLS_INTEGER]])

Parameters

sender

E-mail address of the sender.

recipients

Comma-separated e-mail addresses of the recipients.

cc

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

803

Comma-separated e-mail addresses of copy recipients.

bcc

Comma-separated e-mail addresses of blind copy recipients.

subject

Subject line of the e-mail.

message

Body of the e-mail.

mime_type

Mime type of the message. The default is text/plain; charset=us-ascii.

priority

Priority of the e-mail The default is 3.

Examples

The following anonymous block sends a simple e-mail message.

DECLARE
 v_sender VARCHAR2(30);
 v_recipients VARCHAR2(60);
 v_subj VARCHAR2(20);
 v_msg VARCHAR2(200);
BEGIN
 v_sender := 'jsmith@enterprisedb.com';
 v_recipients := 'ajones@enterprisedb.com,rrogers@enterprisedb.com';
 v_subj := 'Holiday Party';
 v_msg := 'This year''s party is scheduled for Friday, Dec. 21 at ' ||
 '6:00 PM. Please RSVP by Dec. 15.';
 UTL_MAIL.SEND(v_sender,v_recipients,NULL,NULL,v_subj,v_msg);
END;

9.19.2 SEND_ATTACH_RAW

The SEND_ATTACH_RAW procedure provides the capability to send an e-mail to an SMTP
server with an attachment containing either BYTEA data or a large object (identified by
the large object's OID). The call to SEND_ATTACH_RAW can be written in two ways:

SEND_ATTACH_RAW(sender VARCHAR2, recipients VARCHAR2,
 cc VARCHAR2, bcc VARCHAR2, subject VARCHAR2, message VARCHAR2,

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

804

 mime_type VARCHAR2, priority PLS_INTEGER,
 attachment BYTEA[, att_inline BOOLEAN
 [, att_mime_type VARCHAR2[, att_filename VARCHAR2]]])

SEND_ATTACH_RAW(sender VARCHAR2, recipients VARCHAR2,
 cc VARCHAR2, bcc VARCHAR2, subject VARCHAR2, message VARCHAR2,
 mime_type VARCHAR2, priority PLS_INTEGER, attachment OID
 [, att_inline BOOLEAN [, att_mime_type VARCHAR2
 [, att_filename VARCHAR2]]])

Parameters

sender

E-mail address of the sender.

recipients

Comma-separated e-mail addresses of the recipients.

cc

Comma-separated e-mail addresses of copy recipients.

bcc

Comma-separated e-mail addresses of blind copy recipients.

subject

Subject line of the e-mail.

message

Body of the e-mail.

mime_type

Mime type of the message. The default is text/plain; charset=us-ascii.

priority

Priority of the e-mail. The default is 3.

attachment

The attachment.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

805

att_inline

If set to TRUE, then the attachment is viewable inline, FALSE otherwise. The
default is TRUE.

att_mime_type

Mime type of the attachment. The default is application/octet.

att_filename

The file name containing the attachment. The default is NULL.

9.19.3 SEND_ATTACH_VARCHAR2

The SEND_ATTACH_VARCHAR2 procedure provides the capability to send an e-mail to an
SMTP server with a text attachment.

SEND_ATTACH_VARCHAR2(sender VARCHAR2, recipients VARCHAR2,
 cc VARCHAR2, bcc VARCHAR2, subject VARCHAR2, message VARCHAR2,
 mime_type VARCHAR2, priority PLS_INTEGER, attachment VARCHAR2
 [, att_inline BOOLEAN [, att_mime_type VARCHAR2
 [, att_filename VARCHAR2]]])

Parameters

sender

E-mail address of the sender.

recipients

Comma-separated e-mail addresses of the recipients.

cc

Comma-separated e-mail addresses of copy recipients.

bcc

Comma-separated e-mail addresses of blind copy recipients.

subject

Subject line of the e-mail.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

806

message

Body of the e-mail.

mime_type

Mime type of the message. The default is text/plain; charset=us-ascii.

priority

Priority of the e-mail The default is 3.

attachment

The VARCHAR2 attachment.

att_inline

If set to TRUE, then the attachment is viewable inline, FALSE otherwise. The
default is TRUE.

att_mime_type

Mime type of the attachment. The default is text/plain; charset=us-
ascii.

att_filename

The file name containing the attachment. The default is NULL.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

807

9.20 UTL_RAW

The UTL_RAW package allows you to manipulate or retrieve the length of raw data types.

Note: An administrator must grant execute privileges to each user or group before they
can use this package.

Function/Procedure Function or
Procedure

Return Type Description

CAST_TO_RAW(c IN VARCHAR2) Function RAW Converts a VARCHAR2 string to a RAW value.
CAST_TO_VARCHAR2(r IN RAW) Function VARCHAR2 Converts a RAW value to a VARCHAR2 string.
CONCAT(r1 IN RAW, r2 IN RAW,
r3 IN RAW,…)

Function RAW Concatenate multiple RAW values into a
single RAW value.

CONVERT(r IN RAW, to_charset
IN VARCHAR2, from_charset IN
VARCHAR2

Function RAW Converts encoded data from one encoding
to another, and returns the result as a RAW
value.

LENGTH(r IN RAW) Function NUMBER Returns the length of a RAW value.
SUBSTR(r IN RAW, pos IN
INTEGER, len IN INTEGER)

Function RAW Returns a portion of a RAW value.

Postgres Plus Advanced Server's implementation of UTL_RAW is a partial implementation
when compared to Oracle's version. Only those functions and procedures listed in the
table above are supported.

9.20.1 CAST_TO_RAW

The CAST_TO_RAW function converts a VARCHAR2 string to a RAW value. The signature
is:

CAST_TO_RAW(c VARCHAR2)

The function returns a RAW value if you pass a non-NULL value; if you pass a NULL value,
the function will return NULL.

Parameters

c

The VARCHAR2 value that will be converted to RAW.

Example

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

808

The following example uses the CAST_TO_RAW function to convert a VARCHAR2 string to
a RAW value:

DECLARE
 v VARCHAR2;
 r RAW;
BEGIN
 v := 'Accounts';
 dbms_output.put_line(v);
 r := UTL_RAW.CAST_TO_RAW(v);
 dbms_output.put_line(r);
END;

The result set includes the content of the original string and the converted RAW value:

Accounts
\x4163636f756e7473

9.20.2 CAST_TO_VARCHAR2

The CAST_TO_VARCHAR2 function converts RAW data to VARCHAR2 data. The signature
is:

CAST_TO_VARCHAR2(r RAW)

The function returns a VARCHAR2 value if you pass a non-NULL value; if you pass a NULL
value, the function will return NULL.

Parameters

r

The RAW value that will be converted to a VARCHAR2 value.

Example

The following example uses the CAST_TO_VARCHAR2 function to convert a RAW value to
a VARCHAR2 string:

DECLARE
 r RAW;
 v VARCHAR2;
BEGIN
 r := '\x4163636f756e7473'
 dbms_output.put_line(v);
 v := UTL_RAW.CAST_TO_VARCHAR2(r);
 dbms_output.put_line(r);
END;

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

809

The result set includes the content of the original string and the converted RAW value:

\x4163636f756e7473
Accounts

9.20.3 CONCAT

The CONCAT function concatenates multiple RAW values into a single RAW value. The
signature is:

CONCAT(r1 RAW, r2 RAW, r3 RAW,…)

The function returns a RAW value. Unlike the Oracle implementation, the Advanced
Server implementation is a variadic function, and does not place a restriction on the
number of values that can be concatenated.

Parameters

r1, r2, r3,…

The RAW values that CONCAT will concatenate.

Example

The following example uses the CONCAT function to concatenate multiple RAW values into
a single RAW value:

SELECT UTL_RAW.CAST_TO_VARCHAR2(UTL_RAW.CONCAT('\x61', '\x62', '\x63')) FROM
DUAL;
 concat

 abc
(1 row)

The result (the concatenated values) is then converted to VARCHAR2 format by the
CAST_TO_VARCHAR2 function.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

810

9.20.4 CONVERT

The CONVERT function converts a string from one encoding to another encoding and
returns the result as a RAW value. The signature is:

CONVERT(r RAW, to_charset VARCHAR2, from_charset VARCHAR2)

The function returns a RAW value.

Parameters

r

The RAW value that will be converted.

to_charset

The name of the encoding to which r will be converted.

from_charset

The name of the encoding from which r will be converted.

Example

The following example uses the UTL_RAW.CAST_TO_RAW function to convert a
VARCHAR2 string (Accounts) to a raw value, and then convert the value from UTF8 to
LATIN7, and then from LATIN7 to UTF8:

DECLARE
 r RAW;
 v VARCHAR2;
BEGIN
 v:= 'Accounts';
 dbms_output.put_line(v);
 r:= UTL_RAW.CAST_TO_RAW(v);
 dbms_output.put_line(r);
 r:= UTL_RAW.CONVERT(r, 'UTF8', 'LATIN7');
 dbms_output.put_line(r);
 r:= UTL_RAW.CONVERT(r, 'LATIN7', 'UTF8');
 dbms_output.put_line(r);

The example returns the VARCHAR2 value, the RAW value, and the converted values:

Accounts
\x4163636f756e7473
\x4163636f756e7473
\x4163636f756e7473

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

811

9.20.5 LENGTH

The LENGTH function returns the length of a RAW value. The signature is:

LENGTH(r RAW)

The function returns a RAW value.

Parameters

r

The RAW value that LENGTH will evaluate.

Example

The following example uses the LENGTH function to return the length of a RAW value:

SELECT UTL_RAW.LENGTH(UTL_RAW.CAST_TO_RAW('Accounts')) FROM DUAL;
 length

8
(1 row)

The following example uses the LENGTH function to return the length of a RAW value that
includes multi-byte characters:

SELECT UTL_RAW.LENGTH(UTL_RAW.CAST_TO_RAW('独孤求败'));
 length

 12
(1 row)

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

812

9.20.6 SUBSTR

The SUBSTR function returns a substring of a RAW value. The signature is:

SUBSTR (r RAW, pos INTEGER, len INTEGER)

This function returns a RAW value.

Parameters

r

The RAW value from which the substring will be returned.

pos

The position within the RAW value of the first byte of the returned substring.
x If pos is 0 or 1, the substring begins at the first byte of the RAW value.
x If pos is greater than one, the substring begins at the first byte specified

by pos. For example, if pos is 3, the substring begins at the third byte of
the value.

x If pos is negative, the substring begins at pos bytes from the end of the
source value. For example, if pos is -3, the substring begins at the third
byte from the end of the value.

len

The maximum number of bytes that will be returned.

Example

The following example uses the SUBSTR function to select a substring that begins 3 bytes
from the start of a RAW value:

SELECT UTL_RAW.SUBSTR(UTL_RAW.CAST_TO_RAW('Accounts'), 3, 5) FROM DUAL;
 substr

 count
(1 row)

The following example uses the SUBSTR function to select a substring that starts 5 bytes
from the end of a RAW value:

SELECT UTL_RAW.SUBSTR(UTL_RAW.CAST_TO_RAW('Accounts'), -5 , 3) FROM DUAL;
 substr

 oun
(1 row)

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

813

9.21 UTL_SMTP

The UTL_SMTP package provides the capability to send e-mails over the Simple Mail
Transfer Protocol (SMTP).

Note: An administrator must grant execute privileges to each user or group before they
can use this package.

Table 9-20 UTL_SMTP Functions/Procedures

Function/Procedure Function or
Procedure

Return Type Description

CLOSE_DATA(c IN OUT) Procedure n/a Ends an e-mail message.
COMMAND(c IN OUT, cmd [, arg
])

Both REPLY Execute an SMTP command.

COMMAND_REPLIES(c IN OUT, cmd
[, arg])

Function REPLIES Execute an SMTP command where multiple
reply lines are expected.

DATA(c IN OUT, body VARCHAR2) Procedure n/a Specify the body of an e-mail message.
EHLO(c IN OUT, domain) Procedure n/a Perform initial handshaking with an SMTP

server and return extended information.
HELO(c IN OUT, domain) Procedure n/a Perform initial handshaking with an SMTP

server
HELP(c IN OUT [, command]) Function REPLIES Send the HELP command.
MAIL(c IN OUT, sender [,
parameters])

Procedure n/a Start a mail transaction.

NOOP(c IN OUT) Both REPLY Send the null command.
OPEN_CONNECTION(host [, port
[, tx_timeout]])

Function CONNECTION Open a connection.

OPEN_DATA(c IN OUT) Both REPLY Send the DATA command.
QUIT(c IN OUT) Procedure n/a Terminate the SMTP session and

disconnect.
RCPT(c IN OUT, recipient [,
parameters])

Procedure n/a Specify the recipient of an e-mail message.

RSET(c IN OUT) Procedure n/a Terminate the current mail transaction.
VRFY(c IN OUT, recipient) Function REPLY Validate an e-mail address.
WRITE_DATA(c IN OUT, data) Procedure n/a Write a portion of the e-mail message.

The following table lists the public variables available in the UTL_SMTP package.

Table 9-21 UTL_SMTP Public Variables

Public Variables Data Type Value Description
connection RECORD Description of an SMTP connection.
reply RECORD SMTP reply line.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

814

9.21.1 CONNECTION

The CONNECTION record type provides a description of an SMTP connection.

TYPE connection IS RECORD (
 host VARCHAR2(255),
 port PLS_INTEGER,
 tx_timeout PLS_INTEGER
);

9.21.2 REPLY/REPLIES

The REPLY record type provides a description of an SMTP reply line. REPLIES is a table
of multiple SMTP reply lines.

TYPE reply IS RECORD (
 code INTEGER,
 text VARCHAR2(508)
);
TYPE replies IS TABLE OF reply INDEX BY BINARY_INTEGER;

9.21.3 CLOSE_DATA

The CLOSE_DATA procedure terminates an e-mail message by sending the following
sequence:

<CR><LF>.<CR><LF>

This is a single period at the beginning of a line.

CLOSE_DATA(c IN OUT CONNECTION)

Parameters

c

The SMTP connection to be closed.

9.21.4 COMMAND

The COMMAND procedure provides the capability to execute an SMTP command. If you
are expecting multiple reply lines, use COMMAND_REPLIES.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

815

reply REPLY COMMAND(c IN OUT CONNECTION, cmd VARCHAR2
 [, arg VARCHAR2])

COMMAND(c IN OUT CONNECTION, cmd VARCHAR2 [, arg VARCHAR2])

Parameters

c

The SMTP connection to which the command is to be sent.

cmd

The SMTP command to be processed.

arg

An argument to the SMTP command. The default is null.

reply

SMTP reply to the command. If SMTP returns multiple replies, only the last one
is returned in reply.

See Section 9.21.2 for a description of REPLY and REPLIES.

9.21.5 COMMAND_REPLIES

The COMMAND_REPLIES function processes an SMTP command that returns multiple
reply lines. Use COMMAND if only a single reply line is expected.

replies REPLIES COMMAND(c IN OUT CONNECTION, cmd VARCHAR2
 [, arg VARCHAR2])

Parameters

c

The SMTP connection to which the command is to be sent.

cmd

The SMTP command to be processed.

arg

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

816

An argument to the SMTP command. The default is null.

replies

SMTP reply lines to the command. See Section 9.21.2 for a description of REPLY
and REPLIES.

9.21.6 DATA

The DATA procedure provides the capability to specify the body of the e-mail message.
The message is terminated with a <CR><LF>.<CR><LF> sequence.

DATA(c IN OUT CONNECTION, body VARCHAR2)

Parameters

c

The SMTP connection to which the command is to be sent.

body

Body of the e-mail message to be sent.

9.21.7 EHLO

The EHLO procedure performs initial handshaking with the SMTP server after
establishing the connection. The EHLO procedure allows the client to identify itself to the
SMTP server according to RFC 821. RFC 1869 specifies the format of the information
returned in the server‟s reply. The HELO procedure performs the equivalent
functionality, but returns less information about the server.

EHLO(c IN OUT CONNECTION, domain VARCHAR2)

Parameters

c

The connection to the SMTP server over which to perform handshaking.

domain

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

817

Domain name of the sending host.

9.21.8 HELO

The HELO procedure performs initial handshaking with the SMTP server after
establishing the connection. The HELO procedure allows the client to identify itself to the
SMTP server according to RFC 821. The EHLO procedure performs the equivalent
functionality, but returns more information about the server.

HELO(c IN OUT, domain VARCHAR2)

Parameters

c

The connection to the SMTP server over which to perform handshaking.

domain

Domain name of the sending host.

9.21.9 HELP

The HELP function provides the capability to send the HELP command to the SMTP
server.

replies REPLIES HELP(c IN OUT CONNECTION [, command VARCHAR2])

Parameters

c

The SMTP connection to which the command is to be sent.

command

Command on which help is requested.

replies

SMTP reply lines to the command. See Section 9.21.2 for a description of REPLY
and REPLIES.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

818

9.21.10 MAIL

The MAIL procedure initiates a mail transaction.

MAIL(c IN OUT CONNECTION, sender VARCHAR2
 [, parameters VARCHAR2])

Parameters

c

Connection to SMTP server on which to start a mail transaction.

sender

The sender‟s e-mail address.

parameters

Mail command parameters in the format, key=value as defined in RFC 1869,
Section 6.

9.21.11 NOOP

The NOOP function/procedure sends the null command to the SMTP server. The NOOP has
no effect upon the server except to obtain a successful response.

reply REPLY NOOP(c IN OUT CONNECTION)

NOOP(c IN OUT CONNECTION)

Parameters

c

The SMTP connection on which to send the command.

reply

SMTP reply to the command. If SMTP returns multiple replies, only the last one
is returned in reply. See Section 9.21.2 for a description of REPLY and
REPLIES.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

819

9.21.12 OPEN_CONNECTION

The OPEN_CONNECTION functions open a connection to an SMTP server.

c CONNECTION OPEN_CONNECTION(host VARCHAR2 [, port PLS_INTEGER [,
tx_timeout PLS_INTEGER DEFAULT NULL]])

Parameters

host

Name of the SMTP server.

port

Port number on which the SMTP server is listening. The default is 25.

tx_timeout

Time out value in seconds. Do not wait is indicated by specifying 0. Wait
indefinitely is indicated by setting timeout to null. The default is null.

c

Connection handle returned by the SMTP server.

9.21.13 OPEN_DATA

The OPEN_DATA procedure sends the DATA command to the SMTP server.

OPEN_DATA(c IN OUT CONNECTION)

Parameters

c

SMTP connection on which to send the command.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

820

9.21.14 QUIT

The QUIT procedure closes the session with an SMTP server.

QUIT(c IN OUT CONNECTION)

Parameters

c

SMTP connection to be terminated.

9.21.15 RCPT

The RCPT procedure provides the e-mail address of the recipient. To schedule multiple
recipients, invoke RCPT multiple times.

RCPT(c IN OUT CONNECTION, recipient VARCHAR2
 [, parameters VARCHAR2])

Parameters

c

Connection to SMTP server on which to add a recipient.

recipient

The recipient‟s e-mail address.

parameters

Mail command parameters in the format, key=value as defined in RFC 1869,
Section 6.

9.21.16 RSET

The RSET procedure provides the capability to terminate the current mail transaction.

RSET(c IN OUT CONNECTION)

Parameters

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

821

c

SMTP connection on which to cancel the mail transaction.

9.21.17 VRFY

The VRFY function provides the capability to validate and verify the recipient‟s e-mail
address. If valid, the recipient‟s full name and fully qualified mailbox is returned.

reply REPLY VRFY(c IN OUT CONNECTION, recipient VARCHAR2)

Parameters

c

The SMTP connection on which to verify the e-mail address.

recipient

The recipient‟s e-mail address to be verified.

reply

SMTP reply to the command. If SMTP returns multiple replies, only the last one
is returned in reply. See Section 9.21.2 for a description of REPLY and
REPLIES.

9.21.18 WRITE_DATA

The WRITE_DATA procedure provides the capability to add VARCHAR2 data to an e-mail
message. The WRITE_DATA procedure may be repetitively called to add data.

WRITE_DATA(c IN OUT CONNECTION, data VARCHAR2)

Parameters

c

The SMTP connection on which to add data.

data

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

822

Data to be added to the e-mail message. The data must conform to the RFC 822
specification.

9.21.19 Comprehensive Example

The following procedure constructs and sends a text e-mail message using the UTL_SMTP
package.

CREATE OR REPLACE PROCEDURE send_mail (
 p_sender VARCHAR2,
 p_recipient VARCHAR2,
 p_subj VARCHAR2,
 p_msg VARCHAR2,
 p_mailhost VARCHAR2
)
IS
 v_conn UTL_SMTP.CONNECTION;
 v_crlf CONSTANT VARCHAR2(2) := CHR(13) || CHR(10);
 v_port CONSTANT PLS_INTEGER := 25;
BEGIN
 v_conn := UTL_SMTP.OPEN_CONNECTION(p_mailhost,v_port);
 UTL_SMTP.HELO(v_conn,p_mailhost);
 UTL_SMTP.MAIL(v_conn,p_sender);
 UTL_SMTP.RCPT(v_conn,p_recipient);
 UTL_SMTP.DATA(v_conn, SUBSTR(
 'Date: ' || TO_CHAR(SYSDATE,
 'Dy, DD Mon YYYY HH24:MI:SS') || v_crlf
 || 'From: ' || p_sender || v_crlf
 || 'To: ' || p_recipient || v_crlf
 || 'Subject: ' || p_subj || v_crlf
 || p_msg
 , 1, 32767));
 UTL_SMTP.QUIT(v_conn);
END;

EXEC send_mail('asmith@enterprisedb.com','pjones@enterprisedb.com','Holiday
Party','Are you planning to attend?','smtp.enterprisedb.com');

The following example uses the OPEN_DATA, WRITE_DATA, and CLOSE_DATA
procedures instead of the DATA procedure.

CREATE OR REPLACE PROCEDURE send_mail_2 (
 p_sender VARCHAR2,
 p_recipient VARCHAR2,
 p_subj VARCHAR2,
 p_msg VARCHAR2,
 p_mailhost VARCHAR2
)
IS
 v_conn UTL_SMTP.CONNECTION;
 v_crlf CONSTANT VARCHAR2(2) := CHR(13) || CHR(10);
 v_port CONSTANT PLS_INTEGER := 25;
BEGIN
 v_conn := UTL_SMTP.OPEN_CONNECTION(p_mailhost,v_port);
 UTL_SMTP.HELO(v_conn,p_mailhost);

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

823

 UTL_SMTP.MAIL(v_conn,p_sender);
 UTL_SMTP.RCPT(v_conn,p_recipient);
 UTL_SMTP.OPEN_DATA(v_conn);
 UTL_SMTP.WRITE_DATA(v_conn,'From: ' || p_sender || v_crlf);
 UTL_SMTP.WRITE_DATA(v_conn,'To: ' || p_recipient || v_crlf);
 UTL_SMTP.WRITE_DATA(v_conn,'Subject: ' || p_subj || v_crlf);
 UTL_SMTP.WRITE_DATA(v_conn,v_crlf || p_msg);
 UTL_SMTP.CLOSE_DATA(v_conn);
 UTL_SMTP.QUIT(v_conn);
END;

EXEC send_mail_2('asmith@enterprisedb.com','pjones@enterprisedb.com','Holiday
Party','Are you planning to attend?','smtp.enterprisedb.com');

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

824

9.22 UTL_URL

The UTL_URL package provides a way to escape illegal and reserved characters within an
URL.

Table 7.7.2 UTL_HTTP Functions and Procedures

Function/Procedure Return Type Description
ESCAPE(url,
escape_reserved_chars,
url_charset)

VARCHAR2 Use the ESCAPE function to escape any
illegal and reserved characters in a URL.

UNESCAPE(url, url_charset) VARCHAR2 The UNESCAPE function to convert an URL
to its original form.

The UTL_URL package will return the BAD_URL exception if the call to a function
includes an incorrectly-formed URL.

9.22.1 ESCAPE

Use the ESCAPE function to escape illegal and reserved characters within an URL. The
signature is:

ESCAPE(url VARCHAR2, escape_reserved_chars BOOLEAN, url_charset
VARCHAR2)

Reserved characters are replaced with a percent sign, followed by the two-digit hex code
of the ascii value for the escaped character.

Parameters

url

url specifies the Uniform Resource Locator that UTL_URL will escape.

escape_reserved_chars

escape_reserved_chars is a BOOLEAN value that instructs the ESCAPE
function to escape reserved characters as well as illegal characters:

x If escaped_reserved_chars is FALSE, ESCAPE will escape only the
illegal characters in the specified URL.

x If escape_reserved_chars is TRUE, ESCAPE will escape both the
illegal characters and the reserved characters in the specified URL.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

825

By default, escape_reserved_chars is FALSE.

Within an URL, legal characters are:

Uppercase A through Z Lowercase a through z 0 through 9
asterisk (*) exclamation point (!) hyphen (-)
left parenthesis (() period (.) right parenthesis ())
single-quote (') tilde (~) underscore (_)

Some characters are legal in some parts of an URL, while illegal in others; to
review comprehensive rules about illegal characters, please refer to RFC 2396.
Some examples of characters that are considered illegal in any part of an URL are:

Illegal Character Escape Sequence
a blank space () %20

curly braces ({ or }) %7b and %7d
hash mark (#) %23

The ESCAPE function considers the following characters to be reserved, and will
escape them if escape_reserved_chars is set to TRUE:

Reserved Character Escape Sequence
ampersand (&) %5C

at sign (@) %25

colon (:) %3a

comma (,) %2c

dollar sign ($) %24

equal sign (=) %3d

plus sign (+) %2b

question mark (?) %3f

semi-colon (;) %3b

slash (/) %2f

url_charset

url_charset specifies a character set to which a given character will be
converted before it is escaped. If url_charset is NULL, the character will not
be converted. The default value of url_charset is ISO-8859-1.

Examples

The following anonymous block uses the ESCAPE function to escape the blank spaces in
the URL:

DECLARE
 result varchar2(400);
BEGIN

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

826

 result := UTL_URL.ESCAPE('http://www.example.com/Using the
ESCAPE function.html');
 DBMS_OUTPUT.PUT_LINE(result);
END;

The resulting (escaped) URL is:

http://www.example.com/Using%20the%20ESCAPE%20function.html

If you include a value of TRUE for the escape_reserved_chars parameter when
invoking the function:

DECLARE
 result varchar2(400);
BEGIN
 result := UTL_URL.ESCAPE('http://www.example.com/Using the
ESCAPE function.html', TRUE);
 DBMS_OUTPUT.PUT_LINE(result);
END;

The ESCAPE function escapes the reserved characters as well as the illegal characters in
the URL:

http%3A%2F%2Fwww.example.com%2FUsing%20the%20ESCAPE%20function.ht
ml

9.22.2 UNESCAPE

The UNESCAPE function removes escape characters added to an URL by the ESCAPE
function, converting the URL to its original form.

The signature is:

UNESCAPE(url VARCHAR2, url_charset VARCHAR2)

Parameters

url

url specifies the Uniform Resource Locator that UTL_URL will unescape.

url_charset

After unescaping a character, the character is assumed to be in url_charset
encoding, and will be converted from that encoding to database encoding before

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

827

being returned. If url_charset is NULL, the character will not be converted.
The default value of url_charset is ISO-8859-1.

Examples

The following anonymous block uses the ESCAPE function to escape the blank spaces in
the URL:

DECLARE
 result varchar2(400);
BEGIN
 result :=
UTL_URL.UNESCAPE('http://www.example.com/Using%20the%20UNESCAPE%2
0function.html');
 DBMS_OUTPUT.PUT_LINE(result);
END;

The resulting (unescaped) URL is:

http://www.example.com/Using the UNESCAPE function.html

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

828

10 Expanded Catalog Views
The Expanded Catalog Views provide comprehensive information from another
perspective about database objects.

10.1 ALL_ALL_TABLES

The ALL_ALL_TABLES view provides information about the tables accessible by the
current user.

Name Type Description
owner TEXT User name of the table‟s owner.
schema_name TEXT Name of the schema in which the table belongs.
table_name TEXT The name of the table.

tablespace_name TEXT Name of the tablespace in which the table resides if other than
the default tablespace.

status CHARACTER
VARYING (5) Included for compatibility only; always set to VALID.

temporary TEXT Y if the table is temporary; N if the table is permanent.

10.2 ALL_CONS_COLUMNS

The ALL_CONS_COLUMNS view provides information about the columns specified in
constraints placed on tables accessible by the current user.

Name Type Description
owner TEXT User name of the constraint‟s owner.
schema_name TEXT Name of the schema in which the constraint belongs.
constraint_name TEXT The name of the constraint.
table_name TEXT The name of the table to which the constraint belongs.
column_name TEXT The name of the column referenced in the constraint.
position SMALLINT The position of the column within the object definition.
constraint_def TEXT The definition of the constraint.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

829

10.3 ALL_CONSTRAINTS

The ALL_CONSTRAINTS view provides information about the constraints placed on
tables accessible by the current user.

Name Type Description
owner TEXT User name of the constraint‟s owner.
schema_name TEXT Name of the schema in which the constraint belongs.
constraint_name TEXT The name of the constraint.

constraint_type TEXT

The constraint type. Possible values are:
C – check constraint
F – foreign key constraint
P – primary key constraint
U – unique key constraint
R – referential integrity constraint
V – constraint on a view
O – with read-only, on a view

table_name TEXT Name of the table to which the constraint belongs.
search_condition TEXT Search condition that applies to a check constraint.
r_owner TEXT Owner of a table referenced by a referential constraint.
r_constraint_name TEXT Name of the constraint definition for a referenced table.

delete_rule TEXT

The delete rule for a referential constraint. Possible values
are:

C – cascade
R – restrict
N – no action

deferrable BOOLEAN Specified if the constraint is deferrable (T or F).
deferred BOOLEAN Specifies if the constraint has been deferred (T or F).
index_owner TEXT User name of the index owner.
index_name TEXT The name of the index.
constraint_def TEXT The definition of the constraint.

10.4 ALL_DB_LINKS

The ALL_DB_LINKS view provides information about the database links accessible by
the current user.

Name Type Description
owner TEXT User name of the database link‟s owner.
db_link TEXT The name of the database link.

type CHARACTER
VARYING Type of remote server. Value will be either REDWOOD or EDB

username TEXT User name of the user logging in.
host TEXT Name or IP address of the remote server.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

830

10.5 ALL_IND_COLUMNS

The ALL_IND_COLUMNS view provides information about columns included in indexes
on the tables accessible by the current user.

Name Type Description
index_owner TEXT User name of the index‟s owner.
schema_name TEXT Name of the schema in which the index belongs.
index_name TEXT The name of the index.
table_owner TEXT User name of the table owner.
table_name TEXT The name of the table to which the index belongs.
column_name TEXT The name of the column.
column_position SMALLINT The position of the column within the index.
column_length SMALLINT The length of the column (in bytes).
char_length NUMERIC The length of the column (in characters).
descend CHARACTER(1) Always set to Y (descending); included for compatibility only.

10.6 ALL_INDEXES

The ALL_INDEXES view provides information about the indexes on tables that may be
accessed by the current user.

Name Type Description
owner TEXT User name of the index‟s owner.
schema_name TEXT Name of the schema in which the index belongs.
index_name TEXT The name of the index.

index_type TEXT The index type is always BTREE. Included for compatibility
only.

table_owner TEXT User name of the owner of the indexed table.
table_name TEXT The name of the indexed table.
table_type TEXT Included for compatibility only. Always set to TABLE.
uniqueness TEXT Indicates if the index is UNIQUE or NONUNIQUE.

compression CHARACTER(1) Always set to N (not compressed). Included for compatibility
only.

tablespace_name TEXT Name of the tablespace in which the table resides if other than
the default tablespace.

logging TEXT Always set to LOGGING. Included for compatibility only.
status TEXT Included for compatibility only; always set to VALID.

partitioned CHARACTER(3) Indicates that the index is partitioned. Currently, always set to
NO.

temporary CHARACTER(1)
Indicates that an index is on a temporary table. Always set to
N; included for compatibility only.

secondary CHARACTER(1) Included for compatibility only. Always set to N.
join_index CHARACTER(3) Included for compatibility only. Always set to NO.
dropped CHARACTER(3) Included for compatibility only. Always set to NO.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

831

10.7 ALL_JOBS

The ALL_JOBS view provides information about all jobs that reside in the database.

Name Type Description
job INTEGER The identifier of the job (Job ID).
log_user TEXT The name of the user that submitted the job.
priv_user TEXT Same as log_user. Included for compatibility only.
schema_user TEXT The name of the schema used to parse the job.

last_date TIMESTAMP WITH
TIME ZONE The last date that this job executed successfully.

last_sec TEXT Same as last_date.

this_date TIMESTAMP WITH
TIME ZONE The date that the job began executing.

this_sec TEXT Same as this_date

next_date TIMESTAMP WITH
TIME ZONE The next date that this job will be executed.

next_sec TEXT Same as next_date.
total_time INTERVAL The execution time of this job (in seconds).

broken TEXT
If Y, no attempt will be made to run this job.
If N, this job will attempt to execute.

interval TEXT Determines how often the job will repeat.

failures BIGINT The number of times that the job has failed to complete since
it‟s last successful execution.

what TEXT The job definition (PL/SQL code block) that runs when the
job executes.

nls_env CHARACTER
VARYING(4000) Always NULL. Provided for compatibility only.

misc_env BYTEA Always NULL. Provided for compatibility only.
instance NUMERIC Always 0. Provided for compatibility only.

10.8 ALL_OBJECTS

The ALL_OBJECTS view provides information about all objects that reside in the
database.

Name Type Description
owner TEXT User name of the object‟s owner.
schema_name TEXT Name of the schema in which the object belongs.
object_name TEXT Name of the object.

object_type
TEXT Type of the object – possible values are: INDEX, FUNCTION,

PACKAGE, PACKAGE BODY, PROCEDURE, SEQUENCE,
SYNONYM, TABLE, TRIGGER, and VIEW.

status
CHARACTER
VARYING

Whether or not the state of the object is valid. Currently,
Included for compatibility only; always set to VALID.

temporary TEXT Y if a temporary object; N if this is a permanent object.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

832

10.9 ALL_PART_KEY_COLUMNS

The ALL_PART_KEY_COLUMNS view provides information about the key columns of the
partitioned tables that reside in the database.

Name Type Description
owner TEXT The owner of the table.
schema_name TEXT The name of the schema in which

the table resides.
name TEXT The name of the table in which the

column resides.
object_type CHARACTER(5) For compatibility only; always TABLE.
column_name TEXT The name of the column on which

the key is defined.
column_position INTEGER 1 for the first column; 2 for the second

column, etc.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

833

10.10 ALL_PART_TABLES

The ALL_PART_TABLES view provides information about all of the partitioned tables
that reside in the database.

Name Type Description
owner TEXT The owner of the partitioned table.
schema_name TEXT The name of the schema in which the table

resides.
table_name TEXT The name of the table.
partitioning_type TEXT The partitioning type used to define table

partitions.
subpartitioning_type TEXT The subpartitioning type used to define table

subpartitions.
partition_count BIGINT The number of partitions in the table.
def_subpartition_count INTEGER The number of subpartitions in the table.
partitioning_key_count INTEGER The number of partitioning keys specified.
subpartitioning_key_count INTEGER The number of subpartitioning keys specified.
status CHARACTER

VARYING(8)
Provided for compatibility only. Always
VALID.

def_tablespace_name CHARACTER
VARYING(30)

Provided for compatibility only. Always NULL.
def_pct_free NUMERIC Provided for compatibility only. Always NULL.
def_pct_used NUMERIC Provided for compatibility only. Always NULL.
def_ini_trans NUMERIC Provided for compatibility only. Always NULL.
def_max_trans NUMERIC Provided for compatibility only. Always NULL.
def_initial_extent CHARACTER

VARYING(40)
Provided for compatibility only. Always NULL.

def_next_extent CHARACTER
VARYING(40)

Provided for compatibility only. Always NULL.
def_min_extents CHARACTER

VARYING(40)
Provided for compatibility only. Always NULL.

def_max_extents CHARACTER
VARYING(40)

Provided for compatibility only. Always NULL.
def_pct_increase CHARACTER

VARYING(40)
Provided for compatibility only. Always NULL.

def_freelists NUMERIC Provided for compatibility only. Always NULL.
def_freelist_groups NUMERIC Provided for compatibility only. Always NULL.
def_logging CHARACTER

VARYING(7)
Provided for compatibility only. Always YES.

def_compression CHARACTER
VARYING(8)

Provided for compatibility only. Always NONE
def_buffer_pool CHARACTER

VARYING(7)
Provided for compatibility only. Always
DEFAULT

ref_ptn_constraint_name CHARACTER
VARYING(30)

Provided for compatibility only. Always NULL
interval CHARACTER

VARYING(1000)
Provided for compatibility only. Always NULL

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

834

10.11 ALL_POLICIES

The ALL_POLICIES view provides information on all policies in the database. This view
is accessible only to superusers.

Name Type Description
object_owner TEXT Name of the owner of the object.
schema_name TEXT Name of the schema in which the object belongs.
object_name TEXT Name of the object on which the policy applies.
policy_group TEXT Included for compatibility only; always set to an empty string.
policy_name TEXT Name of the policy.

pf_owner
TEXT Name of the schema containing the policy function, or the

schema containing the package that contains the policy
function.

package
TEXT Name of the package containing the policy function if the

function belongs to a package.
function TEXT Name of the policy function.

sel TEXT Whether or not the policy applies to SELECT commands.
Possible values are YES or NO.

ins TEXT Whether or not the policy applies to INSERT commands.
Possible values are YES or NO.

upd TEXT Whether or not the policy applies to UPDATE commands.
Possible values are YES or NO.

del TEXT Whether or not the policy applies to DELETE commands.
Possible values are YES or NO.

idx TEXT
Whether or not the policy applies to index maintenance.
Possible values are YES or NO.

chk_option TEXT Whether or not the check option is in force for INSERT and
UPDATE commands. Possible values are YES or NO.

enable TEXT Whether or not the policy is enabled on the object. Possible
values are YES or NO.

static_policy TEXT Included for compatibility only; always set to NO.
policy_type TEXT Included for compatibility only; always set to UNKNOWN.
long_predicate TEXT Included for compatibility only; always set to YES.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

835

10.12 ALL_SEQUENCES

The ALL_SEQUENCES view provides information about all user-defined sequences on
which the user has SELECT, or UPDATE privileges.

Name Type Description
sequence_owner TEXT User name of the sequence's owner.
schema_name TEXT Name of the schema in which the sequence resides.
sequence_name TEXT Name of the sequence.
min_value NUMERIC The lowest value that the server will assign to the sequence.
max_value NUMERIC The highest value that the server will assign to the sequence.

increment_by NUMERIC The value added to the current sequence number to create the
next sequent number.

cycle_flag CHARACTER
VARYING

Specifies if the sequence should wrap when it reaches
min_value or max_value.

order_flag CHARACTER
VARYING This will always return Y.

cache_size NUMERIC The number of pre-allocated sequence numbers stored in
memory.

last_number NUMERIC The value of the last sequence number saved to disk.

10.13 ALL_SOURCE

The ALL_SOURCE view provides a source code listing of the following program types:
functions, procedures, triggers, package specifications, and package bodies.

Name Type Description
owner TEXT User name of the program‟s owner.
schema_name TEXT Name of the schema in which the program belongs.
name TEXT Name of the program.

type
TEXT Type of program – possible values are: FUNCTION, PACKAGE,

PACKAGE BODY, PROCEDURE, and TRIGGER.
line INTEGER Source code line number relative to a given program.
text TEXT Line of source code text.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

836

10.14 ALL_SUBPART_KEY_COLUMNS

The ALL_SUBPART_KEY_COLUMNS view provides information about the key columns of
those partitioned tables which are subpartitioned that reside in the database.

Name Type Description
owner TEXT The owner of the table.
schema_name TEXT The name of the schema in which

the table resides.
name TEXT The name of the table in which the

column resides.
object_type CHARACTER(5) For compatibility only; always TABLE.
column_name TEXT The name of the column on which

the key is defined.
column_position INTEGER 1 for the first column; 2 for the second

column, etc.

10.15 ALL_SYNONYMS

The ALL_SYNONYMS view provides information on all synonyms that may be referenced
by the current user.

Name Type Description
owner TEXT User name of the synonym‟s owner.
schema_name TEXT The name of the schema in which the synonym resides.
synonym_name TEXT Name of the synonym.
table_owner TEXT User name of the object‟s owner.
table_schema_name TEXT The name of the schema in which the table resides.
table_name TEXT The name of the object that the synonym refers to.
db_link TEXT The name of any associated database link.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

837

10.16 ALL_TAB_COLUMNS

The ALL_TAB_COLUMNS view provides information on all columns in all user-defined
tables and views.

Name Type Description

owner CHARACTER VARYING User name of the owner of the table or view in which the
column resides.

schema_name CHARACTER VARYING Name of the schema in which the table or view resides.
table_name CHARACTER VARYING Name of the table or view.
column_name CHARACTER VARYING Name of the column.
data_type CHARACTER VARYING Data type of the column.
data_length NUMERIC Length of text columns.
data_precision NUMERIC Precision (number of digits) for NUMBER columns.
data_scale NUMERIC Scale of NUMBER columns.

nullable CHARACTER(1)
Whether or not the column is nullable. Possible values
are:
 Y – column is nullable; N – column does not allow null.

column_id NUMERIC Relative position of the column within the table or view.
data_default CHARACTER VARYING Default value assigned to the column.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

838

10.17 ALL_TAB_PARTITIONS

The ALL_TAB_PARTITIONS view provides information about all of the partitions that
reside in the database.

Name Type Description
table_owner TEXT The owner of the table in which the partition resides.
schema_name TEXT The name of the schema in which the table resides.
table_name TEXT The name of the table.
composite TEXT YES if the table is subpartitioned; NO if the table is not

subpartitioned.
partition_name TEXT The name of the partition.
subpartition_count BIGINT The number of subpartitions in the partition.
high_value TEXT The high partitioning value specified in the

CREATE TABLE statement.
high_value_length INTEGER The length of the partitioning value.
partition_position INTEGER 1 for the first partition; 2 for the second partition, etc.
tablespace_name TEXT The name of the tablespace in which the partition resides.
pct_free NUMERIC Included for compatibility only; always 0
pct_used NUMERIC Included for compatibility only; always 0
ini_trans NUMERIC Included for compatibility only; always 0
max_trans NUMERIC Included for compatibility only; always 0
initial_extent NUMERIC Included for compatibility only; always NULL
next_extent NUMERIC Included for compatibility only; always NULL
min_extent NUMERIC Included for compatibility only; always 0
max_extent NUMERIC Included for compatibility only; always 0
pct_increase NUMERIC Included for compatibility only; always 0
freelists NUMERIC Included for compatibility only; always NULL
freelist_groups NUMERIC Included for compatibility only; always NULL
logging CHARACTER

VARYING(7)
Included for compatibility only; always YES

compression CHARACTER
VARYING(8)

Included for compatibility only; always NONE

num_rows NUMERIC Same as pg_class.reltuples.
blocks INTEGER Same as pg_class.relpages.
empty_blocks NUMERIC Included for compatibility only; always NULL
avg_space NUMERIC Included for compatibility only; always NULL
chain_cnt NUMERIC Included for compatibility only; always NULL
avg_row_len NUMERIC Included for compatibility only; always NULL
sample_size NUMERIC Included for compatibility only; always NULL
last_analyzed TIMESTAMP

WITHOUT TIME
ZONE

Included for compatibility only; always NULL

buffer_pool CHARACTER
VARYING(7)

Included for compatibility only; always NULL

global_stats CHARACTER
VARYING(3)

Included for compatibility only; always YES

user_stats CHARACTER
VARYING(3)

Included for compatibility only; always NO

backing_table REGCLASS Name of the partition backing table.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

839

10.18 ALL_TAB_SUBPARTITIONS

The ALL_TAB_SUBPARTITIONS view provides information about all of the subpartitions
that reside in the database.

Name Type Description
table_owner TEXT The owner of the table in which the subpartition

resides.
schema_name TEXT The name of the schema in which the table resides.
table_name TEXT The name of the table.
partition_name TEXT The name of the partition.
subpartition_name TEXT The name of the subpartition.
high_value TEXT The high subpartitioning value specified in

the CREATE TABLE statement.
high_value_length INTEGER The length of the subpartitioning value.
subpartition_position INTEGER 1 for the first subpartition; 2 for the second

subpartition, etc.
tablespace_name TEXT The name of the tablespace in which the subpartition

resides.
pct_free NUMERIC Included for compatibility only; always 0
pct_used NUMERIC Included for compatibility only; always 0
ini_trans NUMERIC Included for compatibility only; always 0
max_trans NUMERIC Included for compatibility only; always 0
initial_extent NUMERIC Included for compatibility only; always NULL
next_extent NUMERIC Included for compatibility only; always NULL
min_extent NUMERIC Included for compatibility only; always 0
max_extent NUMERIC Included for compatibility only; always 0
pct_increase NUMERIC Included for compatibility only; always 0
freelists NUMERIC Included for compatibility only; always NULL
freelist_groups NUMERIC Included for compatibility only; always NULL
logging CHARACTER

VARYING(7)
Included for compatibility only; always YES

compression CHARACTER
VARYING(8)

Included for compatibility only; always NONE

num_rows NUMERIC Same as pg_class.reltuples.
blocks INTEGER Same as pg_class.relpages.
empty_blocks NUMERIC Included for compatibility only; always NULL
avg_space NUMERIC Included for compatibility only; always NULL
chain_cnt NUMERIC Included for compatibility only; always NULL
avg_row_len NUMERIC Included for compatibility only; always NULL
sample_size NUMERIC Included for compatibility only; always NULL
last_analyzed TIMESTAMP

WITHOUT TIME
ZONE

Included for compatibility only; always NULL

buffer_pool CHARACTER
VARYING(7)

Included for compatibility only; always NULL

global_stats CHARACTER
VARYING(3)

Included for compatibility only; always YES

user_stats CHARACTER
VARYING(3)

Included for compatibility only; always NO

backing_table REGCLASS Name of the subpartition backing table.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

840

10.19 ALL_TABLES

The ALL_TABLES view provides information on all user-defined tables.

Name Type Description
owner TEXT User name of the table‟s owner.
schema_name TEXT Name of the schema in which the table belongs.
table_name TEXT Name of the table.

tablespace_name
TEXT Name of the tablespace in which the table resides if other than

the default tablespace.

status CHARACTER
VARYING(5)

Whether or not the state of the table is valid. Currently,
Included for compatibility only; always set to VALID.

temporary CHARACTER(1) Y if this is a temporary table; N if this is not a temporary table.

10.20 ALL_TRIGGERS

The ALL_TRIGGERS view provides information about the triggers on tables that may be
accessed by the current user.

Name Type Description
owner TEXT User name of the trigger‟s owner.
schema_name TEXT The name of the schema in which the trigger resides.
trigger_name TEXT The name of the trigger.

trigger_type TEXT

The type of the trigger. Possible values are:
BEFORE ROW
BEFORE STATEMENT
AFTER ROW
AFTER STATEMENT

triggering_event TEXT The event that fires the trigger.

table_owner TEXT The user name of the owner of the table on which the trigger
is defined.

base_object_type TEXT Included for compatibility only. Value will always be TABLE.
table_name TEXT The name of the table on which the trigger is defined.

referencing_name
TEXT Included for compatibility only. Value will always be

REFERENCING NEW AS NEW OLD AS OLD.

status
TEXT Status indicates if the trigger is enabled (VALID) or disabled

(NOTVALID).

description
TEXT Included for compatibility only. Value will always be SEE

TRIGGER BODY FOR TEXT.
trigger_body TEXT The body of the trigger.
action_statement TEXT The SQL command that executes when the trigger fires.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

841

10.21 ALL_TYPES

The ALL_TYPES view provides information about the object types available to the
current user.

Name Type Description
owner TEXT The owner of the object type.
schema_name TEXT The name of the schema in which the type is defined.
type_name TEXT The name of the type.
type_oid OID The object identifier (OID) of the type.

typecode TEXT

The typecode of the type. Possible values are:
OBJECT
COLLECTION
OTHER

attributes INTEGER The number of attributes in the type.

10.22 ALL_USERS

The ALL_USERS view provides information on all user names.

Name Type Description
username TEXT Name of the user.
user_id OID Numeric user id assigned to the user.
created TIMESTAMP

WITHOUT TIME
ZONE

Included for compatibility only; always NULL.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

842

10.23 ALL_VIEW_COLUMNS

The ALL_VIEW_COLUMNS view provides information on all columns in all user-defined
views.

Name Type Description

owner CHARACTER
VARYING User name of the view‟s owner.

schema_name CHARACTER
VARYING Name of the schema in which the view belongs.

view_name CHARACTER
VARYING Name of the view.

column_name CHARACTER
VARYING Name of the column.

data_type CHARACTER
VARYING Data type of the column.

data_length NUMERIC Length of text columns.
data_precision NUMERIC Precision (number of digits) for NUMBER columns.
data_scale NUMERIC Scale of NUMBER columns.

nullable CHARACTER(1) Whether or not the column is nullable – possible values are: Y
– column is nullable; N – column does not allow null.

column_id NUMERIC Relative position of the column within the view.
data_default CHARACTER

VARYING
Default value assigned to the column.

10.24 ALL_VIEWS

The ALL_VIEWS view provides information about all user-defined views.

Name Type Description
owner TEXT User name of the view‟s owner.
schema_name TEXT Name of the schema in which the view belongs.
view_name TEXT Name of the view.
text TEXT The SELECT statement that defines the view.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

843

10.25 DBA_ALL_TABLES

The DBA_ALL_TABLES view provides information about all tables in the database.

Name Type Description
owner TEXT User name of the table‟s owner.
schema_name TEXT Name of the schema in which the table belongs.
table_name TEXT Name of the table.

tablespace_name TEXT Name of the tablespace in which the table resides if other than
the default tablespace.

status CHARACTER
VARYING(5) Included for compatibility only; always set to VALID.

temporary TEXT Y if the table is temporary; N if the table is permanent.

10.26 DBA_CONS_COLUMNS

The DBA_CONS_COLUMNS view provides information about all columns that are included
in constraints that are specified in on all tables in the database.

Name Type Description
owner TEXT User name of the constraint‟s owner.
schema_name TEXT Name of the schema in which the constraint belongs.
constraint_name TEXT The name of the constraint.
table_name TEXT The name of the table to which the constraint belongs.
column_name TEXT The name of the column referenced in the constraint.
position SMALLINT The position of the column within the object definition.
constraint_def TEXT The definition of the constraint.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

844

10.27 DBA_CONSTRAINTS

The DBA_CONSTRAINTS view provides information about all constraints on tables in the
database.

Name Type Description
owner TEXT User name of the constraint‟s owner.
schema_name TEXT Name of the schema in which the constraint belongs.
constraint_name TEXT The name of the constraint.

constraint_type TEXT

The constraint type. Possible values are:
C – check constraint
F – foreign key constraint
P – primary key constraint
U – unique key constraint
R – referential integrity constraint
V – constraint on a view
O – with read-only, on a view

table_name TEXT Name of the table to which the constraint belongs.
search_condition TEXT Search condition that applies to a check constraint.
r_owner TEXT Owner of a table referenced by a referential constraint.
r_constraint_name TEXT Name of the constraint definition for a referenced table.

delete_rule TEXT

The delete rule for a referential constraint. Possible values
are:

C – cascade
R - restrict
N – no action

deferrable BOOLEAN Specified if the constraint is deferrable (T or F).
deferred BOOLEAN Specifies if the constraint has been deferred (T or F).
index_owner TEXT User name of the index owner.
index_name TEXT The name of the index.
constraint_def TEXT The definition of the constraint.

10.28 DBA_DB_LINKS

The DBA_DB_LINKS view provides information about all database links in the database.

Name Type Description
owner TEXT User name of the database link‟s owner.
db_link TEXT The name of the database link.

type CHARACTER
VARYING Type of remote server. Value will be either REDWOOD or EDB

username TEXT User name of the user logging in.
host TEXT Name or IP address of the remote server.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

845

10.29 DBA_IND_COLUMNS

The DBA_IND_COLUMNS view provides information about all columns included in
indexes, on all tables in the database.

Name Type Description
index_owner TEXT User name of the index‟s owner.
schema_name TEXT Name of the schema in which the index belongs.
index_name TEXT Name of the index.
table_owner TEXT User name of the table‟s owner.
table_name TEXT Name of the table in which the index belongs.
column_name TEXT Name of column or attribute of object column.
column_position SMALLINT The position of the column in the index.
column_length SMALLINT The length of the column (in bytes).
char_length NUMERIC The length of the column (in characters).
descend CHARACTER(1) Always set to Y (descending); included for compatibility only.

10.30 DBA_INDEXES

The DBA_INDEXES view provides information about all indexes in the database.

Name Type Description
owner TEXT User name of the index‟s owner.
schema_name TEXT Name of the schema in which the index resides.
index_name TEXT The name of the index.

index_type TEXT The index type is always BTREE. Included for compatibility
only.

table_owner TEXT User name of the owner of the indexed table.
table_name TEXT The name of the indexed table.
table_type TEXT Included for compatibility only. Always set to TABLE.
uniqueness TEXT Indicates if the index is UNIQUE or NONUNIQUE.

compression CHARACTER(1) Always set to N (not compressed). Included for compatibility
only.

tablespace_name TEXT Name of the tablespace in which the table resides if other than
the default tablespace.

logging TEXT Included for compatibility only. Always set to LOGGING.

status TEXT Whether or not the state of the object is valid. (VALID or
INVALID).

partitioned CHARACTER(3) Indicates that the index is partitioned. Always set to NO.

temporary CHARACTER(1)
Indicates that an index is on a temporary table. Always set to
N.

secondary CHARACTER(1) Included for compatibility only. Always set to N.
join_index CHARACTER(3) Included for compatibility only. Always set to NO.
dropped CHARACTER(3) Included for compatibility only. Always set to NO.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

846

10.31 DBA_JOBS

The DBA_JOBS view provides information about all jobs in the database.

Name Type Description
job INTEGER The identifier of the job (Job ID).
log_user TEXT The name of the user that submitted the job.
priv_user TEXT Same as log_user. Included for compatibility only.
schema_user TEXT The name of the schema used to parse the job.

last_date TIMESTAMP WITH
TIME ZONE The last date that this job executed successfully.

last_sec TEXT Same as last_date.

this_date TIMESTAMP WITH
TIME ZONE The date that the job began executing.

this_sec TEXT Same as this_date

next_date TIMESTAMP WITH
TIME ZONE The next date that this job will be executed.

next_sec TEXT Same as next_date.
total_time INTERVAL The execution time of this job (in seconds).

broken TEXT
If Y, no attempt will be made to run this job.
If N, this job will attempt to execute.

interval TEXT Determines how often the job will repeat.

failures BIGINT The number of times that the job has failed to complete since
it‟s last successful execution.

what TEXT The job definition (PL/SQL code block) that runs when the
job executes.

nls_env CHARACTER
VARYING(4000) Always NULL. Provided for compatibility only.

misc_env BYTEA Always NULL. Provided for compatibility only.
instance NUMERIC Always 0. Provided for compatibility only.

10.32 DBA_OBJECTS

The DBA_OBJECTS view provides information about all objects in the database.

Name Type Description
owner TEXT User name of the object‟s owner.
schema_name TEXT Name of the schema in which the object belongs.
object_name TEXT Name of the object.

object_type TEXT
Type of the object – possible values are: INDEX, FUNCTION,
PACKAGE, PACKAGE BODY, PROCEDURE, SEQUENCE,
SYNONYM, TABLE, TRIGGER, and VIEW.

status CHARACTER
VARYING Included for compatibility only; always set to VALID.

temporary TEXT Y if the table is temporary; N if the table is permanent.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

847

10.33 DBA_PART_KEY_COLUMNS

The DBA_PART_KEY_COLUMNS view provides information about the key columns of the
partitioned tables that reside in the database.

Name Type Description
owner TEXT The owner of the table.
schema_name TEXT The name of the schema in which the

table resides.
name TEXT The name of the table in which the

column resides.
object_type CHARACTER(5) For compatibility only; always TABLE.
column_name TEXT The name of the column on which the key

is defined.
column_position INTEGER 1 for the first column; 2 for the second

column, etc.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

848

10.34 DBA_PART_TABLES

The DBA_PART_TABLES view provides information about all of the partitioned tables in
the database.

Name Type Description
owner TEXT The owner of the partitioned table.
schema_name TEXT The schema in which the table resides.
table_name TEXT The name of the table.
partitioning_type TEXT The type used to define table partitions.
subpartitioning_type TEXT The subpartitioning type used to define table

subpartitions.
partition_count BIGINT The number of partitions in the table.
def_subpartition_count INTEGER The number of subpartitions in the table.
partitioning_key_count INTEGER The number of partitioning keys specified.
subpartitioning_key_count INTEGER The number of subpartitioning keys specified.
status CHARACTER

VARYING(8)
Provided for compatibility only. Always
VALID.

def_tablespace_name CHARACTER
VARYING(30)

Provided for compatibility only. Always
NULL.

def_pct_free NUMERIC Provided for compatibility only. Always
NULL.

def_pct_used NUMERIC Provided for compatibility only. Always
NULL.

def_ini_trans NUMERIC Provided for compatibility only. Always
NULL.

def_max_trans NUMERIC Provided for compatibility only. Always
NULL.

def_initial_extent CHARACTER
VARYING(40)

Provided for compatibility only. Always
NULL.

def_next_extent CHARACTER
VARYING(40)

Provided for compatibility only. Always
NULL.

def_min_extents CHARACTER
VARYING(40)

Provided for compatibility only. Always
NULL.

def_max_extents CHARACTER
VARYING(40)

Provided for compatibility only. Always
NULL.

def_pct_increase CHARACTER
VARYING(40)

Provided for compatibility only. Always
NULL.

def_freelists NUMERIC Provided for compatibility only. Always
NULL.

def_freelist_groups NUMERIC Provided for compatibility only. Always
NULL.

def_logging CHARACTER
VARYING(7)

Provided for compatibility only. Always YES.

def_compression CHARACTER
VARYING(8)

Provided for compatibility only. Always
NONE.

def_buffer_pool CHARACTER
VARYING(7)

Provided for compatibility only. Always
DEFAULT.

ref_ptn_constraint_name CHARACTER
VARYING(30)

Provided for compatibility only. Always
NULL.

interval CHARACTER
VARYING(1000)

Provided for compatibility only. Always
NULL.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

849

10.35 DBA_POLICIES

The DBA_POLICIES view provides information on all policies in the database. This view
is accessible only to superusers.

Name Type Description
object_owner TEXT Name of the owner of the object.
schema_name TEXT The name of the schema in which the object resides.
object_name TEXT Name of the object to which the policy applies.

policy_group
TEXT Name of the policy group. Included for compatibility only;

always set to an empty string.
policy_name TEXT Name of the policy.

pf_owner
TEXT Name of the schema containing the policy function, or the

schema containing the package that contains the policy
function.

package
TEXT Name of the package containing the policy function (if the

function belongs to a package).
function TEXT Name of the policy function.

sel
TEXT Whether or not the policy applies to SELECT commands.

Possible values are YES or NO.

ins
TEXT Whether or not the policy applies to INSERT commands.

Possible values are YES or NO.

upd
TEXT Whether or not the policy applies to UPDATE commands.

Possible values are YES or NO.

del
TEXT Whether or not the policy applies to DELETE commands.

Possible values are YES or NO.

idx
TEXT Whether or not the policy applies to index maintenance.

Possible values are YES or NO.

chk_option
TEXT Whether or not the check option is in force for INSERT and

UPDATE commands. Possible values are YES or NO.

enable
TEXT Whether or not the policy is enabled on the object. Possible

values are YES or NO.
static_policy TEXT Included for compatibility only; always set to NO.
policy_type TEXT Included for compatibility only; always set to UNKNOWN.
long_predicate TEXT Included for compatibility only; always set to YES.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

850

10.36 DBA_PROFILES

The DBA_PROFILES view provides information about existing profiles. The table
includes a row for each profile/resource combination.

Name Type Description

profile CHARACTER
VARYING(128) The name of the profile.

resource_name CHARACTER
VARYING(32) The name of the resource associated with the profile.

resource_type
CHARACTER
VARYING(8)

The type of resource governed by the profile; currently
PASSWORD for all supported resources.

limit CHARACTER
VARYING(128) The limit values of the resource.

common CHARACTER
VARYING(3) YES for a user-created profile; NO for a system-defined profile.

10.37 DBA_ROLE_PRIVS

The DBA_ROLE_PRIVS view provides information on all roles that have been granted to
users. A row is created for each role to which a user has been granted.

Name Type Description
grantee TEXT User name to whom the role was granted.
granted_role TEXT Name of the role granted to the grantee.

admin_option
TEXT YES if the role was granted with the admin option, NO

otherwise.
default_role TEXT YES if the role is enabled when the grantee creates a session.

10.38 DBA_ROLES

The DBA_ROLES view provides information on all roles with the NOLOGIN attribute
(groups).

Name Type Description
role TEXT Name of a role having the NOLOGIN attribute – i.e., a group.
password_required TEXT Included for compatibility only; always N.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

851

10.39 DBA_SEQUENCES

The DBA_SEQUENCES view provides information about all user-defined sequences.

Name Type Description
sequence_owner TEXT User name of the sequence's owner.
schema_name TEXT The name of the schema in which the sequence resides.
sequence_name TEXT Name of the sequence.
min_value NUMERIC The lowest value that the server will assign to the sequence.
max_value NUMERIC The highest value that the server will assign to the sequence.

increment_by NUMERIC The value added to the current sequence number to create the
next sequent number.

cycle_flag CHARACTER
VARYING

Specifies if the sequence should wrap when it reaches
min_value or max_value.

order_flag CHARACTER
VARYING This will always return Y.

cache_size NUMERIC The number of pre-allocated sequence numbers stored in
memory.

last_number NUMERIC The value of the last sequence number saved to disk.

10.40 DBA_SOURCE

The DBA_SOURCE view provides the source code listing of all objects in the database.

Name Type Description
owner TEXT User name of the program‟s owner.
schema_name TEXT Name of the schema in which the program belongs.
name TEXT Name of the program.

type
TEXT Type of program – possible values are: FUNCTION, PACKAGE,

PACKAGE BODY, PROCEDURE, and TRIGGER.
line INTEGER Source code line number relative to a given program.
text TEXT Line of source code text.

10.41 DBA_SUBPART_KEY_COLUMNS

The DBA_SUBPART_KEY_COLUMNS view provides information about the key columns of
those partitioned tables which are subpartitioned that reside in the database.

Name Type Description
owner TEXT The owner of the table.
schema_name TEXT The name of the schema in which the

table resides.
name TEXT The name of the table in which the

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

852

column resides.
object_type CHARACTER(5) For compatibility only; always TABLE.
column_name TEXT The name of the column on which the key

is defined.
column_position INTEGER 1 for the first column; 2 for the second

column, etc.

10.42 DBA_SYNONYMS

The DBA_SYNONYM view provides information about all synonyms in the database.

Name Type Description
owner TEXT User name of the synonym‟s owner.
schema_name TEXT Name of the schema in which the synonym belongs.
synonym_name TEXT Name of the synonym.

table_owner
TEXT User name of the table‟s owner on which the synonym is

defined.
table_schema_name TEXT The name of the schema in which the table resides.
table_name TEXT Name of the table on which the synonym is defined.
db_link TEXT Name of any associated database link.

10.43 DBA_TAB_COLUMNS

The DBA_TAB_COLUMNS view provides information about all columns in the database.

Name Type Description

owner CHARACTER
VARYING

User name of the owner of the table or view in which the
column resides.

schema_name CHARACTER
VARYING Name of the schema in which the table or view resides.

table_name CHARACTER
VARYING Name of the table or view in which the column resides.

column_name
CHARACTER
VARYING Name of the column.

data_type CHARACTER
VARYING Data type of the column.

data_length NUMERIC Length of text columns.

data_precision NUMERIC Precision (number of digits) for NUMBER columns.

data_scale NUMERIC Scale of NUMBER columns.

nullable CHARACTER(1)
Whether or not the column is nullable – possible values are:
 Y – column is nullable; N – column does not allow null.

column_id NUMERIC Relative position of the column within the table or view.
data_default CHARACTER

VARYING
Default value assigned to the column.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

853

10.44 DBA_TAB_PARTITIONS

The DBA_TAB_PARTITIONS view provides information about all of the partitions that
reside in the database.

Name Type Description
table_owner TEXT The owner of the table in which the partition resides.
schema_name TEXT The name of the schema in which the table resides.
table_name TEXT The name of the table.
composite TEXT YES if the table is subpartitioned; NO if the table is not

subpartitioned.
partition_name TEXT The name of the partition.
subpartition_count BIGINT The number of subpartitions in the partition.
high_value TEXT The high partitioning value specified in the

CREATE TABLE statement.
high_value_length INTEGER The length of the partitioning value.
partition_position INTEGER 1 for the first partition; 2 for the second partition, etc.
tablespace_name TEXT The name of the tablespace in which the partition resides.
pct_free NUMERIC Included for compatibility only; always 0
pct_used NUMERIC Included for compatibility only; always 0
ini_trans NUMERIC Included for compatibility only; always 0
max_trans NUMERIC Included for compatibility only; always 0
initial_extent NUMERIC Included for compatibility only; always NULL
next_extent NUMERIC Included for compatibility only; always NULL
min_extent NUMERIC Included for compatibility only; always 0
max_extent NUMERIC Included for compatibility only; always 0
pct_increase NUMERIC Included for compatibility only; always 0
freelists NUMERIC Included for compatibility only; always NULL
freelist_groups NUMERIC Included for compatibility only; always NULL
logging CHARACTER

VARYING(7)
Included for compatibility only; always YES

compression CHARACTER
VARYING(8)

Included for compatibility only; always NONE

num_rows NUMERIC Same as pg_class.reltuples.
blocks INTEGER Same as pg_class.relpages.
empty_blocks NUMERIC Included for compatibility only; always NULL
avg_space NUMERIC Included for compatibility only; always NULL
chain_cnt NUMERIC Included for compatibility only; always NULL
avg_row_len NUMERIC Included for compatibility only; always NULL
sample_size NUMERIC Included for compatibility only; always NULL
last_analyzed TIMESTAMP

WITHOUT TIME
ZONE

Included for compatibility only; always NULL

buffer_pool CHARACTER
VARYING(7)

Included for compatibility only; always NULL

global_stats CHARACTER
VARYING(3)

Included for compatibility only; always YES

user_stats CHARACTER
VARYING(3)

Included for compatibility only; always NO

backing_table REGCLASS Name of the partition backing table.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

854

10.45 DBA_TAB_SUBPARTITIONS

The DBA_TAB_SUBPARTITIONS view provides information about all of the subpartitions
that reside in the database.

Name Type Description
table_owner TEXT The owner of the table in which the subpartition

resides.
schema_name TEXT The name of the schema in which the table resides.
table_name TEXT The name of the table.
partition_name TEXT The name of the subpartition.
subpartition_name TEXT The name of the subpartition.
high_value TEXT The high subpartitioning value specified in the CREATE

TABLE statement.
high_value_length INTEGER The length of the subpartitioning value.
subpartition_position INTEGER 1 for the first subpartition; 2 for the second

subpartition, etc.
tablespace_name TEXT The name of the tablespace in which the subpartition

resides.
pct_free NUMERIC Included for compatibility only; always 0
pct_used NUMERIC Included for compatibility only; always 0
ini_trans NUMERIC Included for compatibility only; always 0
max_trans NUMERIC Included for compatibility only; always 0
initial_extent NUMERIC Included for compatibility only; always NULL
next_extent NUMERIC Included for compatibility only; always NULL
min_extent NUMERIC Included for compatibility only; always 0
max_extent NUMERIC Included for compatibility only; always 0
pct_increase NUMERIC Included for compatibility only; always 0
freelists NUMERIC Included for compatibility only; always NULL
freelist_groups NUMERIC Included for compatibility only; always NULL
logging CHARACTER

VARYING(7)
Included for compatibility only; always YES

compression CHARACTER
VARYING(8)

Included for compatibility only; always NONE

num_rows NUMERIC Same as pg_class.reltuples.
blocks INTEGER Same as pg_class.relpages.
empty_blocks NUMERIC Included for compatibility only; always NULL
avg_space NUMERIC Included for compatibility only; always NULL
chain_cnt NUMERIC Included for compatibility only; always NULL
avg_row_len NUMERIC Included for compatibility only; always NULL
sample_size NUMERIC Included for compatibility only; always NULL
last_analyzed TIMESTAMP

WITHOUT TIME
ZONE

Included for compatibility only; always NULL

buffer_pool CHARACTER
VARYING(7)

Included for compatibility only; always NULL

global_stats CHARACTER
VARYING(3)

Included for compatibility only; always YES

user_stats CHARACTER
VARYING(3)

Included for compatibility only; always NO

backing_table REGCLASS Name of the subpartition backing table.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

855

10.46 DBA_TABLES

The DBA_TABLES view provides information about all tables in the database.

Name Type Description
owner TEXT User name of the table‟s owner.
schema_name TEXT Name of the schema in which the table belongs.
table_name TEXT Name of the table.

tablespace_name TEXT Name of the tablespace in which the table resides if other than
the default tablespace.

status CHARACTER
VARYING(5) Included for compatibility only; always set to VALID.

temporary CHARACTER(1) Y if the table is temporary; N if the table is permanent.

10.47 DBA_TRIGGERS

The DBA_TRIGGERS view provides information about all triggers in the database.

Name Type Description
owner TEXT User name of the trigger‟s owner.
schema_name TEXT The name of the schema in which the trigger resides.
trigger_name TEXT The name of the trigger.

trigger_type TEXT

The type of the trigger. Possible values are:
BEFORE ROW
BEFORE STATEMENT
AFTER ROW
AFTER STATEMENT

triggering_event TEXT The event that fires the trigger.

table_owner TEXT The user name of the owner of the table on which the trigger
is defined.

base_object_type TEXT Included for compatibility only. Value will always be TABLE.
table_name TEXT The name of the table on which the trigger is defined.

referencing_names
TEXT Included for compatibility only. Value will always be

REFERENCING NEW AS NEW OLD AS OLD.

status
TEXT Status indicates if the trigger is enabled (VALID) or disabled

(NOTVALID).

description
TEXT Included for compatibility only. Value will always be SEE

TRIGGER BODY FOR TEXT.
trigger_body TEXT The body of the trigger.
action_statement TEXT The SQL command that executes when the trigger fires.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

856

10.48 DBA_TYPES

The DBA_TYPES view provides information about all object types in the database.

Name Type Description
owner TEXT The owner of the object type.
schema_name TEXT The name of the schema in which the type is defined.
type_name TEXT The name of the type.
type_oid OID The object identifier (OID) of the type.

typecode TEXT

The typecode of the type. Possible values are:
OBJECT
COLLECTION
OTHER

attributes INTEGER The number of attributes in the type.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

857

10.49 DBA_USERS

The DBA_USERS view provides information about all users of the database.

Name Type Description
username TEXT User name of the user.
user_id OID ID number of the user.

password CHARACTER
VARYING(30) The password (encrypted) of the user.

account_status CHARACTER
VARYING(32)

The current status of the account. Possible values
are:

OPEN
EXPIRED
EXPIRED(GRACE)
EXPIRED & LOCKED
EXPIRED & LOCKED(TIMED)
EXPIRED(GRACE) & LOCKED
EXPIRED(GRACE) & LOCKED(TIMED)
LOCKED
LOCKED(TIMED)

Use the edb_get_role_status(role_id)
function to get the current status of the account.

lock_date
TIMESTAMP
WITHOUT TIME
ZONE

If the account status is LOCKED, lock_date
displays the date and time the account was locked.

expiry_date
TIMESTAMP
WITHOUT TIME
ZONE

The expiration date of the password. Use the
edb_get_password_expiry_date(role_id)
function to get the current password expiration date.

default_tablespace TEXT The default tablespace associated with the account.

temporary_tablespace CHARACTER
VARYING(30)

Included for compatibility only. The value will
always be '' (an empty string).

created
TIMESTAMP
WITHOUT TIME
ZONE

Included for compatibility only. The value is
always NULL.

profile CHARACTER
VARYING(30)

The profile associated with the user.

initial_rsrc_consumer_group CHARACTER VARYING(30)
Included for compatibility only. The value is
always NULL.

external_name CHARACTER
VARYING(4000)

Included for compatibility only. The value is
always NULL.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

858

10.50 DBA_VIEW_COLUMNS

The DBA_VIEW_COLUMNS view provides information on all columns in the database.

Name Type Description

owner CHARACTER
VARYING User name of the view‟s owner.

schema_name CHARACTER
VARYING Name of the schema in which the view belongs.

view_name CHARACTER
VARYING Name of the view.

column_name CHARACTER
VARYING Name of the column.

data_type CHARACTER
VARYING Data type of the column.

data_length NUMERIC Length of text columns.
data_precision NUMERIC Precision (number of digits) for NUMBER columns.
data_scale NUMERIC Scale of NUMBER columns.

nullable CHARACTER(1)
Whether or not the column is nullable – possible values are:
 Y – column is nullable; N – column does not allow null.

column_id NUMERIC Relative position of the column within the view.

data_default CHARACTER
VARYING Default value assigned to the column.

10.51 DBA_VIEWS

The DBA_VIEWS view provides information about all views in the database.

Name Type Description
owner TEXT User name of the view‟s owner.
schema_name TEXT Name of the schema in which the view belongs.
view_name TEXT Name of the view.
text TEXT The text of the SELECT statement that defines the view.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

859

10.52 USER_ALL_TABLES

The USER_ALL_TABLES view provides information about all tables owned by the current
user.

Name Type Description
schema_name TEXT Name of the schema in which the table belongs.
table_name TEXT Name of the table.

tablespace_name TEXT Name of the tablespace in which the table resides if other than
the default tablespace.

status CHARACTER
VARYING(5) Included for compatibility only; always set to VALID..

temporary TEXT Y if the table is temporary; N if the table is permanent.

10.53 USER_CONS_COLUMNS

The USER_CONS_COLUMNS view provides information about all columns that are
included in constraints in tables that are owned by the current user.

Name Type Description
owner TEXT User name of the constraint‟s owner.
schema_name TEXT Name of the schema in which the constraint belongs.
constraint_name TEXT The name of the constraint.
table_name TEXT The name of the table to which the constraint belongs.
column_name TEXT The name of the column referenced in the constraint.
position SMALLINT The position of the column within the object definition.
constraint_def TEXT The definition of the constraint.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

860

10.54 USER_CONSTRAINTS

The USER_CONSTRAINTS view provides information about all constraints placed on
tables that are owned by the current user.

Name Type Description
owner TEXT The name of the owner of the constraint.
schema_name TEXT Name of the schema in which the constraint belongs.
constraint_name TEXT The name of the constraint.

constraint_type TEXT

The constraint type. Possible values are:
C – check constraint
F – foreign key constraint
P – primary key constraint
U – unique key constraint
R – referential integrity constraint
V – constraint on a view
O – with read-only, on a view

table_name TEXT Name of the table to which the constraint belongs.
search_condition TEXT Search condition that applies to a check constraint.
r_owner TEXT Owner of a table referenced by a referential constraint.
r_constraint_name TEXT Name of the constraint definition for a referenced table.

delete_rule TEXT

The delete rule for a referential constraint. Possible values
are:

C – cascade
R – restrict
N – no action

deferrable BOOLEAN Specified if the constraint is deferrable (T or F).
deferred BOOLEAN Specifies if the constraint has been deferred (T or F).
index_owner TEXT User name of the index owner.
index_name TEXT The name of the index.
constraint_def TEXT The definition of the constraint.

10.55 USER_DB_LINKS

The USER_DB_LINKS view provides information about all database links that are owned
by the current user.

Name Type Description
db_link TEXT The name of the database link.

type CHARACTER
VARYING Type of remote server. Value will be either REDWOOD or EDB

username TEXT User name of the user logging in.
password TEXT Password used to authenticate on the remote server.
host TEXT Name or IP address of the remote server.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

861

10.56 USER_IND_COLUMNS

The USER_IND_COLUMNS view provides information about all columns referred to in
indexes on tables that are owned by the current user.

Name Type Description
schema_name TEXT Name of the schema in which the index belongs.
index_name TEXT The name of the index.
table_name TEXT The name of the table to which the index belongs.
column_name TEXT The name of the column.
column_position SMALLINT The position of the column within the index.
column_length SMALLINT The length of the column (in bytes).
char_length NUMERIC The length of the column (in characters).
descend CHARACTER(1) Always set to Y (descending); included for compatibility only.

10.57 USER_INDEXES

The USER_INDEXES view provides information about all indexes on tables that are
owned by the current user.

Name Type Description
schema_name TEXT Name of the schema in which the index belongs.
index_name TEXT The name of the index.

index_type TEXT Included for compatibility only. The index type is always
BTREE.

table_owner TEXT User name of the owner of the indexed table.
table_name TEXT The name of the indexed table.
table_type TEXT Included for compatibility only. Always set to TABLE.
uniqueness TEXT Indicates if the index is UNIQUE or NONUNIQUE.

compression CHARACTER(1) Included for compatibility only. Always set to N (not
compressed).

tablespace_name TEXT Name of the tablespace in which the table resides if other than
the default tablespace.

logging TEXT Included for compatibility only. Always set to LOGGING.

status TEXT Whether or not the state of the object is valid. (VALID or
INVALID).

partitioned CHARACTER(3) Included for compatibility only. Always set to NO.
temporary CHARACTER(1) Included for compatibility only. Always set to N.
secondary CHARACTER(1) Included for compatibility only. Always set to N.
join_index CHARACTER(3) Included for compatibility only. Always set to NO.
dropped CHARACTER(3) Included for compatibility only. Always set to NO.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

862

10.58 USER_JOBS

The USER_JOBS view provides information about all jobs owned by the current user.

Name Type Description
job INTEGER The identifier of the job (Job ID).
log_user TEXT The name of the user that submitted the job.
priv_user TEXT Same as log_user. Included for compatibility only.
schema_user TEXT The name of the schema used to parse the job.

last_date TIMESTAMP WITH
TIME ZONE The last date that this job executed successfully.

last_sec TEXT Same as last_date.

this_date TIMESTAMP WITH
TIME ZONE The date that the job began executing.

this_sec TEXT Same as this_date.

next_date TIMESTAMP WITH
TIME ZONE The next date that this job will be executed.

next_sec TEXT Same as next_date.
total_time INTERVAL The execution time of this job (in seconds).

broken TEXT
If Y, no attempt will be made to run this job.
If N, this job will attempt to execute.

interval TEXT Determines how often the job will repeat.

failures BIGINT The number of times that the job has failed to complete since
it‟s last successful execution.

what TEXT The job definition (PL/SQL code block) that runs when the
job executes.

nls_env CHARACTER
VARYING(4000) Always NULL. Provided for compatibility only.

misc_env BYTEA Always NULL. Provided for compatibility only.
instance NUMERIC Always 0. Provided for compatibility only.

10.59 USER_OBJECTS

The USER_OBJECTS view provides information about all objects that are owned by the
current user.

Name Type Description
schema_name TEXT Name of the schema in which the object belongs.
object_name TEXT Name of the object.

object_type TEXT
Type of the object – possible values are: INDEX, FUNCTION,
PACKAGE, PACKAGE BODY, PROCEDURE, SEQUENCE,
SYNONYM, TABLE, TRIGGER, and VIEW.

status CHARACTER
VARYING Included for compatibility only; always set to VALID.

temporary TEXT Y if the object is temporary; N if the object is not temporary.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

863

10.60 USER_PART_KEY_COLUMNS

The USER_PART_KEY_COLUMNS view provides information about the key columns of
the partitioned tables that reside in the database.

Name Type Description
schema_name TEXT The name of the schema in which

the table resides.
name TEXT The name of the table in which the

column resides.
object_type CHARACTER(5) For compatibility only; always TABLE.
column_name TEXT The name of the column on which

the key is defined.
column_position INTEGER 1 for the first column; 2 for the second

column, etc.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

864

10.61 USER_PART_TABLES

The USER_PART_TABLES view provides information about all of the partitioned tables in
the database that are owned by the current user.

Name Type Description
schema_name TEXT The name of the schema in which the table

resides.
table_name TEXT The name of the table.
partitioning_type TEXT The partitioning type used to define table

partitions.
subpartitioning_type TEXT The subpartitioning type used to define table

subpartitions.
partition_count BIGINT The number of partitions in the table.
def_subpartition_count INTEGER The number of subpartitions in the table.
partitioning_key_count INTEGER The number of partitioning keys specified.
subpartitioning_key_count INTEGER The number of subpartitioning keys specified.
status CHARACTER

VARYING(8)
Provided for compatibility only. Always
VALID.

def_tablespace_name CHARACTER
VARYING(30)

Provided for compatibility only. Always
NULL.

def_pct_free NUMERIC Provided for compatibility only. Always
NULL.

def_pct_used NUMERIC Provided for compatibility only. Always
NULL.

def_ini_trans NUMERIC Provided for compatibility only. Always
NULL.

def_max_trans NUMERIC Provided for compatibility only. Always
NULL.

def_initial_extent CHARACTER
VARYING(40)

Provided for compatibility only. Always
NULL.

def_min_extents CHARACTER
VARYING(40)

Provided for compatibility only. Always
NULL.

def_max_extents CHARACTER
VARYING(40)

Provided for compatibility only. Always
NULL.

def_pct_increase CHARACTER
VARYING(40)

Provided for compatibility only. Always
NULL.

def_freelists NUMERIC Provided for compatibility only. Always
NULL.

def_freelist_groups NUMERIC Provided for compatibility only. Always
NULL.

def_logging CHARACTER
VARYING(7)

Provided for compatibility only. Always YES.

def_compression CHARACTER
VARYING(8)

Provided for compatibility only. Always
NONE.

def_buffer_pool CHARACTER
VARYING(7)

Provided for compatibility only. Always
DEFAULT.

ref_ptn_constraint_name CHARACTER
VARYING(30)

Provided for compatibility only. Always
NULL.

interval CHARACTER
VARYING(1000)

Provided for compatibility only. Always
NULL.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

865

10.62 USER_POLICIES

The USER_POLICIES view provides information on policies where the schema
containing the object on which the policy applies has the same name as the current
session user. This view is accessible only to superusers.

Name Type Description
schema_name TEXT The name of the schema in which the object resides.
object_name TEXT Name of the object on which the policy applies.

policy_group
TEXT Name of the policy group. Included for compatibility only;

always set to an empty string.
policy_name TEXT Name of the policy.

pf_owner
TEXT Name of the schema containing the policy function, or the

schema containing the package that contains the policy
function.

package
TEXT Name of the package containing the policy function if the

function belongs to a package.
function TEXT Name of the policy function.

sel
TEXT Whether or not the policy applies to SELECT commands.

Possible values are YES or NO.

ins
TEXT Whether or not the policy applies to INSERT commands.

Possible values are YES or NO.

upd
TEXT Whether or not the policy applies to UPDATE commands.

Possible values are YES or NO.

del
TEXT Whether or not the policy applies to DELETE commands.

Possible values are YES or NO.

idx
TEXT Whether or not the policy applies to index maintenance.

Possible values are YES or NO.

chk_option
TEXT Whether or not the check option is in force for INSERT and

UPDATE commands. Possible values are YES or NO.

enable
TEXT Whether or not the policy is enabled on the object. Possible

values are YES or NO.

static_policy
TEXT Whether or not the policy is static. Included for compatibility

only; always set to NO.

policy_type
TEXT Policy type. Included for compatibility only; always set to

UNKNOWN.
long_predicate TEXT Included for compatibility only; always set to YES.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

866

10.63 USER_ROLE_PRIVS

The USER_ROLE_PRIVS view provides information about the privileges that have been
granted to the current user. A row is created for each role to which a user has been
granted.

Name Type Description
username TEXT The name of the user to which the role was granted.
granted_role TEXT Name of the role granted to the grantee.

admin_option
TEXT YES if the role was granted with the admin option, NO

otherwise.

default_role
TEXT

YES if the role is enabled when the grantee creates a session.

os_granted CHARACTER
VARYING(3)

Included for compatibility only; always NO.

10.64 USER_SEQUENCES

The USER_SEQUENCES view provides information about all user-defined sequences that
belong to the current user.

Name Type Description
schema_name TEXT The name of the schema in which the sequence resides.
sequence_name TEXT Name of the sequence.
min_value NUMERIC The lowest value that the server will assign to the sequence.
max_value NUMERIC The highest value that the server will assign to the sequence.

increment_by NUMERIC The value added to the current sequence number to create the
next sequent number.

cycle_flag CHARACTER
VARYING

Specifies if the sequence should wrap when it reaches
min_value or max_value.

order_flag CHARACTER
VARYING Included for compatibility only; always Y.

cache_size NUMERIC The number of pre-allocated sequence numbers in memory.
last_number NUMERIC The value of the last sequence number saved to disk.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

867

10.65 USER_SOURCE

The USER_SOURCE view provides information about all programs owned by the current
user.

Name Type Description
schema_name TEXT Name of the schema in which the program belongs.
name TEXT Name of the program.

type
TEXT Type of program – possible values are: FUNCTION, PACKAGE,

PACKAGE BODY, PROCEDURE, and TRIGGER.
line INTEGER Source code line number relative to a given program.
text TEXT Line of source code text.

10.66 USER_SUBPART_KEY_COLUMNS

The USER_SUBPART_KEY_COLUMNS view provides information about the key columns
of those partitioned tables which are subpartitioned that belong to the current user.

Name Type Description
schema_name TEXT The name of the schema in which the table resides.
name TEXT The name of the table in which the column resides.
object_type CHARACTER(5) For compatibility only; always TABLE.
column_name TEXT The name of the column on which the key is defined.
column_position INTEGER 1 for the first column; 2 for the second column, etc.

10.67 USER_SYNONYMS

The USER_SYNONYMS view provides information about all synonyms owned by the
current user.

Name Type Description
schema_name TEXT The name of the schema in which the synonym resides.
synonym_name TEXT Name of the synonym.

table_owner
TEXT User name of the table‟s owner on which the synonym is

defined.
table_schema_name TEXT The name of the schema in which the table resides.
table_name TEXT Name of the table on which the synonym is defined.
db_link TEXT Name of any associated database link.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

868

10.68 USER_TAB_COLUMNS

The USER_TAB_COLUMNS view displays information about all columns in tables and
views owned by the current user.

Name Type Description

schema_name CHARACTER
VARYING Name of the schema in which the table or view resides.

table_name CHARACTER
VARYING Name of the table or view in which the column resides.

column_name CHARACTER
VARYING Name of the column.

data_type CHARACTER
VARYING Data type of the column.

data_length NUMERIC Length of text columns.
data_precision NUMERIC Precision (number of digits) for NUMBER columns.
data_scale NUMERIC Scale of NUMBER columns.

nullable CHARACTER(1) Whether or not the column is nullable – possible values are: Y
Y – column is nullable; N – column does not allow null.

column_id NUMERIC Relative position of the column within the table.
data_default CHARACTER

VARYING
Default value assigned to the column.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

869

10.69 USER_TAB_PARTITIONS

The USER_TAB_PARTITIONS view provides information about all of the partitions that
are owned by the current user.

Name Type Description
schema_name TEXT The name of the schema in which the table

resides.
table_name TEXT The name of the table.
composite TEXT YES if the table is subpartitioned; NO if the table is not

subpartitioned.
partition_name TEXT The name of the partition.
subpartition_count BIGINT The number of subpartitions in the partition.
high_value TEXT The high partitioning value specified in the

CREATE TABLE statement.
high_value_length INTEGER The length of the partitioning value.
partition_position INTEGER 1 for the first partition; 2 for the second partition, etc.
tablespace_name TEXT The name of the tablespace in which the partition resides.
pct_free NUMERIC Included for compatibility only; always 0
pct_used NUMERIC Included for compatibility only; always 0
ini_trans NUMERIC Included for compatibility only; always 0
max_trans NUMERIC Included for compatibility only; always 0
initial_extent NUMERIC Included for compatibility only; always NULL
next_extent NUMERIC Included for compatibility only; always NULL
min_extent NUMERIC Included for compatibility only; always 0
max_extent NUMERIC Included for compatibility only; always 0
pct_increase NUMERIC Included for compatibility only; always 0
freelists NUMERIC Included for compatibility only; always NULL
freelist_groups NUMERIC Included for compatibility only; always NULL
logging CHARACTER

VARYING(7)
Included for compatibility only; always YES

compression CHARACTER
VARYING(8)

Included for compatibility only; always NONE

num_rows NUMERIC Same as pg_class.reltuples.
blocks INTEGER Same as pg_class.relpages.
empty_blocks NUMERIC Included for compatibility only; always NULL
avg_space NUMERIC Included for compatibility only; always NULL
chain_cnt NUMERIC Included for compatibility only; always NULL
avg_row_len NUMERIC Included for compatibility only; always NULL
sample_size NUMERIC Included for compatibility only; always NULL
last_analyzed TIMESTAMP

WITHOUT TIME
ZONE

Included for compatibility only; always NULL

buffer_pool CHARACTER
VARYING(7)

Included for compatibility only; always NULL

global_stats CHARACTER
VARYING(3)

Included for compatibility only; always YES

user_stats CHARACTER
VARYING(3)

Included for compatibility only; always NO

backing_table REGCLASS Name of the partition backing table.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

870

10.70 USER_TAB_SUBPARTITIONS

The USER_TAB_SUBPARTITIONS view provides information about all of the
subpartitions owned by the current user.

Name Type Description
schema_name TEXT The name of the schema in which the table resides.
table_name TEXT The name of the table.
partition_name TEXT The name of the subpartition.
subpartition_name TEXT The name of the subpartition.
high_value TEXT The high subpartitioning value specified in the CREATE

TABLE statement.
high_value_length INTEGER The length of the subpartitioning value.
subpartition_position INTEGER 1 for the first subpartition; 2 for the second

subpartition, etc.
tablespace_name TEXT The name of the tablespace in which the subpartition

resides.
pct_free NUMERIC Included for compatibility only; always 0
pct_used NUMERIC Included for compatibility only; always 0
ini_trans NUMERIC Included for compatibility only; always 0
max_trans NUMERIC Included for compatibility only; always 0
initial_extent NUMERIC Included for compatibility only; always NULL
next_extent NUMERIC Included for compatibility only; always NULL
min_extent NUMERIC Included for compatibility only; always 0
max_extent NUMERIC Included for compatibility only; always 0
pct_increase NUMERIC Included for compatibility only; always 0
freelists NUMERIC Included for compatibility only; always NULL
freelist_groups NUMERIC Included for compatibility only; always NULL
logging CHARACTER

VARYING(7)
Included for compatibility only; always YES

compression CHARACTER
VARYING(8)

Included for compatibility only; always NONE

num_rows NUMERIC Same as pg_class.reltuples.
blocks INTEGER Same as pg_class.relpages.
empty_blocks NUMERIC Included for compatibility only; always NULL
avg_space NUMERIC Included for compatibility only; always NULL
chain_cnt NUMERIC Included for compatibility only; always NULL
avg_row_len NUMERIC Included for compatibility only; always NULL
sample_size NUMERIC Included for compatibility only; always NULL
last_analyzed TIMESTAMP

WITHOUT TIME
ZONE

Included for compatibility only; always NULL

buffer_pool CHARACTER
VARYING(7)

Included for compatibility only; always NULL

global_stats CHARACTER
VARYING(3)

Included for compatibility only; always YES

user_stats CHARACTER
VARYING(3)

Included for compatibility only; always NO

backing_table REGCLASS Name of the partition backing table.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

871

10.71 USER_TABLES

The USER_TABLES view displays information about all tables owned by the current user.

Name Type Description
schema_name TEXT Name of the schema in which the table belongs.
table_name TEXT Name of the table.

tablespace_name
TEXT Name of the tablespace in which the table resides if other than

the default tablespace.

status CHARACTER
VARYING(5) Included for compatibility only; always set to VALID..

temporary CHARACTER(1) Y if the table is temporary; N if the table is not temporary.

10.72 USER_TRIGGERS

The USER_TRIGGERS view displays information about all triggers on tables owned by
the current user.

Name Type Description
schema_name TEXT The name of the schema in which the trigger resides.
trigger_name TEXT The name of the trigger.

trigger_type TEXT

The type of the trigger. Possible values are:
BEFORE ROW
BEFORE STATEMENT
AFTER ROW
AFTER STATEMENT

triggering_event TEXT The event that fires the trigger.

table_owner TEXT The user name of the owner of the table on which the trigger
is defined.

base_object_type TEXT Included for compatibility only. Value will always be TABLE.
table_name TEXT The name of the table on which the trigger is defined.

referencing_names
TEXT Included for compatibility only. Value will always be

REFERENCING NEW AS NEW OLD AS OLD.

status
TEXT Status indicates if the trigger is enabled (VALID) or disabled

(NOTVALID).

description
TEXT Included for compatibility only. Value will always be SEE

TRIGGER BODY FOR TEXT.
trigger_body TEXT The body of the trigger.
action_statement TEXT The SQL command that executes when the trigger fires.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

872

10.73 USER_TYPES

The USER_TYPES view provides information about all object types owned by the current
user.

Name Type Description
schema_name TEXT The name of the schema in which the type is defined.
type_name TEXT The name of the type.
type_oid OID The object identifier (OID) of the type.

typecode TEXT

The typecode of the type. Possible values are:
OBJECT
COLLECTION
OTHER

attributes INTEGER The number of attributes in the type.

10.74 USER_USERS

The USER_USERS view provides information about the current user.

Name Type Description
username TEXT User name of the user.
user_id OID ID number of the user.

account_status CHARACTER
VARYING(32)

The current status of the account. Possible values
are:

EXPIRED & LOCKED
OPEN
LOCKED

lock_date
TIMESTAMP
WITHOUT TIME
ZONE

Included for compatibility only. The value is
always NULL.

expiry_date
TIMESTAMP
WITHOUT TIME
ZONE

The expiration date of the account.

default_tablespace CHARACTER
VARYING(30) The default tablespace associated with the account.

temporary_tablespace CHARACTER
VARYING(30)

Included for compatibility only. The value will
always be '' (an empty string).

created
TIMESTAMP
WITHOUT TIME
ZONE

Included for compatibility only. The value will
always be NULL.

initial_rsrc_consumer_group CHARACTER VARYING(30)
Included for compatibility only. The value will
always be NULL.

external_name CHARACTER
VARYING(4000)

Included for compatibility only; always set to
NULL.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

873

10.75 USER_VIEW_COLUMNS

The USER_VIEW_COLUMNS view provides information about all columns in views owned
by the current user.

Name Type Description

schema_name CHARACTER
VARYING Name of the schema in which the view belongs.

view_name CHARACTER
VARYING Name of the view.

column_name CHARACTER
VARYING Name of the column.

data_type CHARACTER
VARYING Data type of the column.

data_length NUMERIC Length of text columns.
data_precision NUMERIC Precision (number of digits) for NUMBER columns.
data_scale NUMERIC Scale of NUMBER columns.

nullable CHARACTER(1) Whether or not the column is nullable – possible values are: Y
– column is nullable; N – column does not allow null.

column_id NUMERIC Relative position of the column within the view.
data_default CHARACTER

VARYING
Default value assigned to the column.

10.76 USER_VIEWS

The USER_VIEWS view provides information about all views owned by the current user.

Name Type Description
schema_name TEXT Name of the schema in which the view resides.
view_name TEXT Name of the view.
text TEXT The SELECT statement that defines the view.

10.77 V$VERSION

The V$VERSION view provides information about product compatibility.

Name Type Description
banner TEXT Displays product compatibility information.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

874

10.78 PRODUCT_COMPONENT_VERSION

The PRODUCT_COMPONENT_VERSION view provides version information about product
version compatibility.

Name Type Description

product CHARACTER
VARYING(74) The name of the product.

version CHARACTER
VARYING(74 The version number of the product.

status CHARACTER
VARYING(74)

Included for compatibility; always Available.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

875

11 System Catalog Tables
The following system catalog tables contain definitions of database objects. The layout
of the system tables is subject to change; if you are writing an application that depends on
information stored in the system tables, it would be prudent to use an existing catalog
view, or create a catalog view to isolate the application from changes to the system table.

11.1 dual

dual is a single-row, single-column table that is provided for Oracle compatibility only.

Column Type Modifiers Description
dummy VARCHAR2(1) Provided for compatibility only.

11.2 edb_dir

The edb_dir table contains one row for each alias that points to a directory created with
the CREATE DIRECTORY command. A directory is an alias for a pathname that allows a
user limited access to the host file system.

You can use a directory to fence a user into a specific directory tree within the file
system. For example, the UTL_FILE package offers functions that permit a user to read
and write files and directories in the host file system, but only allows access to paths that
the database administrator has granted access to via a CREATE DIRECTORY command.

Column Type Modifiers Description
dirname "name" not null The name of the alias.
dirowner oid not null The OID of the user that owns the alias.
dirpath text The directory name to which access is granted.
diracl aclitem[] The access control list that determines which users

may access the alias.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

876

11.3 edb_all_resource_groups

The edb_all_resource_groups table contains one row for each resource group
created with the CREATE RESOURCE GROUP command and displays the number of
active processes in each resource group.

Column Type Modifiers Description
group_name "name" The name of the resource group.
active_processes integer Number of currently active processes in

the resource group.
cpu_rate_limit float8 Maximum CPU rate limit for the

resource group. 0 means no limit.
per_process_cpu_rate_li
mit

float8 Maximum CPU rate limit per currently
active process in the resource group.

dirty_rate_limit float8 Maximum dirty rate limit for a resource
group. 0 means no limit.

per_process_dirty_rate_
limit

float8 Maximum dirty rate limit per currently
active process in the resource group.

11.4 edb_partdef

The edb_partdef table contains one row for each

Column Type Modifiers Description
pdefrel oid not null The OID of the partitioning root (comes from

pg_class).
pdeftype char not null The partitioning type:

'r' for range
'l' for list
'h' for hash.

pdefsubtype char not null The subpartitioning type:
'r' for range
'l' for list
'h' for hash.

pdefcols int2vector not null The partitioning key columns (a vector of
pg_attribute OIDs).

pdefsubcols int2vector not null The subpartitioning key columns (a vector of
pg_attribute OIDs).

pdefkeyexpr pg_node_tree Currently unused.
pdefinsertexpr pg_node_tree Currently unused.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

877

11.5 edb_partition

The edb_partition table contains one row for each partition or subpartition.

Column Type Modifiers Description
partname name not_null The partition or subpartition name.
partpos integer not_null The partition or subpartition position.
partpdefid oid not_null The OID of the edb_partdef tuple (points to

edb_partdef).
partrelid oid not_null The OID of the partition backing table

(points to pg_class).
partparent oid not_null The OID of the parent edb_partition tuple

(for subpartitions).
partcons oid not_null The OID of the CHECK constraint for the

partition (points to pg_constraint).
parttablespace oid not_null The OID of the TABLESPACE (points to

pg_tablespace).
partistemplate boolean not_null Identifies this partition as a template

partition (currently unused).
partvals pg_node_tree A list of partition key values in

pg_getexpr() form.

11.6 edb_password_history

The edb_password_history table contains one row for each password change. The
table is shared across all databases within a cluster.

Column Type References Description
passhistroleid oid pg_authid.oid The ID of a role.
passhistpassword text Role password in md5 encrypted form.
passhistpasswordsetat timestamptz The time the password was set.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

878

11.7 edb_policy

The edb_partition table contains one row for each policy.

Column Type Modifiers Description
policyname name not null The policy name.
policygroup oid not null Currently unused.
policyobject oid not null The OID of the table secured by this policy

(the object_schema plus the object_name).
policykind char not null The kind of object secured by this policy:

'r' for a table
'v' for a view
= for a synonym
Currently always 'r'.

policyproc oid not null The OID of the policy function
(function_schema plus policy_function).

policyinsert boolean not null True if the policy is enforced by INSERT
statements.

policyselect boolean not null True if the policy is enforced by SELECT
statements.

policydelete boolean not null True if the policy is enforced by DELETE
statements.

policyupdate boolean not null True if the policy is enforced by UPDATE
statements.

policyindex boolean not null Currently unused.
policyenabled boolean not null True if the policy is enabled.
policyupdatecheck boolean not null True if rows updated by an UPDATE

statement must satisfy the policy.
policystatic boolean not null Currently unused.
policytype integer not null Currently unused.
policyopts integer not null Currently unused.
policyseccols int2vector not null The column numbers for columns

listed in sec_relevant_cols.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

879

11.8 edb_profile

The edb_profile table stores information about the available profiles. edb_profiles
is shared across all databases within a cluster.

Column Type References Description
oid oid Row identifier (hidden attribute;

must be explicitly selected).
prfname name The name of the profile.
prffailedloginattempts integer The number of failed login attempts

allowed by the profile. -1 indicates
that the value from the default
profile should be used. -2 indicates
no limit on failed login attempts.

prfpasswordlocktime integer The password lock time
associated with the profile (in
seconds). -1 indicates that the
value from the default profile
should be used. -2 indicates that the
account should be locked
permanently.

prfpasswordlifetime integer The password life time associated
with the profile (in seconds). -1
indicates that the value from the
default profile should be used. -2
indicates that the password never
expires.

prfpasswordgracetime integer The password grace time
associated with the profile (in
seconds). -1 indicates that the
value from the default profile
should be used. -2 indicates that the
password never expires.

prfpasswordreusetime integer The number of seconds that a user
must wait before reusing a
password. -1 indicates that the
value from the default profile
should be used. -2 indicates that the
old passwords can never be reused.

prfpasswordreusemax integer The number of password changes
that have to occur before a
password can be reused. -1
indicates that the value from the
default profile should be used. -2
indicates that the old passwords can
never be reused.

prfpasswordverifyfuncdb oid pg_database.oid The OID of the database in which
the password verify function
exists.

prfpasswordverifyfunc oid pg_proc.oid The OID of the password
verify function associated
with the profile.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

880

11.9 edb_resource_group

The edb_resource_group table contains one row for each resource group created with
the CREATE RESOURCE GROUP command.

Column Type Modifiers Description
rgrpname "name" not null The name of the resource group.
rgrpcpuratelimit float8 not null Maximum CPU rate limit for a resource

group. 0 means no limit.
rgrpdirtyratelimit float8 not null Maximum dirty rate limit for a resource

group. 0 means no limit.

11.10 edb_variable

The edb_variable table contains one row for each package level variable (each
variable declared within a package).

Column Type Modifiers Description
varname "name" not null The name of the variable.
varpackage oid not null The OID of the pg_namespace row that stores the

package.
vartype oid not null The OID of the pg_type row that defines the type of

the variable.
varaccess "char" not null + if the variable is visible outside of the package.

- if the variable is only visible within the package.
Note: Public variables are declared within the
package header; private variables are declared
within the package body.

varsrc text Contains the source of the variable declaration,
including any default value expressions for the
variable.

varseq smallint not null The order in which the variable was declared in the
package.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

881

11.11 pg_synonym

The pg_synonym table contains one row for each synonym created with the CREATE
SYNONYM command or CREATE PUBLIC SYNONYM command.

Column Type Modifiers Description
synname "name" not null The name of the synonym.
synnamespace oid not null Replaces synowner. Contains the OID of the

pg_namespace row where the synonym is stored
synowner oid not null The OID of the user that owns the synonym.
synobjschema "name" not null The schema in which the referenced object is

defined.
synobjname "name" not null The name of the referenced object.
synlink text The (optional) name of the database link in which

the referenced object is defined.

11.12 product_component_version

The product_component_version table contains information about feature
compatibility; an application can query this table at installation or run time to verify that
features used by the application are available with this deployment.

Column Type Description
product character varying (74) The name of the product.
version character varying (74) The version number of the product.
status character varying (74) The status of the release.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

882

12 Appendix
This chapter contains various miscellaneous topics.

12.1 Advanced Server Database Limits

This section lists the Advanced Server database limits.

Table 12-1 - Advanced Server Database Limits

Limit Value
Maximum Database Size Unlimited
Maximum Table Size 32 TB
Maximum Row Size 1.6 TB
Maximum Field Size 1 GB
Maximum Rows per Table Unlimited
Maximum Columns per Table 250 - 1600 depending on column types
Maximum Indexes per Table Unlimited

12.2 Advanced Server Keywords

A keyword is a word that is recognized by the Advanced Server parser as having a
special meaning or association. You can use the pg_get_keywords() function to
retrieve an up-to-date list of the Advanced Server keywords:

acctg=#
acctg=# SELECT * FROM pg_get_keywords();
 word | catcode | catdesc
---------------------+---------+---------------------------------
 abort | U | unreserved
 absolute | U | unreserved
 access | U | unreserved
 action | U | unreserved
 add | U | unreserved
...

pg_get_keywords returns a table containing the keywords recognized by Advanced
Server:

x The word column displays the keyword.
x The catcode column displays a category code.
x The catdesc column displays a brief description of the category to which the

keyword belongs.

Postgres Plus Enterprise Edition Guide

Copyright © 2014 - 2016 EnterpriseDB Corporation. All rights reserved.

883

Note that any character can be used in an identifier if the name is enclosed in double
quotes. You can selectively query the pg_get_keywords() function to retrieve an up-
to-date list of the Advanced Server keywords that belong to a specific category:

SELECT * FROM pg_get_keywords() WHERE catcode = 'code';

Where code is:

R - The word is reserved. Reserved keywords may never be used as an identifier;
they are reserved for use by the server.

U - The word is unreserved. Unreserved words are used internally in some
contexts, but may be used as a name for a database object.

T - The word is used internally, but may be used as a name for a function or type.

C - The word is used internally, and may not be used as a name for a function or
type.

For more information about Advanced Server identifiers and keywords, please see the
PostgreSQL core documentation at:

http://www.enterprisedb.com/docs/en/9.4/pg/sql-syntax-lexical.html

http://www.enterprisedb.com/docs/en/9.4/pg/sql-syntax-lexical.html#SQL-SYNTAX-IDENTIFIERS

